
Dose response of running on blood biomarkers of wellness in the 
generally healthy 

Bartek Nogal1ﾅ, Svetlana Vinogradova1ﾅ, Milena Jorge1, Ali Torkamani2,3, Paul Fabian1, and  1 
Gil Blander1* 2 

1InsideTracker, Cambridge, Massachusetts, United States of America. 3 
2The Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, CA, USA.  4 

3Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La 5 
Jolla, CA, USA. 6 

ﾅEqual Contribution:  These authors contributed equally 7 

* Correspondence:  8 
Gil Blander 9 
gblander@insdietracker.com 10 

Abstract 11 

Exercise is effective toward delaying or preventing chronic disease, with a large body of evidence 12 
supporting its effectiveness.  However, less is known about the specific healthspan-promoting effects 13 
of exercise on blood biomarkers in the disease-free population.  In this work, we examine 23,237 14 
generally healthy individuals who self-report varying weekly running volumes and compare them to 15 
4,428 generally healthy sedentary individuals, as well as 82 professional endurance athletes.  We 16 
estimate the significance of differences among blood biomarkers for groups of increasing running 17 
levels using analysis of variance (ANOVA), adjusting for age, gender, and BMI.  We attempt and add 18 
insight to our observational dataset analysis via two-sample Mendelian randomization (2S-MR) using 19 
large independent datasets.   We find that self-reported running volume associates with biomarker 20 
signatures of improved wellness, with some serum markers apparently being principally modified by 21 
BMI, whereas others show a dose-effect with respect to running volume. We further detect hints of 22 
sexually dimorphic serum responses in oxygen transport and hormonal traits, and we also observe a 23 
tendency toward pronounced modifications in magnesium status in professional endurance athletes.   24 
Thus, our results further characterize blood biomarkers of exercise and metabolic health, particularly 25 
regarding dose-effect relationships, and better inform personalized advice for training and 26 
performance. 27 

1 Introduction 28 

Physical inactivity is one of the leading modifiable behavioral causes of death in the US (1).  29 
Worldwide, physical inactivity is estimated to account for about 8.3% of premature mortality, an effect 30 
size that is on the same order as smoking and obesity (2).  At the same time, the potent health benefits 31 
of exercise have been proven time and time again, with results so consistent across a wide variety of 32 
chronic diseases that some posit it can be considered a medical intervention (3, 4, 5).  However, since 33 
most investigators understandably report the effects of exercise in either diseased populations or 34 
athletes (6, 7), there exists a gap in knowledge as to the measurable effects of exercise in the generally 35 
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healthy population who exercise for the purpose of improving their healthspan, which can, in part, be 36 
projected via established measures such as blood biomarkers (8, 9, 10, 11).   37 

It is well established that routine laboratory biomarkers are validated proxies of the state of an 38 
individual’s overall metabolic health and other healthpan-related parameters (12).  A large body of 39 
evidence supports the effectiveness of exercise in modifying blood biomarkers toward disease 40 
mitigation in diseased cohorts as well as athletes, where the effect sizes may be larger (6, 13).  Indeed, 41 
it’s been shown that more favorable changes in response to exercise training occur usually in those 42 
with more pronounced dyslipidemia  (13).  In professional athletes, the sheer volume and/or intensity 43 
of physical activity may drive large effects in various hematological, lipid, immune, and endocrine 44 
variables (6). Toward helping to fill the gap in understanding of the effects of exercise on blood 45 
biomarkers of the generally healthy, we endeavored to explore the effects of vigorous exercise such as 46 
running in apparently healthy, non-athletic cohort to better understand the landscape of blood 47 
biomarker modifications expected in the individual who partakes in mostly recreational physical 48 
activity for the purpose of maintaining good health. 49 

For this purpose, we leveraged the InsideTracker dataset that includes information on self-reported 50 
exercise habits combined with blood biomarker and genomics data.  We have previously reported on 51 
the results of a longitudinal analysis on blood biomarker data from 1032 generally healthy individuals 52 
who used our automated, web-based personalized nutrition and lifestyle platform (14).  For the purpose 53 
of this investigation, we focused on running as the exercise of choice as it is one of the most common 54 
(purposeful) physical activity modalities practiced globally by generally healthy individuals and would 55 
thus be relevant.  Moreover, since this was a cross-sectional study, we attempted to increase our 56 
capacity to begin to infer causality as well as tease out potential confounders by performing 2S-MR in 57 
large independent cohorts. 58 

2 Materials and methods 59 

2.1 Dataset 60 

We conducted an observational analysis of data from InsideTracker users.  InsideTracker is a direct-61 
to-consumer (DTC) company established in 2009 that markets and sells InsideTracker 62 
(insidetracker.com), a personalized lifestyle recommendation platform. The platform provides serum 63 
biomarker and genomics testing, and performs integrative analysis of these datasets, combined with 64 
activity/sleep tracker data toward biomarker and healthspan optimization (of note, at the time of this 65 
analysis, we did not have sufficient users with activity/sleep tracker data to include this data stream in 66 
the current study).   New users were continuously added to the InsideTracker database from January 67 
2011 to March 2022. 68 

 69 

2.2 Recruitment of participants 70 

Recruitment of participants aged between 18 and 65 and residing in North America was conducted 71 
through company marketing and outreach. Participants were subscribing members to the InsideTracker 72 
platform and provided informed consent to have their blood test data and self-reported information 73 
used in an anonymized fashion for research purposes. Research was conducted according to guidelines 74 
for observational research in tissue samples from human subjects. Eligible participants completed a 75 
questionnaire that included age, ethnicity, sex, dietary preferences, physical activity, and exposure to 76 
sunlight. This study employed data from 23,237 participants that met our analysis inclusion 77 
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requirements, namely absence of any chronic disease as determined by questionnaire and metabolic 78 
blood biomarkers within normal clinical reference ranges. The platform is not a medical service and 79 
does not diagnose or treat medical conditions, so medical history and medication use were not 80 
collected.  The Institutional Review Board (IRB) determine this work was not subject to a review based 81 
on category 4 exemption (“secondary research” with de-identified subjects). 82 

2.3 Biomarker collection and analysis 83 

Blood samples were collected and analyzed by Clinical Laboratory Improvement Amendments 84 
(CLIA)–approved, third-party clinical labs (primarily Quest Diagnostics and LabCorp). Participants 85 
were instructed to fast for 12 hours prior to the phlebotomy, with the exception of water consumption. 86 
Results from the blood analysis were then uploaded to the platform via electronic integration with the 87 
CLIA-approved lab. Participants chose a specific blood panel from 7 possible offerings, each 88 
comprising some subset of the biomarkers available. Due to the variation in blood panels offered, the 89 
participant sample size per biomarker is not uniform. 90 

2.3 Biomarker dataset preparation 91 

In our raw dataset, occasional outlier values were observed that were deemed implausible (e.g. fasting 92 
glucose < 65 mg/dL). To remove anomalous outliers in a systematic way, we used the Interquartile 93 
Range (IQR) method of identifying outliers, removing data points which fell below Q1 – 1.5 IQR or 94 
above Q3 + 1.5 IQR. 95 

2.4 Calculation of polygenic scores 96 

The variants (SNPs) comprising the polygenic risk scores were derived from publicly available GWAS 97 
summary statistics (https://www.ebi.ac.uk/gwas/).  Scores were calculated across users by summing 98 
the product of effect allele doses weighted by the beta coefficient for each SNP, as reported in the 99 
GWAS summary statistics.  Variant p-value thresholds were generally chosen based on optimization 100 
of respective PGS-blood biomarker correlation in the entire InsideTracker cohort with both blood and 101 
genomics datasets (~1000-1500 depending on the blood biomarker at the time of analysis).  Genotyping 102 
data was derived from a combination of a custom InsideTracker array and third party arrays such as 103 
23andMe and Ancestry.  Not all variants for any particular PGS were genotyped on every array; proxies 104 
for missing SNPs were extracted via the “LDlinkR” package using the Utah Residents (CEPH) with 105 
Northern and Western European ancestry (CEU) population (R2 > 0.8 cut-off).  Only results PGSs for 106 
which there was sufficient biomarker-genotyping dataset overlap were reported (note that none of the 107 
blood biomarker PGSs met this requirement). 108 

2.5 Blood biomarker analysis with respect to running volume and polygenic scores 109 

To estimate significance of differences for blood biomarkers levels among exercise groups, we 110 
performed 3-way analysis of variance (ANOVA) analysis adjusting for age, gender, and BMI (type-II 111 
analysis-of-variance tables function ANOVA from ‘car’ R package, version 3.0-12). When estimating 112 
the effort of reported training volume on biomarkers, we assigned numerical values corresponding to 113 
4 levels of running and performed ANOVA analysis with those levels treating it as an independent 114 
variable.  P-values were adjusted using the Benjamini & Hochberg method (15). P-values for 115 
interaction plots were calculated with ANOVA including interaction between exercise group and 116 
polygenic scores category.  When comparing runners (PRO and HVAM combined) versus sedentary 117 
individuals, we used propensity score matching method to account for existing covariates (age and 118 
gender): we identified 745 sedentary individuals with similar to runners’ age distributions among both 119 
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males and females. We used ‘MatchIt’ R package (version 4.3.3)  implementing nearest neighbor 120 
method for matching (16). 121 

2.6 Mendelian randomization  122 

We attempted to add insight around the causality of exercise vs. BMI differences with respect to serum 123 
marker improvement by performing MR analyses on a subset of biomarker observations where BMI 124 
featured as a strong covariate and was thus used as the IV in the 2S-MR.   Thus, our hypothesis here 125 
was that BMI differences were the primary (causal) driver behind the improvement behind some 126 
biomarkers.  MR uses genetic variants as modifiable exposure (risk factor) proxies to evaluate causal 127 
relationships in observational data while reducing the effects of confounders and reverse causation 128 
(Figure 1S).  These SNPs are used as instrumental variables and must meet 3 basic assumptions: (1) 129 
they must be robustly associated with the exposure; (2) they must exert their effect on outcome via the 130 
exposure, and (3) there must be no unmeasured confounders of the associations between the genetic 131 
variants and outcome (e.g. horizontal pleiotropy) (17).  Importantly, SNPs are proper randomization 132 
instruments because they are determined at birth and thus serve as proxies of long-term exposures and 133 
cannot, in general, be modified by the environment.  If the 3 above mentioned assumptions hold, MR-134 
estimate effects of exposure on outcomes are not likely to be significantly affected by reverse causation 135 
or confounding.  In the 2S-MR performed here, where GWAS summary statistics are used for both 136 
exposure and outcome from independent cohorts, reverse causation and horizontal pleiotropy can 137 
readily be assessed, and weak instrument bias and the likelihood of false positive findings are 138 
minimized as a result of the much larger samples sizes (17).  Indeed, the bias in the 2S-MR using non-139 
overlapping datasets as performed here is towards the null (17).  Furthermore, to maintain the SNP-140 
exposure associations and linkage disequilibrium (LD) patterns in the non-overlapping populations we 141 
used GWAS datasets from the MR-Base platform that were derived from ancestrally similar 142 
populations (“ukb”:  analysis of UK Biobank phenotypes, and “ieu”: GWAS summary datasets 143 
generated by many different European consortia).  To perform the analysis we used the R package 144 
“TwoSampleMR” that combines the effects sizes of instruments on exposures with those on outcomes 145 
via a meta-analysis.  We used “TwoSampleMR” package functions for allele harmonization between 146 
exposure and outcome datasets, proxy variant substitution when SNPs from exposure were not 147 
genotyped in the outcome data (Rsq>0.8 using the 1000G EUR reference data integrated into MR-148 
Base), and clumping to prune instrument SNPs for LD (the R script used for MR analyses is available 149 
upon request).  We used 5 different MR methods that were included as part of the “TwoSampleMR” 150 
package to control for bias inherent to any one technique (18).  For example, the multiplicative random 151 
effects inverse variance-weighted (IVW) method is a weighted regression of instrument-outcome 152 
effects on instrument-exposure effects with the intercept is set to zero.  This method generates a causal 153 
estimate of the exposure trait on outcome traits by regressing the, for example, SNP-BMI trait 154 
association on the SNP-biomarker measure association, weighted by the inverse of the SNP-biomarker 155 
measure association, and constraining the intercept of this regression to zero.  This constraint can result 156 
in unbalanced horizontal pleiotropy whereby the instruments influence the outcome through causal 157 
pathways distinct from that through the exposure (thus violating the second above-mentioned 158 
assumption).  Such unbalanced horizontal pleiotropy distorts the association between the exposure and 159 
the outcome, and the effect estimate from the IVW method can be exaggerated or attenuated. However, 160 
unbalanced horizontal pleiotropy can be readily assessed by the MR Egger method (via the MR Egger 161 
intercept), which provides a valid MR causal estimate that is adjusted for the presence of such 162 
directional pleiotropy, albeit at the cost of statistical efficiency.  Finally, to ascertain the directionality 163 
of the various causal relationships examined, we also performed each MR analysis in reverse where 164 
possible. 165 
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3 Results 166 

Study population characteristics 167 

 Table 1 shows the demographic characteristics of the study population.  We observed a 168 
significant trend toward younger individuals reporting higher running volume, with more than 75% of 169 
the professional (PRO) group falling between the ages of 18 and 35 (Table 1S).  Significant differences 170 
were also observed in the distribution of males and females within study groups (Table 1).  Moreover, 171 
higher running volume associated with significantly lower body mass index (BMI).  Thus, moving 172 
forward, combined comparisons of blood biomarkers as they relate to running volume were adjusted 173 
for age, gender, and BMI. 174 

Endurance exercise exhibits a modest association with clusters of blood biomarker features  175 

In order to begin to understand the most important variables that may associate with endurance exercise 176 
in the form of running, we performed a principal component analysis (PCA), dividing the cohort into 177 
two most divergent groups in terms of exercise volume:  PRO/high volume amateur (HVAM) and 178 
sedentary (SED) groups.  Using propensity matching, PRO and amateur athletes who reported running 179 
>10h per week were combined into the PRO-HVAM group to balance out the sample size between the 180 
exercising and non-exercising groups.  Using this approach, we did not observe a significant separation 181 
between these groups (data not shown).  However, dividing this dataset further into males and females 182 
yielded a modest degree of separation, with hematological, inflammation, and lipid features, as well as 183 
BMI explaining some of the variance (Figure 1 A through D).  We hypothesized that there may more 184 
subtle relationships between running volume and the blood biomarker features that contributed to 185 
distinguishing the endurance exercise and sedentary groups, thus we next performed ANOVA analyses 186 
stratified by running volume as categorized in Table 1. 187 

Significant trends in glycemic, hematological, blood lipid, and inflammatory serum traits with 188 
increasing running volumes  189 

Weighted ANOVA analyses adjusted for age, gender, and BMI showed significant differences among 190 
groups for multiple blood biomarkers (Table 2 and 2S, Figures 2 and 3).  We observed a trend toward 191 
lower HbA1c, hsCRP, RDW, WBC, ferritin, gamma-glutamyl transferase (GGT), and LDL.  HDL, 192 
hemoglobin (Hb), transferrin saturation (TS), alanine aminotransferase (ALT), aspartate 193 
aminotransferase (AST), vitamin B12, folate, 25-hydroxy vitamin D, and creatine kinase (CK) tended 194 
to be higher with increasing reported training volume, particularly in PRO runners (Tables 2 and 2S, 195 
Figures 2 and 2S, Figure 3).   Hct and Hb were higher only in PRO males, whereas increased running 196 
volume associated with upward trend in these biomarkers in females (Figure 3 A and B).  Increased 197 
running volume was associated with markedly lower Fer in males, whereas female runners did not 198 
exhibit varying levels, and SED females showed increased levels (Figure 3 C).  The low ferritin 199 
observed in male and female runners was not clinically significant.  ALT positively associated with 200 
running volume in females only (Figure 2S).  Serum and RBC magnesium (Mg) were both significantly 201 
lower in PRO runners relative to all other groups (Table 2 and Figure 3 D and E).   Increasing levels 202 
of endurance exercise also appeared to be associated with higher sex-hormone binding globulin 203 
(SHBG), particularly in PRO male runners (Figure 3 F).    204 

Endurance exercise correlates with lower BMI across categories of genetic risk  205 

Using publicly available GWAS summary statistics, we constructed blood biomarker polygenic risk 206 
scores (PGSs) to explore potential genetic risk-mitigating effects of endurance exercise.  Since only a 207 
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subset of the individuals in our cohort were genotyped, we aggregated the groups into 2 categories—208 
PRO-HVAM and sedentary—to increase statistical power.  This across-group sample size increase 209 
generally did not sufficiently power the ANOVA analysis to detect statistically significant trends (data 210 
not shown), though the BMI polygenic risk was suggestively mitigated for both males and female PRO-211 
HVAM runners across categories of genetic risk (Figure 4 B).   212 

Increased running volume is associated with lower BMI which may drive biomarker changes  213 

We observed a significant decrease in the BMI with increased running volume for both males and 214 
females, and, although some of the biomarker differences between sedentary and exercising individuals 215 
remained significant after adjustment for BMI, their significance was attenuated (Figure 4 A, p-value 216 
attenuation data not shown). Thus, we hypothesized that decreasing BMI may be driving a significant 217 
portion of the observed variance in some of the biomarkers across the groups.  Thus, to explore causal 218 
relationships between weight and biomarker changes, we performed 2S-MR with BMI-associated 219 
single-nucleotide polymorphisms (SNPs) as the instrumental variables (IVs) for a subset of the 220 
healthspan-related biomarkers where BMI explained a relatively large portion of the variance in our 221 
analysis.   In general, these blood biomarkers associated with inflammation (hsCRP and RDW), lipid 222 
metabolism (Tg and HDL), glycemic control (HbA1c and Glu), as well as Alb and SHBG. We used 223 
GWAS summary statistics and found that most of these BMI-blood biomarker relationships examined 224 
directionally aligned with our study (except for LDL), and some were indicative of causal relationships 225 
in the BMI-biomarker direction even after considering directional pleiotropy (Table 3S).   We 226 
entertained the possibility of reverse causality and thus repeated the 2S-MR using each of the 227 
biomarker levels as the exposure and BMI as the outcome, and the results were generally not significant 228 
(except for WBC – see Table 4S).  Of note, to estimate the direct causal effects of running on blood 229 
parameters, we attempted to find an instrumental variable for to approximate running as the exposure 230 
from publicly available GWAS summary statistics.  Toward this end, we found that increasing levels 231 
of vigorous physical activity did associate with lower hsCRP, HbA1C, higher HDL, and possibly 232 
higher SHBG (although the explained variance (R2) in this exposure was just 0.001009, the F statistic 233 
was 37.7, thus meeting the criteria of F > 10 for minimizing weak instrument bias) (Figures 5 and 3S; 234 
Table 5S). 235 

Vigorous physical activity associates with healthier behaviors 236 

We hypothesized that those who exercise regularly may also partake in other healthful lifestyle habits 237 
that may be contributing to more optimal blood biomarker signatures of wellness.  However, our 238 
dataset did not allow for systematic accounting of other lifestyle habits across all running groups.  Thus, 239 
we again leveraged the potential of the 2S-MR approach to inform potential confounding  associations 240 
between modifiable exposures and found that vigorous physical activity such as running is at least 241 
suggestively associated with several behaviors associated with improved health (Figure 4S).  Our 242 
analysis showed that those who participate in increasing levels of vigorous physical activity may be 243 
less likely to eat processed meat (IVW p = 0.0000013), sweets (IVW p = 0.32), and nap during the day 244 
(IVW p = 0.13), while increasing their intake of oily fish (IVW p = 0.029), salad/raw vegetable intake 245 
(IVW p = 0.00016), and fresh fruit (IVW p = 0.0027) (Table 6S).  Furthermore, following our 246 
assessment of reverse causality, we found evidence for the bidirectionality in the causal relationship 247 
between vigorous activity and napping during the day and salad/raw vegetable intake, perhaps 248 
suggesting some degree of confounding due to population stratification (Table 7S). The suggestive 249 
positive effect of fresh fruit and processed meat intake on vigorous physical activity appeared to violate 250 
MR assumption (3) (Figure 1S) (horizontal pleiotropy p-values 0.051 and 0.17, respectively – Figure 251 
5S). 252 
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4 Discussion 253 

In this report, we describe the variance in wellness-related blood biomarkers among self-reported 254 
recreational runners, PRO runners, and individuals who do not report any exercise.  Overall, we find 255 
that 1) recreational running as an exercise appears to be an effective intervention toward modifying 256 
several biomarkers indicative of improved metabolic health, 2) an apparent dose-response relationship 257 
between running volume and BMI may itself be responsible for a proportion of the apparent metabolic 258 
benefits, and 3) both PRO-level status and gender appear to associate with heterogeneous physiological 259 
responses, particularly in iron and magnesium metabolism, as well as some hormonal traits. 260 

4.1 Self-reported running improves glycemia and lipidemia  261 

We did not observe distinct clusters corresponding to self-reported high-volume/PRO runners and the 262 
sedentary upon dimension reduction.  This is, perhaps, not unexpected due, in part, to the self-selected 263 
healthspan-oriented nature of our cohort, where even the sedentary subset of individuals tends to 264 
exhibit blood biomarker levels in the normal clinical reference ranges.  Furthermore, the measurement 265 
of running volume via self-report may be vulnerable to overestimation, which may have contributed to 266 
the blending of sedentary and exercise groups with respect to the serum markers measured, resulting 267 
in only marginal separation between the groups (19, 20).  However, we did observe significant 268 
individual blood biomarker variance with respect to reported running volumes when the dataset was 269 
subjected to ANOVA, even after adjustment for age, sex, and BMI.  270 

From among glycemic control blood biomarkers, we were able to detect a relatively small exercise 271 
effect in both fasting glucose and HbA1c in this generally healthy cohort, where the average measures 272 
of glycemia were below the prediabetic thresholds in even the sedentary subset of the cohort. Larger 273 
exercise intervention effects on metabolic biomarkers may be expected in cohorts that include 274 
individuals with more clinically significant baseline values (21).   275 

Similarly, blood lipids improved with higher self-reported running volume, and this result has been 276 
reported before in multiple controlled endurance exercise trials (22).  The literature indicates that HDL 277 
and Tg are two exercise-modifiable blood lipid biomarkers, with HDL being the most widely reported 278 
to be modified by aerobic exercise (23, 24).  Although the mechanism behind this is not entirely clear, 279 
it likely involves the modification of lecithin acyltransferase and lipoprotein lipase activities following 280 
exercise training (25).  We observed a similar trend in our blood biomarker analysis, with HDL 281 
exhibiting an upward trend with increasing reported running volume.  While we also found Tg and 282 
LDL to decrease with increasing exercise volume, these trends were less pronounced.  Reports 283 
generally suggest that, in order to reduce LDL more consistently, the intensity of aerobic exercise must 284 
be high enough (23).  In the case of Tg, baseline levels may have a significant impact on the exercise 285 
intervention effect, with individuals exhibiting higher baselines showing greater improvements (13). 286 

Importantly, these results suggests that exercise has a significant effect on glycemic control and blood 287 
lipids even in the self-selected, already healthy individuals who are proactive about preventing 288 
cardiometabolic disease.  289 

4.2 Self-reported running and serum proxies of systemic inflammation  290 

Chronic low-grade inflammation is one of the major risk factors for compromised cardiovascular health 291 
and metabolic syndrome (MetS).  While there is no shortage of inflammation-reducing intervention 292 
studies on CVD patients with clinically high levels of metabolic inflammation, there is less emphasis 293 
on modifiable lifestyle factors that can help stave off CVD and extend healthspan in the generally 294 
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healthy individual.  Indeed, considering the pathological cardiovascular processes  begin shortly after 295 
birth, prevention in asymptomatic individuals may be a more appropriate strategy toward decreasing 296 
the burden of CVD on the healthcare system (26).   297 

Toward this end, increasing self-reported running volume appeared to associate with improved markers 298 
of inflammation, as shown by the lower levels of hsCRP, WBC, as well as ferritin.  Of note, while the 299 
acute-phase protein, ferritin, is often used in the differential diagnosis of iron deficiency anemia, the 300 
biomarker’s specificity appears to depend on the inflammatory state of the individual, as it associates 301 
with hsCRP and inflammation more than iron stores, particularly in those with higher BMI (27).   302 
Although serum ferritin and iron is reported to be lower in male and female elite athletes (28), the 303 
observed overall negative association of ferritin with increased running volume in our cohort may be 304 
an indication of lower levels of inflammation rather than compromised iron stores, particularly since 305 
the average ferritin level across all groups was above the clinical iron deficiency thresholds.  Moreover, 306 
increased levels of ferritin have been associated with insulin resistance and lower levels of adiponectin 307 
in the general population, both indicators of increased systemic inflammation (29).  Here, exercising 308 
groups with lower levels of ferritin also exhibited glycemic and blood lipid traits indicative of improved 309 
metabolic states, further supporting ferritin’s role as an inflammation proxy.  Finally, Hb, TS and iron 310 
tended to be higher in those who run for exercise compared to the SED group (with the TIBC lower), 311 
again suggesting that runners, including the PRO group, were iron-sufficient in this cohort.   312 

4.3 PRO athletes exhibit distinct biomarker signatures  313 

PRO athletes exhibited lower serum and RBC Mg, which may be indication of the often-reported 314 
endurance athlete hypomagnesaemia (30).  While the serum Mg was still within normal clinical 315 
reference range for both PRO female and male athletes, RBC Mg, a more sensitive biomarker of Mg 316 
status (31), was borderline low in female PRO athletes and might suggest suboptimal dietary intakes 317 
and/or much higher volume of running training compared to the other running groups (i.e. >>10h 318 
/week).  Indeed, this group also had elevated baseline CK and AST, which suggests a much higher 319 
training intensity and/or volume.  Moreover, PRO level athletes had adequate iron status and serum 320 
B12 and folate in the upper quartile of the normal reference range, suggesting that these athletes’ 321 
general nutrition status may have been adequate.  These observations suggest that elite endurance 322 
runners may need to pay particular attention to their magnesium status. 323 

Further, we observed higher levels of SHBG in PRO male runners, a biomarker whose levels positively 324 
correlate with various indexes of insulin sensitivity (32).  However, since the average SHBG levels in 325 
the SED group were not clinically low in both sexes, the observed increase in SHBG levels induced by 326 
running in males may be a catabolic response, as cortisol levels in this group were also higher.  Indeed,  327 
Popovic et al have shown that endurance exercise may increase SHBG, cortisol, and total testosterone 328 
levels at the expense of free testosterone levels (33).  This could perhaps in part be explained by higher 329 
exercise-induced adiponectin levels, which have been shown to increase SHBG via cAMP kinase 330 
(AMPK) activation (34).  However, since our data is observational, we cannot rule out overall energy 331 
balance as a significant contributor to SHBG levels.  For example, caloric restriction (CR) has been 332 
shown to result in higher SHBG and cortisol levels (32). 333 

Finally, regarding the abovementioned PRO group elevated AST and CK biomarkers, evidence 334 
suggests that normal reference ranges in both CK and AST in well-recovered athletes should be 335 
adjusted up, as training and competition have a profound, non-pathological, impact on the activity of 336 
these enzymes (35, 36).  Indeed, the recommendation appears to be not to use reference intervals 337 
derived from the general population with hard-training (particularly competitive) athletes (36). 338 
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4.4 Effect of BMI on blood biomarkers 339 

Since the current study is a cross-sectional analysis of self-reported running, we could not rule out the 340 
possibility that factors other than exercise were the driving force behind the observed biomarker 341 
variance among the groups examined.  While factors such as diet, sleep, and/or medication use were 342 
not readily ascertained in this free-living cohort at the time of this study, BMI was readily available to 343 
evaluate this biomarker’s potential relative contribution to the observed mean biomarker differences 344 
among self-reported runner groups.  345 

Multiple studies have attempted to uncouple the effects of exercise and BMI reduction on blood 346 
biomarker outcomes, with mixed results (37).  For example, it is relatively well-known that acute bouts 347 
of exercise improve glucose metabolism, but long-term effects are less well described (38).  Indeed, 348 
whether exercise without significant weight-loss is effective toward preventing metabolic disease (and 349 
the associated blood biomarker changes) is inconclusive.  From the literature, it appears that, for 350 
endurance exercise to have significant effect on most blood biomarkers, the volume of exercise needs 351 
to be very high, and this typically results in significant reduction in weight.  Thus, in practice, it is 352 
difficult to demonstrably uncouple the effects of significant exercise and the associated weight-loss, 353 
and the results may depend on the blood biomarker in question.  Indeed, there is evidence that exercise 354 
without weight-loss does improve markers of insulin sensitivity but not chronic inflammation, with the 355 
latter apparently requiring a reduction in adiposity in the general population (39, 40, 41).    356 

In our study of apparently healthy individuals, we observed a decreasing trend in BMI with increasing 357 
self-reported running volume, and, although this study was not longitudinal and we are thus unable to 358 
claim weight-loss, our 2S-MR analysis using BMI as the exposure nonetheless suggests this biomarker 359 
to be responsible for a significant proportion of the modification of some blood biomarkers.   360 

4.5.1 Serum markers of systemic inflammation 361 

Through our 2S-MR analyses, we show that BMI is causally associated with markers of systemic 362 
inflammation, including RDW, folate, and hsCRP (27, 42, 43).  Similar analyses have reported that 363 
genetic variants that associate with higher BMI were associated with higher CRP levels, but not the 364 
other way around (44).  The prevailing mechanism proposed to explain this relationship appears to be 365 
the pathological nature of overweight/obesity-driven adipose tissue that results in secretion of 366 
proinflammatory cytokines such as IL-6 and TNFa, which then stimulate an acute hepatic response, 367 
resulting in increased hsCRP levels (among other effects) (45).  Thus, our 2S-MR analyses and those 368 
of others (44) would indicate that the primary factor behind the lower systemic inflammation in our 369 
cohort may be the exercise-associated lower BMI and not running exercise per se, though the lower 370 
hsCRP in runners remained significant after adjustment for BMI in our analysis.   371 

Indeed, although a major driver behind reduced systemic inflammation may be a reduction in BMI in 372 
the general population, additive effects of other lifestyle factors such as exercise cannot be excluded. 373 
For example, a large body of cross-sectional investigations does indicate that physically active 374 
individuals exhibit CRP levels that are 19-35% lower than less active individuals, even when adjusted 375 
for BMI as was the case in the current analysis (41).  Further, it’s been reported that physical activity 376 
at a frequency of as little as 1 day per week is associated with lower CRP in individuals who are 377 
otherwise sedentary, while more frequent exercise further reduces inflammation (41).   378 

Significantly, our entire cohort of self-selected apparently healthy individuals did not exhibit clinically 379 
high hsCRP, with average BMI also below the overweight thresholds.  Because all subjects were 380 
voluntarily participating in a personalized wellness platform intended to optimize blood biomarkers 381 
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that included hsCRP, it is possible that some individuals from across the study groups (both running 382 
and sedentary) in our cohort partook in some form of inflammation-reducing dietary and/or lifestyle-383 
based intervention.  Thus, that we detected a significant difference in hsCRP between exercising and 384 
non-exercising individuals in this self-selected already generally healthy cohort may be suggestive of 385 
the potential for additional preventative effect of scheduled physical activity on low-grade systemic 386 
inflammation in the generally healthy individual.   387 

4.5.2 Blood lipids 388 

Controlled studies that tightly track exercise and the associated adiposity reduction have reported that 389 
body fat reduction (and not improvement in fitness as measured via VO2max) is a predictor of HDL, 390 
LDL, and Tg (46).  Similarly, though BMI is an imperfect measure of adiposity, our 2S-MR analysis 391 
suggests that this biomarker is causally associated with improved levels of HDL and Tg, though not 392 
LDL.  This latter finding replicates a report by Hu et al. who, using the Global Lipids Genetics 393 
Consortium GWAS summary statistics, applied a network MR approach that revealed causal 394 
associations between BMI and blood lipids, where Tg and HDL, but not LDL, were found to trend 395 
toward unhealthy levels with increasing adiposity (47).  On the other hand, others implemented a robust 396 
BMI genetic risk score and demonstrated a causal association of adiposity with peripheral artery 397 
disease and a multiple linear regression showed a strong association with HDL, TC, and LDL, among 398 
other metabolic parameters (48).  In our cohort, given the lack of evidence for a causal BMI-LDL 399 
association and the overall healthy levels of BMI, the observed a significant improvement in LDL may 400 
be a result of marked running intensity and/or volume, possibly combined with the aforementioned 401 
additional wellness program intervention variables.  402 

4.5.3 Hormonal traits 403 

As described above, we observed a trend toward increased plasma cortisol and SHBG in runners, 404 
particularly PRO level athletes.  The effects on cortisol are consistent with a report by Houmanrd et al, 405 
who found male distance runners to exhibit higher levels of baseline cortisol (49).  With respect to the 406 
effects of BMI on baseline cortisol levels, this observation is generally supported by our 2S-MR 407 
analyses with evidence for a consistent effect of increased cortisol with decreasing BMI.  However, 408 
this association was suggestive at best, indicating that the higher levels of cortisol exhibited in the PRO 409 
runners with significant lower adiposity are not likely to be solely explained by their lower BMI.  410 
Indeed, the relationship between BMI and cortisol appears to be complex, with some reports suggesting 411 
a U-shaped relationship, where the glucocorticoid’s levels associate negatively up to about a BMI of 412 
30 kg/m2, then exhibiting a positive correlation into obesity phenotypes (50).  MR statistical models 413 
generally do not account for such non-linearity and would require a more granular demographical 414 
treatment, which is not possible using only GWAS summary statistics data in the context of 2S-MR 415 
(17, 51).  416 

4.6 Behavioral traits associated with increase physical activity 417 

The combination of the body of the literature that describes the effects of endurance training on blood 418 
biomarkers, and our own analysis that included markers such as CK and AST, makes us cautiously 419 
assured that most of the abovementioned blood biomarker signatures are indeed a result of the interplay 420 
between self-reported running and the associated lower BMI.  However, as this is a self-report-based 421 
analysis and we were unable to track other subject behaviors in this free-living cohort, we acknowledge 422 
that multiple behaviors that associate with exercise may be influencing our results.   423 
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Toward this end, our exploratory 2S-MR analyses revealed potentially causal relationships between 424 
vigorous exercise and multiple dietary habits that have been shown to improve the biomarkers we 425 
examined.  Indeed, diets that avoid processed meat and sweets while providing ample amounts of fresh 426 
fruits, as well as oily fish have been shown to be anti-inflammatory, and improve glycemic control and 427 
dyslipidemia (52, 53).  That physically active individuals are also more likely to make healthier dietary 428 
choices adds insight to the potential confounders in ours and others’ observational analyses, and this 429 
similar associations have previously been reported (54, 55, 56). For example, using a calculated healthy 430 
eating motivation score, Naughton et al. showed that those who partake in more than 2 hours of 431 
vigorous physical activity are almost twice as likely to be motivated to eat healthy (56).  Indeed, upon 432 
closer examination, the genetic instruments used to approximate vigorous physical activity as the 433 
exposure in this work included variants in the genes DPY19L1, CADM2, CTBP2, EXOC4, and FOXO3 434 
(57).  Of these, CADM2 encodes proteins that are involved in neurotransmission in brain regions well 435 
known for their involvement in executive function, including motivation, impulse regulation and self-436 
control (58).  Moreover, variants within this locus have been associated with obesity-related traits (59).  437 
Thus, it is likely that the improved metabolic outcomes seen here with our self-reported runners are a 438 
composite result of both these individuals exercise and dietary habits.  Importantly, the above suggests 439 
that a holistic wellness lifestyle approach is in practice the most likely to be most effective toward 440 
preventing cardiometabolic disease.  Nonetheless, the focus of this work – exercise in the form of 441 
running – is known to significantly improve cardiorespiratory fitness (CRF),  which has been shown 442 
to be an independent predictor of CVD risk and total mortality, outcomes that indeed correlate with 443 
dysregulated levels in many of the blood biomarkers examined in this work (7). 444 

4.7 Study limitations 445 

This study is based on self-reported running and thus has several limitations.  First, it is generally 446 
known that subjects tend to overestimate their commitment to exercise when self-reporting, although 447 
in our cohort is a self-selected health-oriented population that is possibly less likely to over-report their 448 
running volume.  Furthermore, although the robust increasing trend in baselines for muscle damage 449 
biomarkers (CK, AST) that have been shown to be associated with participation in sports and exercise 450 
provides indirect evidence that the running groups were indeed participating in increasing volumes of 451 
strenuous physical activity, we cannot confirm whether the reported running was performed 452 
overground or on a treadmill, which may result in some heterogeneity in physiological responses , nor 453 
can we ascertain the actual training volume of PRO-level runners.   We also cannot exclude the 454 
possibility that the running groups also participated in other forms of exercise (such as strength 455 
training) or partook in other wellness program interventions that may have influenced their blood 456 
biomarkers and/or BMI via lean muscle accretion, though we have attempted to shed light on potential 457 
behavioral covariates via 2S-MR.   Finally, while this cohort is generally healthy, we cannot exclude 458 
the potential for unmeasured confounders such as medications, nutritional supplements, and unreported 459 
health conditions.   460 

2S- MR enables the assessment of causal relationships between modifiable traits and is less prone to 461 
the so-called “winner’s curse” that more readily affects one-sample MR analyses (17, 51).  Because 462 
2S-MR uses GWAS summary statistics for both exposure and outcome, it is possible to increase 463 
statistical power because of the increased sample sizes.  However, horizontal pleiotropy is still a 464 
concern that can skew the results.  Currently, there is no gold standard MR analysis method, thus we 465 
used different techniques (IVW, MR-Egger, and median-based estimations – all of which are based on 466 
different assumptions and thus biases) to evaluate the consistency among these estimators and only 467 
reported associations as ‘causal’ if there was cross-model consistency.  Nonetheless, an exposure such 468 
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as BMI is a complex trait that is composed of multiple sub-phenotypes (such as years of education) 469 
that could be driving the causal associations.  470 

 471 

5 Conclusion 472 

Running is one of the most common forms of vigorous exercise practiced globally, thus making it a 473 
compelling target of research studies toward understanding its applicability in chronic disease 474 
prevention.  Our cross-sectional study offers insight into the biomarker signatures of self-reported 475 
running in generally healthy individuals that suggest improved insulin sensitivity, blood lipid 476 
metabolism, and systemic inflammation.  Furthermore, using 2S-MR in independent datasets we 477 
provide additional evidence that some biomarkers are readily modified BMI alone, while others appear 478 
to respond to the combination of varying exercise and BM 479 
I.  Our additional bi-directional 2S-MR analyses toward understanding the causal relationships between 480 
partaking in vigorous physical activity and other healthy behaviors highlight the inherent challenge in 481 
disambiguating exercise intervention effects in cross sectional studies of free-living populations, where 482 
healthy behaviors such as exercising and healthy dietary habits co-occur.   Overall, our analysis shows 483 
that the differences between those who run and the sedentary in our cohort are likely a combination of 484 
the specific physiological effects of exercise, the associated changes in BMI, and lifestyle habits 485 
associated with those who exercise, such as food choices and baseline activity level.   Looking ahead, 486 
the InsideTracker database is continuously augmented with blood chemistry, genotyping, and activity 487 
tracker data, facilitating further investigation of the effects of various exercise modalities on 488 
phenotypes related to healthspan, including longitudinal analyses and more granular dose-response 489 
dynamics. 490 
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Figure 1.  Principal component analysis and variables plots of PRO-HVAM runners and sedentary 

user blood biomarkers. Females, (A) and (B); males (C) and (D). PRO-HVAM = combined 

professional and high-volume amateur.  Alb = albumin, ALT = alanine transaminase, AST = 

aspartate aminotransferase, B12 = vitamin B12, Ca = calcium, Chol = total cholesterol, CK = creatine 

kinase, Cor = cortisol, FE = iron, EOS_PCT = eosinophil percentage, Fer = ferritin, Fol = folate, FT 

= free testosterone, GGT = gamma-glutamyl transferase, Glu = glucose, Hb = hemoglobin, HCT = 

hematocrit, HDL = high density lipoprotein, HbA1c = glycated hemoglobin, hsCRP = high-

sensitivity C-reactive protein, LDL = low density lipoprotein, LYMPS_PCT = lymphocyte 

percentage, MCH = mean cell hemoglobin, Mg = magnesium, MONOS_PCT = monocytes 
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percentage, MPV = mean platelet volume, Na = sodium, RBC = red blood cells, RBC_Mg = red 

blood cell magnesium, RDW = red blood cell distribution width, SHBG = sex hormone binding 

globulin, Tg = triglycerides, TIBC = total iron binding capacity, WBC = white blood cells.   

 

Figure 2.  Blood biomarkers associated with running: Inflammation proxies, (A) hsCRP = high-

sensitivity C-reactive protein and (B) WBC = white blood cells; blood lipids, (C) HDL = high density 

lipoprotein (D) LDL = low density lipoprotein, and (E) Tg = triglycerides; glycemia proxies, (F) Glu 

= glucose and (G) HgbA1c = glycated hemoglobin, and (H) Cor =cortisol 

 

Figure 3.  Blood biomarkers associated with running: (A and B) Hb (hemoglobin) and Hct 

(hematocrit) increase with increasing running volume, (C) Fer (ferritin) is reduced with increasing 

running volume, (D and E) Serum and RBC Mg (red blood cell magnesium) are reduced in 

professional runners, and (F) SHBG (sex hormone binding globulin) levels increase with increasing 

running volume in males 

 

Figure 4. BMI significantly varied among running groups (A) with some suggestive effects on BMI 

PGS modification (total number for observations (N) for T1, T2, and T3 were 87, 84, and 100, 

respectively) (B) T1, T2, and T3 = 1st, and 2nd and 3rd tertials of the polygenic score distribution 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 4, 2023. ; https://doi.org/10.1101/2023.05.25.23290538doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.25.23290538


 
18 

Figure 5 Two-sample Mendelian randomization shows that increasing levels of vigorous physical 

activity such as running is associated with improvement of (A) hsCRP = high-sensitivity C-reactive 

protein, (B) HDL = high density lipoprotein, and (C) HbA1c = glycated hemoglobin levels 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 Study Population Demographics 663 

 

Group N Female, % Age, yrs Body mass index, kg/m2 
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PRO 82 53.7% 33.68 20.15 

HVAM 1103 52.9% 39.48 22.57 

MVAM 6747 54.2% 41.49 23.35 

LVAM 10877 34.2% 41.16 24.72 

SED 4428 48.9% 44.25 27.83 

 

PRO = Professional, HVAM  = high volume amateur (>10 hr), MVAM = medium 664 
volume amateur (3-10hr), LVAM = low volume amateur (<3 hr), SED = sedentary 665 

 

Table 2 Blood Biomarkers Significantly Different Among Sedentary 666 
Individuals and Those Who Partake in Running for Exercise to Various 667 
Degrees 668 

 

Biomarker ANOVA p-value  Trend p-value  lowest mean highest mean 

Alb <1e-16 <0.001 MVAM PRO 

ALT <1e-16 <1e-16 SED PRO 

AST <1e-16 <0.001 SED PRO 

B12 <0.001 <0.001 SED PRO 

Chol <0.001 0.005 PRO SED 

CK <1e-16 <1e-16 SED PRO 

Cor <0.001 0.675 SED PRO 

FE <0.001 0.119 SED PRO 
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Fer <1e-16 <1e-16 MVAM SED 

Fol <1e-16 <0.001 SED PRO 

FT <0.001 0.013 SED PRO 

GGT <1e-16 <0.001 PRO SED 

Glu 0.087 0.184 PRO SED 

Hb 0.002 <0.001 MVAM PRO 

HCT 0.053 0.055 MVAM PRO 

HDL <1e-16 <0.001 SED PRO 

HbA1c <0.001 0.010 PRO SED 

hsCRP <0.001 0.176 PRO SED 

LDL <0.001 0.006 PRO SED 

Mg <0.001 0.276 PRO SED 

MPV 0.058 0.089 SED HVAM 

Na <1e-16 0.622 HVAM SED 

RBC_Mg <0.001 0.773 PRO SED 

RDW <1e-16 0.002 PRO SED 

SHBG <1e-16 0.004 SED PRO 

Tg <1e-16 <1e-16 PRO SED 

WBC <1e-16 <1e-16 PRO SED 
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