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Abstract 

Effective representation of medical concepts is crucial for secondary analyses of electronic health 

records. Neural language models have shown promise in automatically deriving medical concept 

representations from clinical data. However, the comparative performance of different language 

models for creating these empirical representations, and the extent to which they encode medical 

semantics, has not been extensively studied. This study aims to address this gap by evaluating the 

effectiveness of three popular language models - word2vec, fastText, and GloVe - in creating medical 

concept embeddings. By using a large dataset of digital health records, we created patient trajectories 

and used them to train the language models. We then assessed the ability of the learned embeddings 

to encode semantics through an explicit comparison with biomedical terminologies, and implicitly by 

predicting patient outcomes and trajectories with different degrees of information. Our qualitative 

analysis shows that empirical clusters of embeddings learned by fastText exhibit the highest similarity 

with theoretical clustering patterns obtained from biomedical terminologies, with a similarity score 

between empirical and theoretical clusters of 0.88, 0.80, and 0.92 for diagnosis, procedures, and 

medication codes, respectively. Conversely, for outcome prediction, word2vec and GloVe tend to 

outperform fastText, with the former achieving AUROC as high as 0.80, 0.63, and 0.88 for length-of-

stay, readmission, and mortality prediction, respectively. In predicting the next steps in patient 

trajectories, GloVe achieves the highest performance for diagnostic and medication codes (AUPRC of 

0.46 and of 0.82, respectively) at the highest level of the semantic hierarchy, while fastText outperforms 

the other models for procedure codes (AUPRC of 0.67). Our study demonstrates that subword 

information is crucial for learning medical concept representations, but global embedding vectors are 

better suited for downstream tasks, such as trajectory prediction. Thus, these models can be harnessed 

to learn representations that convey clinical meaning, and our insights highlight the potential of using 

machine learning techniques to semantically encode medical data. 

Keywords: neural language models, medical concept embeddings, electronic health records, patient 

trajectory prediction, clinical outcome prediction, biomedical terminologies, hierarchical clustering 
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1. Introduction 

With the widespread adoption of electronic health record (EHR) systems in healthcare institutions, 

large-scale analysis of digitalized patient data for secondary usage offers great opportunities to improve 

clinical research and healthcare management [1–5]. It enables for example to identify patterns and 

trends that can be used to estimate quality of care and clinical outcomes, such as the likelihood of 

adverse events [6–9] or poor outcomes [10–13]. This data can also be leveraged to automatically 

characterize specific phenotypes, such as disease subtypes [14–17] or treatment response profiles [18, 

19], and perform patient trajectory prediction [20–22], e.g., for clinical decision support [23–25] or real-

time mortality prediction [26–28]. However, healthcare data is complex, heterogeneous, and significant 

human curation and modeling are often required to represent clinical entities and capture intricate 

relationships between them [29–31]. 

Classic approaches to abstract patient data and create homogeneous representations for secondary 

analyses are based on data mappings [32–35], in which raw data are encoded using concepts from 

biomedical knowledge organization systems [36], such as the International Classification of Diseases 

(ICD) [37] and the Anatomical Therapeutic Chemical (ATC) [38] classification systems, and the 

Systematized Nomenclature in Medicine – Clinical Terms (SNOMED-CT) ontology [39]. Despite the 

benefits of these approaches for representing knowledge in EHRs and the facilitated semantic 

interoperability, there are limitations and challenges that need to be considered. First, large human 

efforts are required to curate and annotate data, a resource that is often not at one’s disposal in 

hospitals [40–42]. Additionally, as data and information evolve, the lack of readily available and up-to-

date formal representations might hinder their application to the full extent of EHR data [43]. Lastly, 

the resulting representations of medical concepts are highly dimensional, leading to sparse and 

computationally inefficient data structures (e.g., SNOMED-CT alone has more than 300’000 concepts). 

In recent years, as a complementary alternative to fully semantic encoding, data-driven methods for 

EHR concept representation based on deep learning were proposed [44–47]. In contrast to knowledge-

based approaches, deep learning algorithms learn representations of patients and clinical concepts 

automatically and directly from the data, with minimal pre-processing. The learnt representations are 

dense, low-dimensional vectors that can be used in many downstream tasks. This approach, known as 

medical concept embedding, has already achieved promising results (for reviews: [48–51]). For 

example, convolutional, long short-term memory, as well as attention-based neural networks were 

trained with patient data to perform various patient trajectory prediction tasks [52–55]. Moreover, 

similar neural network architectures were used for automated phenotyping, by building 

representations of structured [56–58], unstructured [59–62] EHR data, or both [63–65]. As a recent 

use-case scenario, deep learning methods were applied to COVID-19-related EHR data for 

epidemiological prediction [66], automatic diagnosis [67], drug repurposing [68–71], or mortality risk 

assessment [72–74]. 

A key aspect of developing accurate patient and medical concept embeddings lies in abstracting and 

modeling the relevant data features. In that respect, neural language models can process EHRs, not 

only for clinical notes, but also by considering events in the patient trajectory as tokens, and entire 

trajectories as a sequence of tokens, similar to word sentences [75–80]. Medical concepts relate to 

each other, either with causal relationships, e.g., diagnosis and medication, or through similar 
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meanings, e.g., related, or synonymous diagnoses or compounds with similar effects or indications. 

Analogous to text, syntactic and semantic relationships among EHR concepts can thus be learned by 

neural language models: leveraging this inherent data structure was shown to improve representations 

of medical concepts and patients [47, 81]. For example, attention-based language models were trained 

with sequences of clinical events and produced representations which improved performance for 

disease prediction [53] as well as for length-of-stay, readmission, and mortality prediction [82, 83]. 

Several studies compared the advantages and shortcomings of popular neural language models, such 

as word2vec [84], fastText [85, 86] and Global Vectors for Word Representation (GloVe) [87], to create 

word embeddings when applied to clinical notes [88–91]. Still, no study has yet performed such a 

comparison for medical concept code representations. In this work, we aim to assess the performance 

of neural language models to generate embeddings from patients’ stays at the hospital expressed as 

sequences of healthcare related event codes. In previous work, using the Medical Information Mart for 

Intensive Care (MIMIC) IV dataset [92], we showed that embeddings produced by word2vec provide 

useful representations of medical concept codes [79]. In this work, we extend this study by comparing 

the quality of embeddings produced by word2vec, fastText and GloVe. To do so, we create patient 

trajectories as sequences of administrative, demographic, and clinical events using the MIMIC-IV 

dataset. Then, the different neural language models are trained to learn medical concept 

representations from these trajectories. Finally, we qualitatively evaluate the extracted representations 

using a clustering task (intrinsic evaluation) and quantitatively using binary and categorical trajectory 

prediction tasks (extrinsic evaluation). The code that we used to build patient trajectories, train the 

models, and evaluate them, is available on our repository1. 

The contribution of this work can be summarized as follows: 

1. We compare popular neural language model architectures - word2vec, fastText and GloVe - 

trained on patient trajectories created from sequences of medical codes and show that these 

language models can produce data-driven embeddings that capture the semantic meaning of 

medical concepts, as defined by biomedical terminologies. 

2. We evaluate the alignment between medical concept embeddings and biomedical 

terminologies and, using a clustering algorithm, we show that fastText naturally presents the 

highest similarity to the different hierarchical levels of the terminologies, with a cluster 

similarity distance between 0.80 and 0.92 for diagnosis, procedure, and medication codes. 

3. We assess patient outcome prediction at different information levels and show that after 10% 

of the trajectory, the extracted embeddings can estimate mortality risks with performance 

above 0.80 AUROC. On the other hand, using the full trajectory (i.e., 100% of patient tokens), 

we can estimate readmission with performance of only around 0.60 AUROC. 

4. Lastly, we evaluate how much intrinsic information the learned embeddings encode to infer 

the next events in the patient trajectory, i.e., diagnoses, procedures, and medication. We 

demonstrate that while high-level information can be encoded by the embeddings, with 

performance varying from 0.46 AUPRC for diagnosis codes to 0.82 AUPRC for medication codes, 

prediction performance decay exponentially with the increase of semantic granularity. 

 
1 https://github.com/ds4dh/medical_concept_representation 
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2. Methodology 

2.1 MIMIC-IV dataset and pre-processing steps 

We extracted 431,231 hospital stays from the 299,712 patients present in the MIMIC-IV database [92]. 

MIMIC-IV is a large, openly available dataset of de-identified EHRs from patients admitted to intensive 

care units (ICUs) or to the emergency department at Beth Israel Deaconess Medical Center in Boston 

between 2008 and 2019. The dataset contains comprehensive clinical data, including vital signs, 

laboratory results, medications, procedures, and diagnoses, as well as demographic information such 

as age, gender, and race. All entries in MIMIC-IV are associated with a patient and an admission 

identifier, and most of them are (directly or indirectly) labeled with a timestamp. This allowed us to 

assemble sequences of events occurring during patients’ hospital stays. Each patient may be admitted 

several times at the hospital, and for each sequence of events happening between admission and 

discharge time, we computed one sequence of events, which will be referred to as “patient trajectory” 

from now on. Each event was extracted from MIMIC-IV tables as a token which could encode a label 

associated with the patient demographic, administrative information, or a medical event  (Figure 1). 

We provide a detailed description of each token category in the supplementary information (Appendix 

A1). 

 

Figure 1. Patient trajectory sequence generation. Medical data was extracted from the MIMIC-IV database. Patient and 

admission ids were used to parse the data and obtain one sequence per patient trajectory. Outcome labels and 

demographic tokens were built using patient and admission data. Token sequences were built from the MIMIC tables, 

using mappings from MIMIC or custom mappings. Tokens for location, procedures, abnormal lab events and medication 

prescriptions were sorted by datetime. Outcomes, demographic information, and ICD10-CM codes were prepended to 

the sequence, because they do not have any associated datetime. ICD10-CM codes were sorted by priority. 

As shown in Figure 1, patient trajectories were built by concatenating the tokens from the outcome 

(LBL), demographic (DEM), diagnosis (DIA), administrative (LOC), procedures (PROC), laboratory (LAB) 

and medication (MED) categories. The outcome and demographic tokens started each sequence, and 

diagnosis codes came second, as a reason for intensive care hospitalization. The remaining tokens were 

appended to the sequence, after being sorted altogether by their associated datetimes (Figure 1). The 

different token categories extracted from the MIMIC database are summarized in Table 1. 
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Category Content Encoding Token instances (#) Tokens per sequence (# ) 

LBL Labels for binary classification Custom  6 3.00 ± 0.00 

DEM Gender, age, race Custom 37 3.28 ± 0.45 

DIA Diagnoses and reason for visits ICD10-CM 9774 11.01 ± 7.29 

LOC Care unit locations Custom 28 5.22 ± 2.99 

PRO Procedures ICD10-PCS 4243 1.53 ± 2.40 

LAB Lab results outside normal range Ids 398 49.39 ± 127.99 

MED Medication prescriptions ATC 1122 31.57 ± 41.34 

Table 1. Summary of the tokens used to build patient trajectory sequences. The number of tokens per sequence 

indicates the mean and the standard deviation, which were computed from the training dataset. Note that, in MIMIC-

IV, all medications are stored as Generic Sequence Number (GSN) or National Drug Code (NDC) entries. We mapped 

these entries to their Anatomical Therapeutic Chemical (ATC) code equivalents, by using the work of Kury et al. [93], 

which queries the online RxNorm API [94] automatically. ATC codes are hierarchically arranged following the target 

anatomical system of medications, as well as their therapeutic, pharmacological, and chemical effects. Appendix A1 

describes in detail how we built the mapping, which we make available in our repository2. 

Once all sequences were constructed, the dataset was split into training, validation and testing subsets, 

containing 345.3k, 43.5k, and 42.4k patient trajectory sequences, respectively. The splitting was based 

on patient ids (80% for training, 10% for validation, 10% for testing) and not admission ids, which 

explains the different number of samples for the validation and testing sets. This means that for any 

patient, all patient trajectories were included in the same data subset. This avoided patient information 

leaking from the training data to the validation and testing data. 

2.2 Training language models 

We trained three language models - word2vec [84], fastText [85, 86], and GloVe [87] - to compute 

medical concept embeddings for any token appearing in the patient trajectory sequences. Patient 

trajectory sequences were encoded by a vocabulary that assigned an integer id to any token appearing 

at least 5 times in the training data and a special id for the remaining “unknown” tokens. Each model 

mapped these ids to fixed-size float vectors, i.e., embeddings, initialized with a random floating point 

look-up table. We used an embedding dimensionality of 512 for all models. These embeddings were 

trained by optimizing the different model’s objectives, in order to provide useful representations of 

medical concepts (Figure 2, top). 

 
2 https://github.com/ds4dh/medical_concept_representation/tree/main/data/datasets/mimic-iv-2.2/maps 
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Figure 2. Training and evaluation of language models. Language models (word2vec, fastText or GloVe) were trained, 

based on their respective objectives (see sections 2.2.1 to 2.2.3 for details), using patient trajectories from the training 

dataset. After training, embeddings of patient trajectories or single medical concepts were queried using the hidden 

weights of the models. To generate a single embedding vector for a patient trajectory, token embeddings were 

averaged, weighting each token by the inverse of its frequency in the training dataset. 

We trained all models until convergence - 100’000 training steps for word2vec and fastText, and 

300’000 for GloVe - with a batch size of 4096 tokens. After training, any medical concept could be given 

as input to the language model to obtain a vector representation (Figure 2, bottom). To embed any 

patient trajectory, we computed a weighted average of the embeddings of its tokens (Figure 2, bottom-

right). The weights were defined as the inverse token frequencies in the training dataset. The neural 

language models used in our experiments are described in sections 2.2.1 to 2.2.3.  

2.2.1 Word2vec 

Word2vec [84] is a 2-layer neural network whose goal is to represent tokens by the context in which 

they appear. We used the skip-gram architecture of word2vec, which receives single tokens as input 

and embeds them to predict nearby target tokens. The reason is that skip-gram works better with small 

datasets and has better representations of rare tokens [95]. Training samples were built from patient 

trajectory sequences by collecting all tokens that appear in a fixed-size context window and assigning 

them to the token in the center of the window. For our case, the context window extended over 5 

tokens on both sides. During training, the model updates its parameters by maximizing the likelihood 

of predicting the context tokens given the corresponding input tokens. This is achieved by applying the 

softmax function to the dot product of the input token embedding and all possible token embeddings, 

which produces a probability distribution of the target context token over the vocabulary. After training, 

tokens that appear in similar contexts are expected to be close to each other in the embedding space, 

enabling word2vec to capture meaningful relationships between medical concepts. 

2.2.2 FastText 

FastText [85, 86] is a neural network that extends the word2vec model by representing words as bags 

of character n-grams, capturing subword information. FastText can represent unseen words based on 

their subword units. The architecture and training schedule of fastText is similar to word2vec. The main 

difference is that, before being processed further, a token embedding is computed as the sum of the 
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embeddings of its n-grams. The motivation to use fastText in our case is that codes from biomedical 

terminologies tend to be structured in a hierarchical manner (e.g., ICD10-CM, ICD-PCS, ATC). Subword 

information may hence automatically include this hierarchy in the token representations. To add 

subword information to the medical concept tokens, we used n-grams for 2 ≤ n ≤ 5. 

2.2.3 GloVe 

GloVe [87] is a count-based algorithm that captures global word co-occurrence statistics. It constructs 

a co-occurrence matrix by counting how frequently words co-occur in the sequences of the dataset and 

then factorizes the matrix to obtain word embeddings. Unlike word2vec and fastText, GloVe considers 

the entire co-occurrence matrix during training, rather than focusing on local context windows around 

each word. In principle, this allows GloVe to capture more complex semantic and syntactic relationships 

between words that may be separated by several words or even sentences. In our experiments, to 

create the co-occurrence matrix we counted, for each pair of tokens, how many times they appeared 

in a common patient trajectory sequence of the training dataset. Empirically, this approach led to better 

performance than using a fixed-size context window to compute co-occurrences. During training, the 

model embedded token pairs to predict their co-occurrence score. 

2.2.4 Creating training sequences 

For fastText and word2vec, we followed the procedure of reference [79] to create the training 

sequences. The procedure shuffled the content of patient trajectory sequences when building center-

context token pairs, which resulted in better predictive performance. The reason was that tokens 

prepended to the sequence, e.g., demographics, were otherwise almost never part of other tokens’ 

context windows. In the current work, to preserve local relationships among tokens in the learned 

representations, we shuffled each sequence only with 50% probability. We also ran an alternative 

training schedule, where no shuffling was applied, but all context windows artificially included the 

outcome tokens, demographic information, as well as the 3 most important diagnosis codes, in addition 

to the normal context tokens. However, this alternative training procedure produced very small and 

inconsistent improvements. For GloVe, as the co-occurrence matrix is created using the whole 

trajectory (i.e., window size equals to the trajectory length), we used the original trajectory sequence. 

2.3 Visualization of medical concept embeddings 

We visualized the embeddings of different medical concepts present in the MIMIC-IV dataset, as 

computed by the different language models described in section 2.2. More specifically, using the t-SNE 

algorithm [96], we generated a 2-dimensional representation of the embeddings of all ICD10-CM 

(diagnoses and reason for visits), ICD10-PCS (procedures) and ATC (medication) codes appearing in the 

model’s vocabulary. We used the python package scikit-learn [97] to implement the t-SNE algorithm, 

with the following hyper-parameters: perplexity = 30.0, learning_rate = auto, metric = cosine, init = pca, 

n_iter: 10000, and n_iter_without_progress = 1000. 

To evaluate the capacity of each model’s embeddings to capture the semantic meaning of medical 

concepts, we labeled the codes with the main terminological subcategories to which they belong. Our 

expectations were that trained embedding would form clusters of medical concepts that correspond to 
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these subcategories. For ICD10-CM codes, we used the ICD10 chapter indices3, which mainly 

correspond to the first letter of the code, and encode the general type of injury or disease, e.g., G 

(nervous), I (circulatory), or J (respiratory). For ATC codes we used the first letter as well, which indicates 

the main anatomical group that the medication is intended to act upon, e.g., C (cardiovascular system), 

and D (dermatologicals). For ICD10-PCS codes, although the first character indicates the general 

category of the procedure, e.g., 7 (osteopathic) or B (imaging), most entries start with the character 0 

(medical and surgical procedures). For this reason, in addition to first-letter subcategories, we split 

subcategory 0 using the second character, which stands for the body system or general anatomical 

region involved in the procedure, e.g., 0D (medical and surgical procedures, gastrointestinal system) or 

0T (medical and surgical procedures, urinary system). Note that we only kept subcategories that, on the 

one hand, held at least 1% of the codes in the terminology and, on the other hand, represented at least 

1% of the tokens of the training dataset. More details about all subcategories are available in Table S3, 

(Suppl. Inf.). 

2.4 Prediction tasks 

We extrinsically evaluated the quality of embeddings produced by the trained models (see section 2.2) 

with two types of patient trajectory prediction tasks (Figure 3, left): binary and multi-label. For the 

binary task, the aim was to predict the outcome of a stay, namely length-of-stay (normal or extended), 

readmission, and mortality. For the multi-label task, the aim was to predict the next clinical events in 

the patient trajectory, namely diagnoses or reason for visits (ICD10-CM), procedures (ICD10-PCS), and 

medications (ATC). Importantly, no model supervision was involved, i.e., predictions were solely based 

on the cosine-similarity between embeddings of patient trajectories and potential target token (Figure 

3, right). More specifically, for each task, we assigned a score to any code belonging to the relevant 

category, i.e., the outcome labels for the binary prediction task, and all codes of the specific category 

(ICD10-CM, ICD10-PCS, ATC) for the multi-label prediction task. The score was defined as 1.0 minus the 

cosine-similarity, which we used to compute the receiver operating characteristic and the precision-

recall curves for any combination of task and model. To feature a realistic prediction scenario, model 

inputs included only a fraction of the medical concept tokens of each patient trajectory sequence. 

Starting from demographics tokens, we gradually increased the proportion of medical tokens given to 

the model (i.e., P = 0.0, 0.1, 0.3, 0.6, 1.0). We give more details about each prediction task in sections 

2.4.1 and 2.4.2. 

 

Figure 3. Prediction tasks performed by the models. Left. Patient trajectory sequences from the testing dataset were 

embedded by the trained language models. Task-specific target tokens were removed from the input sequences embedded 

by the models. Label tokens (used for the binary prediction tasks) were also removed for any prediction task. Right. For each 

 
3 https://icd.who.int/browse10/2010/en 
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predicted category, patient trajectory embeddings were compared to embeddings of any code belonging to that category 

(ICD10-CM codes in the figure example). Model predictions were computed as the set of medical concept tokens that are 

within a threshold level of dissimilarity from the patient trajectory embedding (note that, for illustration purpose, the figure 

depicts a threshold Euclidean distance, but we actually used 1.0 minus cosine-similarity). Predicted target tokens within 

threshold level correspond to true positives and predicted non-target tokens to false positives. Target tokens outside threshold 

level correspond to false negatives. Based on these numbers, precision-recall and ROC curves were computed using different 

thresholds. 

2.4.1 Length-of-stay, readmission, and mortality prediction 

In these tasks, single label tokens for length-of-stay, readmission, and mortality were predicted by the 

model, based on patient trajectory embeddings. Each label token had two possible statuses: normal 

and extended for length-of-stay; no-readmission and readmitted for readmission; alive and dead for 

mortality. During training, these tokens were added at the beginning of the patient trajectory 

sequences and, hence, models learned to represent these tokens in relation to other medical concepts. 

During evaluation, these tokens were removed from the trajectory sequence (Figure 3, left). The 

prediction of the model was then simply computed as the outcome token whose embedding is closer 

to the patient trajectory embedding in terms of cosine-similarity (Figure 3, right). For each task, we 

evaluated model prediction performance with the areas under the receiver operating characteristic 

(AUROC) and the precision-recall (AUPRC) curves. 

2.4.2 Prediction of diagnoses and reasons for visits, procedures, and medications 

In these tasks, diagnosis, and reason for visit (ICD10-CM), procedure (ICD10-PCS) and medication (ATC) 

codes were predicted by the model based on patient trajectory embeddings. For each task, the tokens 

belonging to the category of tokens being predicted were removed from the input sentence and set as 

target tokens (see Figure 3, left). Outcome tokens, i.e., length-of-stay, readmission, and mortality, were 

also removed from the input. Cosine-similarity was then computed between the embedding of the 

input sequence and any potential target token. These tasks are particularly challenging. For example, 

when predicting ICD10-CM codes, the model must correctly guess, on average, 11 tokens, any of which 

comes from a set of 10k possible values. We evaluated model prediction performance for different 

levels of lenience. First, we considered a model prediction as a hit by requiring an exact match between 

predicted and target tokens. Then, we only asked for a lenient match, i.e., having N letters in common 

with at least one of the target tokens, for N = 1, 2, 3, and 4. Finally, precision, recall, and AUPRC were 

computed for each level of lenience.  
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3. Results 

3.1 Qualitative visualization of medical concept embeddings 

3.1.1 Comparison to ICD10-CM, ICD10-PCS, ATC terminologies 

Figure 5 shows the output of the t-SNE algorithm using embeddings obtained by the word2vec, fastText, 

and GloVe models for the ICD10-CM, ICD10-PCS, and ATC codes. Note that for ICD10-CM codes we did 

not visualize the subcategory R, since it stands for “symptoms, signs and abnormal clinical and 

laboratory findings, not elsewhere classified”, which we deemed too heterogeneous to have any chance 

to form a cluster. Moreover, we separated the subcategory “injury, poisoning and certain other 

consequences of external causes” into two, i.e., S and T (instead of keeping them together). 

 

Figure 4. Medical concept embeddings obtained after training the language models. We used the t-SNE algorithm to 

reduce the dimensionality of embeddings (d = 2). Colors represent the main subcategories of ICD10-CM, ICD10-PCS, 

and ATC codes (for details, see section 2.3 and Table S3, Suppl. Inf.). 

Amongst all models, fastText provides embeddings whose t-SNE visualization forms the most separate 

clusters. Moreover, embedding clusters are visually aligned with the subcategories that are defined in 

section 2.1, denoted by the different colors in Figure 4. Since the t-SNE algorithm preserves local 

distance relationships between data samples, this suggests that semantic relationships between 

medical codes are part of the low-level structure of fastText embeddings. For ICD10-CM codes, the 
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subcategories whose fastText embeddings are the most spread out and undefined are G (diseases of 

the nervous system), L (diseases of the skin and subcutaneous tissue), and H6-H9 (diseases of the ear 

and mastoid process). Some codes have a substructure within subcategories, e.g., N (diseases of the 

genitourinary system) which presents two subclusters that, upon further inspection, separate 

conditions related to male and female genital organs. Other subcategories are mixed but are still part 

of well-defined clusters. For example, ICD10-CM tokens of subcategories S and T (injury, poisoning and 

certain other consequences of external causes) are separated into one cluster made only of T-tokens, 

and another one that mixes S and T tokens. Upon closer examination, the cluster composed of both 

subcategories corresponds to injuries made to an external body part (i.e., fractures, burnings, 

frostbites, etc., included in ICD10-CM codes that start with S00 to T34 and T66 to T88), while the other 

cluster corresponds to internal causes of harm (toxic substance effects, poisoning, etc., included in 

ICD10-CM codes that start with T36 to T65). This suggests that, even though subword information (in 

this case, the first letter of ICD10-CM codes) acts as prior knowledge during training in the case of 

fastText, data-driven statistics are smoothly integrated into the medical embedding representation of 

the trained model. In general, fastText embeddings of all subcategories tend to have an inner 

substructure. To compare these substructures to the second hierarchical level of terminologies, we also 

performed a clustering analysis of fastText embeddings, focusing on a specific set of subcategories (see 

section 3.1.2). Word2vec produces embeddings that are significantly more mixed between 

subcategories, especially for ICD10-CM codes. For example, subcategory T, which forms well defined 

clusters with fastText, spreads across the entire representation space. For ICD10-PCS codes, 

embeddings are more aligned with subcategories, but not as much as using fastText. For example, 

subcategories 0H, 0J, 0Q, 0S (standing for medical and surgical procedures performed on the skin, 

subcutaneous tissues, bones, and joints, respectively), are found to be mixed with each other, whereas 

they form distinct clusters with fastText. Another example is the subcategory 0W (Medical and Surgical 

Body Systems - Anatomical Regions, General), for which tokens are completely shattered when 

provided by word2vec, which is not the case for fastText. Finally, GloVe embeddings are the ones that 

are the most mixed between subcategories after t-SNE reduction. 

To quantify the quality of the embeddings learned by the models, we computed rate reduction [98, 99] 

for any combination of model representation and medical concept category. Rate reduction is the 

difference between the rate distortion of the whole dataset and the mean rate distortion of each class 

considered separately (e.g., all ICD10-CM codes as represented by fastText vs. all subcategories of 

ICD10-CM codes). Rate distortion quantifies the number of bits needed to encode any representation. 

A reduction in rate distortion indicates that the learned representation effectively distinguishes 

between different classes, as the amount of information required to represent the data is reduced 

when the class structure is considered as a prior. Table 2 shows rate reduction for any combination of 

model and category using the full dimensionality of the embeddings or the output of the t-SNE 

algorithm (i.e., a 2-dimensional representation). 

 word2vec fastText GloVe 

Raw 

embeddings 

(d = 512) 

ICD10-CM 410 531 403 

ICD10-PCS 1387 1245 1463 

ATC 1804 1504 1833 

 

Reduced 

embeddings 

ICD10-CM 0.38 0.72 0.11 

ICD10-PCS 0.47 1.20 0.09 
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(t-SNE, d = 2) ATC 0.21 0.30 0.07 

Table 2. Rate reduction of medical concept representations. Higher values mean better representations (note that rate 

reduction cannot be compared across dimensionalities). When using reduced embeddings (dim = 2), fastText obtains 

higher rate reductions. This reflects its better alignment with the first level of biomedical terminologies. However, when 

using raw model embeddings, GloVe tends to obtain larger rate reduction. 

When considering embeddings after dimensionality reduction, fastText obtains the largest rate 

reduction score for all categories (Table 2, d = 2), which reflects the better alignments of reduced 

fastText embeddings with the hierarchy of biomedical terminologies (Figure 4). For unreduced 

embeddings, while fastText achieves the largest rate reduction score for ICD10-CM codes, GloVe shows 

the largest scores for ICD10-PCS and ATC codes (Table 2, d = 512). This suggests that, if semantic 

information of medical concepts is accurately represented in the embedding space of GloVe, they are 

part of a more global and high-dimensional structure. This may have an impact on the quality of 

embeddings for prediction tasks (see section 3.2). 

3.1.2 Hierarchical analysis 

We assessed the ability of all models to uncover the hierarchical relationships among ICD10-CM, ICD10-

PCS, and ATC codes. Specifically, we evaluated whether models’ embeddings could be used to 

rediscover the second hierarchical level of medical terminologies. We focused on ICD10-CM codes 

beginning with C0 to D4, ICD10-PCS codes beginning with B0 to BY, and ATC codes beginning with L01 

to L04. We generated empirical clusters from the reduced (2-dimensional) embedding vectors of these 

codes and compared them to theoretical clusters based on the second hierarchical level of the 

terminologies, namely the second character of ICD10-CM and ICD10-PCS codes, and the third character 

of ATC codes. We used the hdbscan algorithm [100] to compute the empirical clusters, either using raw 

embeddings or embeddings after t-SNE dimensionality reduction. Note that we used the number of 

theoretical clusters as prior knowledge when determining the clusters (i.e., we set a flat lambda value 

cutoff in the hdbscan cluster tree to obtain the same number of clusters as in the medical terminology). 

We measured the quality of the clusters generated by each model (Table 3). 

 Raw embeddings (d = 512)  Reduced embeddings (t-SNE, d = 2) 

word2vec fastText GloVe word2vec fastText GloVe 

 ICD10-CM codes 

Homogeneity 0.032 0.432 0.026  0.429 0.880 0.202 

Completeness 0.157 0.602 0.124 0.475 0.880 0.305 

V-measure 0.053 0.503 0.044  0.451 0.880 0.243 

 ICD10-PCS codes 

Homogeneity 0.173 0.170 NC  0.707 0.773 0.281 

Completeness 0.495 0.387 NC 0.750 0.825 0.416 

V-measure 0.256 0.236 NC  0.728 0.799 0.336 

 ATC codes 

Homogeneity NC 0.524 0.022  0.288 0.961 0.169 

Completeness NC 0.408 0.027 0.206 0.873 0.158 

V-measure NC 0.459 0.024  0.240 0.915 0.163 
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Table 3. Evaluation of empirical clusters as determined by model embeddings. We quantified the homogeneity of 

empirical clusters and their match with theoretical clusters (completeness). V-measure is computed as the harmonic 

mean between homogeneity and completeness. NC: the clustering algorithm could not identify any cluster. 

Reduced fastText embeddings consistently outperform other combinations when used to rediscover 

the second level of the hierarchy of biomedical terminologies. For this reason, we visualized theoretical 

clusters, as well as empirical clusters generated with this combination of model and dimensionality 

(Figure 5). 

 

Figure 5. Clusterization of a selected subset of medical concepts using fastText embeddings after dimensionality 

reduction (t-SNE, d = 2). Top. Theoretical clusters. Samples are positioned following reduced embeddings. Colors are 

derived from the second hierarchical level of ICD10-CM, ICD10-PCS, and ATC codes. Center. Empirical clusters. Colors 

are assigned using the hdbscan clustering algorithm, and then aligned with the top row by maximizing the number of 

sample matches between theoretical and empirical clusters. Samples labeled with a black color were not assigned to 

any cluster (i.e., labeled as noise). Bottom. The empirical cluster trees were also generated with hdbscan. We cut the 

tree after the number of theoretical clusters was reached (i.e., 15 for ICD10-CM, 8 for ICD10-PCS and 4 for ATC codes). 

We added color patches that correspond to the empirical cluster in the center row. 
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The empirical clusters derived from fastText embeddings are generally well-aligned with the theoretical 

clusters. Still, empirical data proposes alternative ways of defining the terminology of medical codes by 

identifying new clusters. For example, procedure codes at the bottom-right of the diagram (Figure 5, 

center column, top vs. center row) form a well-defined group although the medical concepts belonging 

to that cluster come mainly from two different ICD10-PCS subgroups, namely BW (anatomical regions) 

and BR (axial skeleton, except skull and facial bones). Moreover, some singular medical concepts are 

moved to different clusters by empirical data. For example, for ATC codes, L02AE02 (leuprorelin) that 

belongs to the orange theoretical cluster (L02: endocrine therapy) is moved towards the blue empirical 

cluster (L01: antineoplastic agents) by empirical data, which is also a valid categorization of leuprorelin, 

i.e., an antineoplastic agent (Figure 5, top-right). 

Also note that, for ICD10-CM codes, the way we defined theoretical groups (i.e., relying on the second 

code letter) includes inaccuracies. For example, the group Malignant neoplasms of ill-defined, other 

secondary and unspecified sites consists of ICD10-CM codes that start with C76 to C80, which include 

samples coming from both theoretical clusters C7 (gray) and C8 (orange). Empirical clusters correctly 

identified this issue (Figure 5, top-left, group of orange codes around the gray cluster), even though 

subword information should bias C80 tokens to be closer to other tokens starting with C8. Another 

example for ICD10-CM codes are the groups malignant neoplasms of breast (codes that start with C50) 

and malignant neoplasms of female genital organs (code that start with C51 to C58). Empirical 

embeddings correctly identified these two groups (Figure 5, center row, right column, mauve and 

salmon clusters on the right of the plot), even though they belong to the same theoretical cluster C5. 

3.2 Prediction tasks 

We computed the precision and recall of word2vec, fastText and GloVe based on the medical concepts 

that were close to each patient trajectory embedding. Note that model predictions are computed in a 

completely unsupervised way and are only used to compare the quality of the embeddings provided by 

the different models. 

3.2.1 Length-of-stay, readmission, and mortality prediction 

Figure 6 shows AUROC and AUPRC obtained with the embeddings of all models, when predicting 

outcomes from patient trajectories. Note that AUPRC is a better measure for prediction problems with 

unbalanced classes, which is the case here. Also note that P is the fraction of the tokens of each patient 

trajectory sequence given to the model as an input for prediction, increasing from P = 0.0 

(demographics tokens only) to P = 1.0 (full trajectory). First, increasing the fraction of tokens given as 

input to the models always improves their prediction performance, for any model. However, fastText 

seems to benefit slightly less from more information about patient trajectories, as its performance 

peaks to lower values than what is obtained with word2vec and GloVe, even though they all start from 

similar baseline performances at P = 0.0. 
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Figure 6. AUROC and AUPRC obtained with word2vec, fastText and GloVe for outcome prediction tasks. P stands for the 

different proportions of the patient stay tokens given as input to the models (see section 2.4). The random performance 

for AUPRC corresponds to the number of positive samples over the total number of samples. 

3.2.2 Comparison of patient outcome embeddings 

In Figure 7, we visualize patient trajectory embeddings for the different outcomes - length-of-stay, 

readmission, and mortality - to assess whether high-level outcome information is present in the local 

structure of embeddings. The patient trajectories were taken from the testing dataset and their 

embeddings were generated by removing the outcome label from the trajectory and averaging the 

remaining concept embeddings. The 2-dimensional representations were then obtained by applying 

the t-SNE algorithm for word2vec, fastText, and GloVe embeddings. To improve visualization, we used 

the same number of patient trajectories for each outcome, which were randomly sampled from the 

test set. The limiting factor was the smallest number of patients for any outcome in the testing dataset, 

which was 1800 (patients that passed away). Results show that patients with antagonistic outcomes, 

e.g., dead and alive patients, populate similar regions of the embedding space. This suggests that 

information relevant to predict outcomes might have been entangled during the dimensionality 

reduction, or during the averaging (from several clinical concepts to a single representation of the 

trajectory). Moreover, the distance between antagonistic outcome tokens themselves (Figure 7, large 

circles) seem to be very close to each other in some cases. For example, GloVe embeddings for any 

outcome token are almost at the same location in the embedding space. 
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Figure 7. Visualization of patient trajectory embeddings for all combinations of different outcomes (length-of-stay, 

readmission, mortality) and models (word2vec, fastText, GloVe), after t-SNE dimensionality reduction. We also added 

the reduced embedding of outcome tokens (large circles). Dimensionality reduction was performed using the 

embeddings of all patient trajectories from the testing dataset, extended with the embeddings of all outcome tokens. 

Then, for each outcome label, 1800 trajectories were randomly sampled for visualization. 

3.2.3 Diagnosis, procedure, and medication code prediction 

Figure 8 shows the AUPRC obtained with the models when predicting all medical codes of a category 

given the patient trajectory embeddings (AUROC values are shown in Figure S1, Suppl. Inf.). First, 

word2vec has, in most cases, a lower score than fastText. It is stronger only for edge cases where 

performance is very low already. Second, GloVe obtains the best mean results amongst models. It is 

better than fastText for ICD10-CM codes prediction and obtains better performance for ICD10-PCS and 

ATC codes prediction when the task is more challenging (i.e., for less lenient matches). It should be 

noted that sometimes, the best performance is reached when only the demographic tokens are used 

to compute patient trajectory embeddings (i.e., P = 0.0; e.g., GloVe, 1 letter match, ICD10-CM or ATC 

codes prediction). This means that adding more tokens to the sentence worsens the alignment between 

patient trajectory embeddings and associated target code embeddings. 
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Figure 8. AUPRC obtained with word2vec, fastText and GloVe for medical concept prediction tasks. L stands for the 

lenient letter match. For example, 1L means that precision and recall were computed on the basis of the first letter of 

the codes only. EM means that an exact match was required between a model prediction and a target code. P stands 

for the different proportions of the patient trajectories given as input to the models (see section 2.4). The random 

performance corresponds to the number of positive samples over the total number of samples. 

We also performed medical code prediction in different settings. For ICD10-CM codes, patient 

trajectory embeddings were used to predict only the most important diagnosis code (see Figure 1, p1), 

given the full patient trajectory from which all outcome and diagnosis tokens were removed. For ICD10-

PCS and ATC codes, we used the embeddings of a patient’s trajectory, including events only up to a 

certain point in time, to predict the next occurring procedure or medication token. Figure 9 shows 
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AUPRC for these prediction tasks (AUROC values are shown in Figure S2, Suppl. Inf.). As we can notice, 

these tasks are very challenging for the three models assessed. The results differentiate from a random 

prediction only for the first and second code letters, while exact matching prediction is equivalent to a 

random prediction. We assume that this low performance is due to the lack of temporality information 

encoded by the embeddings, that is, they tend to learn hierarchical relationships among medical 

concepts but ignore their sequential relationship, which is trajectory dependent.  

 

Figure 9. AUPRC obtained with word2vec, fastText and GloVe for alternative prediction tasks. We used model 

embeddings to predict the most important ICD10-CM code of the patient trajectory, as well as the next ICD10-PCS and 

ATC code, given the medical events that happened so far.  L stands for the lenient letter match. For example, 1L means 

that precision and recall were computed on the basis of the first letter of the codes only. EM means that an exact match 

was required between a model prediction and a target code.  
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4. Discussion 

In this study, we compared the ability of different language models, word2vec, fastText, and GloVe, to 

represent medical concepts by expressing patient trajectories as sequences of medical codes. We 

showed that language models can learn data-driven embeddings that retrieve the semantic meaning 

of medical concepts, as provided by biomedical terminologies. Using an unsupervised approach, we 

also compared the respective capabilities and limitations of different language models for patient 

trajectory prediction. 

To evaluate the semantic content of embeddings as produced by the different language models, we 

compared their alignment with existing medical concept terminologies. Using rate reduction as a 

quantitative measurement, we showed that, in terms of low-level representation, fastText is the model 

whose embeddings are best aligned with the hierarchy of existing medical concept terminologies 

(Figure 4 and Table 2). Note that, in the case of fastText, subword information includes the hierarchical 

structure of medical terminologies. Indeed, some subwords of ICD10 and ATC codes correspond to their 

top-level categories. For instance, the subwords of the ICD10-CM code T3302XA (superficial frostbite 

of nose, initial encounter) include T33 (superficial frostbite) and T3302 (superficial frostbite of nose). 

However, most subword tokens are irrelevant, such as 02XA or 330 in the aforementioned example. 

Moreover, the hierarchy of medical terminologies does not strictly follow subword information. For 

example, medical concepts describing physical injuries consist of ICD10-CM codes that start with S00 

to T34, and from T66 to T88, skipping codes that go from T35 to T65. Still, fastText embeddings are able 

to update prior subword knowledge and uncover the complex hierarchy of medical terminologies 

(Figure 4 and 5). This suggests that fastText is an efficient way of combining prior knowledge (included 

in subword information, which reflects existing terminologies) with data-driven representations (which 

depend on the history of patients at the ICUs). 

We extrinsically evaluated the quality of the medical concept embeddings via outcome and trajectory 

prediction tasks using an unsupervised method. First, we performed a multi-label prediction task in 

which tokens belonging to one category (ICD10-CM, ICD10-PCS, or ATC codes) were detached from 

patient trajectories and used as target tokens. Patient trajectories were embedded using the language 

models (Figure 2) and compared to the embeddings of the target tokens using their cosine-similarity 

(Figure 3). In terms of multi-label prediction, GloVe tends to outperform fastText and word2vec, 

although not consistently and by a small margin (Figure 8, 9, S1 and S2, Suppl. Inf.). We suggest the 

reason for GloVe superiority for medical concept prediction tasks is that it considers long-range 

relationships, as it has no context window, and instead computes co-occurrences on whole sequences. 

This provides a more global scope to GloVe embeddings, which may be beneficial for high-level tasks 

such as medical concept prediction. It should be noted that this is also reflected in the rate reduction 

of raw embeddings (i.e., d = 512), for which GloVe obtains the largest values overall (Table 2, top). This 

means that, even though GloVe embeddings appear to have a low semantic agreement with medical 

terminologies after dimensionality reduction, they agree more than other models in the full-

dimensional space. The t-SNE algorithm maps high-dimensional vectors to a low-dimensional space 

while preserving the local structure of the data but is not guaranteed to preserve the global structure 

of the representation. Hence, the visualization in Figure 4 only highlights the semantics of the low-level 

structure of embeddings. This suggests that, if semantic information of medical concepts is accurately 
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represented in the embedding space of GloVe, they are part of a more global and high-dimensional 

structure. 

We also carried out a binary prediction task in which patient trajectory embeddings were compared to 

the embeddings of binary outcome tokens (length-of-stay, readmission, mortality) that were 

prepended to each patient trajectory during training. As for the multi-label prediction tasks, we used 

an unsupervised method to generate predictions, which were computed as the outcome tokens that 

were more similar to the patient trajectory embeddings. First and foremost, achieved performance 

levels for any model are considerably low, with most AUPRC measurements rarely exceeding a value of 

0.4. This was to expect given the simplicity of our unsupervised prediction method, as compared to the 

target outcomes which inherently depend both on global trajectory patterns and on nuanced 

interactions between medical concepts. Moreover, pooling all tokens together when building patient 

trajectory embeddings is likely suboptimal for capturing the rich, dynamic information contained in 

patient trajectories. A supervised method would probably be more suited to perform outcome 

predictions. This is reflected in Figure 7, where we visualized patient trajectory embeddings for different 

outcomes. These should ideally span contrasting regions of the embedding space, but actually present 

a large degree of overlap (at least in the reduced embeddings space). Besides, outcome tokens 

themselves tend to be very similar to each other, which might be a byproduct of prepending them to 

each patient trajectory during training, since they always appear in similar contexts. 

Nevertheless, the binary outcome prediction task was used as a comparative evaluation method of 

model embeddings and their potential for more complex and high-level tasks. From our analysis, we 

found that word2vec and GloVe have similar performance levels, while they both consistently 

outperform fastText (Figure 6). We suggest that the cause of this discrepancy lies in fastText's intrinsic 

modeling of the hierarchical structure of medical terminologies. While this feature benefits fastText in 

the semantic alignment of its embeddings with existing medical terminologies, it seems to hinder the 

model in more high-level tasks, such as clinical outcome prediction. This task requires a broad and 

flexible representation of medical concepts and may be disrupted by fastText's stricter adherence to 

the hierarchy of biomedical terminologies. This underlines the importance of understanding the specific 

strengths and weaknesses of each model in relation to the nature of the task at hand. 

This study has several limitations. First, we focused only on methods that produce static embeddings. 

However, more modern language models, such as those based on attention, provide contextualized 

embeddings, which usually improve performance in downstream tasks [101, 102]. In this case, instead 

of having a unique representation, clinical concepts have many according to the context in which they 

appear. Contextualized representation would thus require a different clustering and concept mapping 

methodology and should be a subject of further study. Second, for all prediction tasks that we used to 

evaluate model embeddings, no supervision was involved. While supervised learning tends to improve 

upon unsupervised methods, our goal here was to compare the quality of the extracted embeddings 

rather than devise an optimal trajectory prediction method. In that sense, we argue that the 

unsupervised methodology provides a less biased comparison, as it is independent of the learning 

model. A supervised methodology based on the proposed embedding strategy could also be a topic for 

further research and would benefit from the results presented in the current study. Third, due to the 

lack of explicitly time-stamped information for diagnosis codes, i.e., clinical evaluation time instead of 

billing time, we used the diagnosis priority to order these codes in the patient trajectory. As patients 

tend to have a recoverable condition before ICU admission, these codes were inserted early during the 
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original patient trajectory sequence generation. However, this may not necessarily always reflect the 

actual trajectory, as new diagnosis codes can be assigned to a patient during the ICU stay [103]. Finally, 

there may exist 1-to-1 relationships between medical concepts, e.g., an antiretroviral therapy might be 

specific to HIV/AIDS patients. Hence, for the ICD10-CM, ICD10-PCS and ATC code prediction tasks, there 

might be some leakage from input to target tokens. Nevertheless, given the limited performance of the 

predictions, we assume that this effect is negligible, especially due to the n:m relation between the 

dimensions. 
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5. Conclusion 

We assessed the capabilities of different language models (word2vec, fastText, and GloVe), each 

coming with their own set of hypotheses, in expressing patient trajectories as sequences of medical 

codes. We found that these models can indeed learn data-driven embeddings that capture the 

semantic meaning of medical concepts. However, the effectiveness of these models varies based on 

the task at hand. While fastText aligns well with existing medical terminologies thanks to subword 

information, GloVe is more useful for medical concept prediction tasks thanks to its ability to consider 

long-range relationships and global co-occurrences in text. These results offer important insights for 

supervised medical concepts and clinical outcomes prediction methods and open up several exciting 

avenues for future exploration. One promising research avenue is refining strategies for encoding 

subword information for representing medical concepts. For instance, tokenization that aligns with 

ICD10 and ATC hierarchies, instead of relying on basic n-grams, could enhance the accuracy and depth 

of the embeddings by providing crucial prior knowledge. Besides, it would reduce vocabulary sizes, thus 

optimizing model performance and efficiency. In conclusion, our study confirms the potential of 

language models in healthcare data analysis, particularly in understanding patient trajectories in 

intensive care. 
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