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Abstract  
This paper investigates the application of Large Language Models (LLMs), specifically OpenAI's 
ChatGPT3.5, ChatGPT4.0, Google Bard, and Microsoft Bing, in simplifying radiology reports, thus 
potentially enhancing patient understanding. We examined 254 anonymized radiology reports from 
diverse examination types and used three different prompts to guide the LLMs' simplification processes. 
The resulting simplified reports were evaluated using four established readability indices. All LLMs 
significantly simplified the reports, but performance varied based on the prompt used and the specific 
model. The ChatGPT models performed best when additional context was provided (i.e., specifying user 
as a patient or requesting simplification at the 7th grade level). Our findings suggest that LLMs can 
effectively simplify radiology reports, although improvements are needed to ensure accurate clinical 
representation and optimal readability. These models have the potential to improve patient health literacy, 
patient-provider communication, and ultimately, health outcomes. 
 
Introduction 

Imaging reports are a cornerstone of medical decision-making, providing information for diagnosis, 
treatment planning, and monitoring disease progression. Historically, only the radiologist and referring 
provider accessed these reports, but the rise of telemedicine and patient portals, as well as regulatory 
changes, most recently the 21st Century Cures Act, have increased access to electronic health records 
and transformed patients’ relationship with their medical information.1–4  

Digital health literacy, defined as the degree to which a patient can obtain, process, and understand 
electronic information,5 is critical for patients to fully benefit from this transformation.6 Radiology reports, 
however, are filled with technical jargon, making them relatively uninterpretable to individuals without a 
clinical background.7 Expanded access to these reports could thus exacerbate patient anxiety, 
misunderstanding, and emotional distress, particularly with abnormal findings.8–10 Improving radiological 
literacy could help address these concerns, with other spillover benefits to safety and transparency,11 
shared decision-making,12 treatment compliance,13 and reducing health disparities.14   

Fifteen years ago, The Joint Commission mandated that health care organizations "encourage 
patients' active involvement in their own care as a patient safety strategy,”11 and a linchpin of that 
requirement is data transparency and accessibility. Launched in 2010, the OpenNotes program, which 
allowed patients to access their electronic medical records, demonstrated that 99% of patients wanted the 
program to continue and 85% reported that access would inform their future provider and health system 
choices.15 In radiology, approaches such as leaving a summary statement at the end of the report,16 
structured templates with standardized lexicon,17,18 and video reports19 have all been used to improve 
digital health literacy. Largely underexplored are emerging artificial intelligence (AI) tools to support 
patient understanding. 

Using deep learning techniques, large language models (LLMs), such as OpenAI’s ChatGPT, Google 
Bard, and Microsoft Bing, have emerged as promising tools for the simplification of complex medical 
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information.20,21 More specifically, these models leverage natural language processing (NLP) technologies 
to generate human-like text in response to a user’s prompts. To date, a comparative analysis of these 
LLMs in radiology has not been fully explored.  

In this study, we compared the performance of several popular LLMs in producing simplified reports. 
Our objective was to evaluate the effectiveness of LLMs and provide insights into their potential for 
enhancing patient health literacy and promoting better patient–provider communication. 
 
Methods: 

To investigate the efficacy of four Large Language Models (LLMs) in simplifying radiology reports, 
we designed a comparative study focusing on OpenAI's ChatGPT3.5 and ChatGPT4.0, Google Bard, and 
Microsoft Bing. Given that Bing has three conversational styles, we elected to use the precise setting over 
the creative or balanced settings. Our primary outcome was readability score, using an existing open-
source dataset of reports.  
 
Dataset Selection and Modification 

We used the MIMIC-III database, which is a comprehensive public database from the Beth Israel 
Deaconess Medical Center.22,23 A random selection of 254 anonymized reports was made to ensure 
representation of various examination types (MRI, CT, US (ultrasound), X-ray, Mammogram), anatomical 
regions, and lengths. This dataset allowed us to evaluate LLM performance across diverse clinical 
situations. 

The reports in the datasets contained redacted information, so we altered the reports to state “Dr. 
Smith” where a physician name was redacted. Further, we changed redacted dates to “prior,” as many 
reports compared findings to previous studies.  
 
Prompt Selection 

We first tested the prompt “Simplify this radiology report:” (Prompt 1). We then tested the prompt 
“I am a patient. Simplify this radiology report:” (Prompt 2).24 Lastly, we tested the prompt, “Simplify this 
radiology report at the 7th grade level” (Prompt 3). Each prompt was followed with the radiology reports 
from the MIMIC-III database. 
 
Processing Radiology Reports and Readability Assessment 

Each of the 254 radiology reports were processed individually by the 4 LLMs (accessed on May 
1st, 2023: ChatGPT3.5 Legacy, ChatGPT4.0, Microsoft Bing, Google Bard) generating simplified versions 
of the original reports for each of the three prompts. In order to standardize the outputs and ensure equal 
comparison, we removed all formatting, including bullet points and numbered lists, as is consistent with 
previous readability studies.25,26 Ancillary information, such as “Sure I understand you would like a 
simplified version of your radiology report” and “please note I am not a medical professional,” was also 
removed to focus the analysis on the clinical content.    

We assessed the LLMs' ability to simplify complex radiology reports by employing four 
established readability indices: Gunning Fog (GF), Flesch-Kincaid Grade Level (FK), Automated 
Readability Index (ARI), and Coleman-Liau (CL) indices.27 Each index outputs a score which corresponds 
to a reading grade level (RGL). RGL relates directly to educational attainment: an RGL of 6 corresponds 
to a sixth-grade level, an RGL of 12 corresponds to a high school senior level, and an RGL of 17 
corresponds to a four-year college graduate level.28–31  

As previously described,25 we averaged the GF, FK, ARI, and CL readability scores for each 
output to calculate an averaged reading grade level score (aRGL). We applied the non-parametric 
Wilcoxon signed-rank and rank-sum tests to compare RGLs and aRGLs.  
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Results 
 

We tested the LLMs with the 3 distinct prompts across 5 imaging modalities: X-ray (N=45), US 
(N=11), MRI (N=47), CT (N=107), and mammogram (N=33). Original radiologist reports had a median 
aRGL of 17.2 overall, with X-rays at 13.7, ultrasounds at 14.6, MRIs at 16.5, CTs at 18.4, and 
mammograms at 18.8 (Table 1). When comparing original radiologist reports, X-ray reports were 
significantly more readable than CT, mammogram, and MRI reports (p<0.001), and ultrasound reports 
were significantly more readable than reports for CTs and mammograms (p<0.001, Suppl. Fig. 2). 
Despite these relative differences, original X-ray and ultrasound reports were still approximately at the 
college RGLs.  

 
All four LLMs significantly simplified original radiology reports from baseline complexity across all 

three prompts for MRI, CT, and mammogram (Figures 1-3, Suppl. Fig. 3). For X-ray and ultrasound, 
ChatGPT3.5, ChatGPT4.0, and Bing similarly achieved statistically significant simplification across all 
prompts, but Bard only simplified ultrasounds with Prompt 1 and X-rays with Prompt 2 and 3. 
 
 
 
 
 
 

Table 1: Median of the aRGL for each LLM and 
prompt based on examination type. 
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Prompt 1: “Simplify this radiology finding:” 
 
 

 
Using Prompt 1, Bing and Bard achieved significantly lower combined median aRGL (9.4 and 8.1) 

than ChatGPT3.5 and ChatGPT4.0 (10.5 and 10.5, p<0.0001, Figure 1). Bard and Bing otherwise 
performed similarly, with Bard having the lowest combined median aRGLs for MRI (8.6, p<0.001), 
mammogram (9.3), and overall (9.1) reports and Bing for CT (8.1) and ultrasound (6.6). With Prompt 1, 
ChatGPT3.5 and ChatGPT4.0 performed similarly to each another, with typically higher aRGLs than Bing 
and Bard. The only exception was X-rays where ChatGPT3.5 had the lowest median aRGL (10.4), 
significantly lower than Bard and Bing. 
 
 
 
 

 

Figure 1 Readability scores of radiologist reports and LLMs using Prompt 1 – “Simplify this radiology finding:” *, 
**, ***, **** correspond to p<0.05, p<0.01, p<0.001, and p<0.0001, respectively. 
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Prompt 2: “I am a patient. Simplify this radiology finding:” 
 
 

 
 

With the added context of Prompt 2, ChatGPT3.5 and ChatGPT4.0 produced outputs with 
significantly lower aRGLs overall compared to Bard and Bing (p<0.0001) and for all imaging modalities 
tested (p<0.05, Figure 2). While there were no significant differences between ChatGPT3.5 and 
ChatGPT4.0, ChatGPT3.5 had the lowest median aRGL outputs for all imaging modalities (overall 7.6, 
CT 7.8, X-ray 8.5, MRI 7.2, US 6.5, and mammogram 7.0, Table 1). 
  
 
 
 

Figure 2 Readability scores of radiologist reports and LLMs using Prompt2 – “I am a patient. Simplify this radiology 
finding:” *, **, ***, **** correspond to p<0.05, p<0.01, p<0.001, and p<0.0001, respectively. 
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Prompt 3: “Simplify this radiology finding at the 7th grade level:” 
 
 

 
 
 

Using Prompt 3 revealed similar outcomes to Prompt 2. The ChatGPT models significantly 
outperformed Bard and Bing overall and across all modalities (at least p<0.01, Figure 3), except for X-
rays where no difference was found between Bard and ChatGPT4. Despite the two versions performing 
somewhat similarly, ChatGPT3.5 again produced the lowest aRGL outputs across our analysis (overall 
6.7, CT 6.9, X-ray 8.0, MRI 6.6, ultrasound 4.6, and mammogram 5.5; Table 1).  
  
 
 
 

Figure 3 Readability scores of radiologist reports and LLMs using Prompt 3 – “Simplify this radiology finding at the 
7th grade level:” *, **, ***, **** correspond to p<0.05, p<0.01, p<0.001, and p<0.0001, respectively. 
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Prompt 1 vs Prompt 2 vs Prompt 3 
 
. 

 
Finally, we analyzed performance for each LLM across the three prompt combinations (Fig. 4). 

The ChatGPT models performed better at reducing aRGL with Prompt 2 and Prompt 3 than with Prompt 1 
(p<0.0001); Prompt 3 also outperformed Prompt 2 (p<0.01). On the other hand, Bard and Bing performed 
better with Prompt 1 when compared to Prompt 2 and Prompt 3 (p<0.0001). We also observed that 
Prompt 3 outperforms Prompt 2 in producing lower aRGL outputs for Bard and Bing as well (p<0.0001). 
 
 
 

Figure 4 Comparison of each prompt within LLM. *, **, ***, **** correspond to p<0.05, p<0.01, p<0.001, and 
p<0.0001, respectively. 
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Discussion 
 

In this study, we showed that the baseline readability of radiology reports across CT, X-ray, MRI, 
ultrasound, and mammograms are above the college graduate level but OpenAI’s ChatGPT3.5 and 
ChatGPT4.0, Google Bard, and Microsoft Bing can all successfully simplify these reports. The success of 
each of the LLMs varied, however, according to the specific prompt wording. Microsoft Bing and Google 
Bard performed best with a straightforward request to simplify a radiology report (Prompt 1), while the 
ChatGPT models performed best when provided with added context, such as the user specifying they 
were a patient (Prompt 2) or requesting simplification at the 7th grade level (Prompt 3). 

Out of countless potential prompts that could have been tested, we focused our analysis on these 
three to determine how different types of context impacted readability. Prompt 1 was the simplest, 
specifying only that the inputted text will be a radiology report and that the LLM is tasked with simplifying 
it. The other two prompts offered additional context. For Prompt 3, we specified the 7th grade level 
because the American Medical Association and National Institutes of Health recommend that patient 
education materials should be written between the third- and seventh-grade levels given that the average 
American reads at the eighth-grade level.18,32,33 As expected, Prompt 3 outperformed Prompt 2 across all 
LLMs tested, although we recognize that requesting simplification at a specific grade level is less 
accessible for most users than specifying that “I am a patient.” Unexpectedly, however, Prompt 1 
obtained the lowest aRGLs for two of the four LLMs tested, Microsoft Bing and Google Bard,—suggesting 
that richer context does not always equate to improved readability for every LLM. 

Several explanations may underlie the observed differences in readability scores across the 
LLMs. For one, variations in training data and preprocessing techniques could impact the different LLMs’ 
ability to handle the jargon, abbreviations, and numerical information found in radiology reports.34 
Furthermore, there may simply be fundamental differences in LLM architectures and algorithms that make 
certain models more amenable to simplifying medical information.35 We nonetheless found the 
differences between Microsoft Bing and Open AI’s ChatGPT models remarkable because Bing is 
powered by OpenAI. The finding that ChatGPT3.5 produced similar outputs to ChatGPT4.0 was also 
notable because it suggests that updated software does not automatically equate to improved 
performance, at least in regards to readability.  

With patients already using these LLMs to simplify medical information,36 providers cannot ignore 
how the information-sharing landscape has changed and should consider accordingly. For instance, 
radiologists may consider using LLMs proactively to create a patient-friendly report, inputting it into the 
electronic medical record alongside their original report to help alleviate patient anxiety, 
misunderstanding, and emotional distress.37 Epic, Cerner, and other electronic health record companies 
may soon integrate LLMs into their software such that radiologists would not need to leave the interface 
to rely on third party tools.38 

While LLMs demonstrate promise in helping patients better understand their radiology reports, 
the ultimate goal should be to strike a balance between readability and preserving clinical fidelity.39 
Indeed, excessive simplification could contribute to clinical inaccuracies and actually cause patients 
greater anxiety, so the role of healthcare providers in facilitating communication and understanding 
should not be overlooked. We believe LLMs could eventually be used as supplementary tools to aid 
patient-provider communication rather than a replacement for personal interaction and discussion, 
however, it is essential to study the accuracy and fidelity of these outputs before recommending their 
usage on a wider-scale.40  

This study has limitations. For one, radiologists or medical professionals did not assess simplified 
outputs, so we cannot speak to the accuracy, fidelity, and clinical utility of these reports. The readability 
metrics used in this study are similarly limited because they are language- and structure-focused, so 
these measures do not necessarily capture relevance or comprehensibility from a medical perspective. 
Furthermore, due to the formulaic nature of these metrics, outputted RGLs were sometimes above a 
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meaningful grade level (i.e., a score of 30) and thus held little interpretability on their own. In this study, 
we were interested in assessing the readability of reports after LLM simplification and evaluating relative 
differences from baseline. Finally, we extracted radiology reports from the MIMIC-III dataset, which is 
derived from a single hospital, and employed a cross-sectional design, which may not be ideal for 
capturing continuous changes in LLMs’ performance. A longitudinal study design, as well as a larger, 
more diverse dataset, might have improved these results’ validity and generalizability. 
 
Conclusion 

Our study highlights how radiology reports are complex medical documents that implement 
language and style above the college graduate reading level, but LLMs are powerful tools for simplifying 
these reports. Our findings should not be viewed as an endorsement for any particular LLM, instead 
demonstrating that each LLM tested has the ability to simplify radiology reports across modalities. Careful 
fine-tuning and customization for each LLM may ensure optimal simplification while maintaining the 
clinical integrity of the reports.  
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eFigure 1: GF, FK, ARI, and CL readability scores using Prompt 1. *, **, ***, **** correspond to p<0.05, 
p<0.01, p<0.001, and p<0.0001, respectively 
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eFigure 2: GF, FK, ARI, and CL readability scores using Prompt 2. *, **, ***, **** correspond to p<0.05, 
p<0.01, p<0.001, and p<0.0001, respectively 
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eFigure 3: GF, FK, ARI, and CL readability scores using Prompt 3. *, **, ***, **** correspond to p<0.05, 
p<0.01, p<0.001, and p<0.0001, respectively 
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eTable 1: Median scores across LLM, prompt, modality, and readability index. *, **, ***, **** 
correspond to p<0.05, p<0.01, p<0.001, and p<0.0001, respectively 
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eTable 2: Comparison of each modality within each prompt and LLM. 

Description: Modality listed in matrix represents modality with lower median. Significance levels are 
shown. *, **, ***, **** correspond to p<0.05, p<0.01, p<0.001, and p<0.0001, respectively 
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eTable 3: Comparison of each prompt and LLM combination within modality. 
Description: P1- Prompt 1, P2 – Prompt 2, P3 – Prompt 3. Combination listed in matrix has lower median; 
significance levels are shown. *, **, ***, **** correspond to p<0.05, p<0.01, p<0.001, and p<0.0001, 
respectively 
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