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• Both interpretable and non-interpretable features displayed robust be-
haviors.

• Models based on non-interpretable features outperformed interpretable
ones.

• Interpretable feature-based models provide insights into speech and
language deterioration.

• Non-interpretable feature-based models can be used to achieve higher
detection accuracy.
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Abstract

Individuals with Parkinson’s disease (PD) develop speech impairments that
deteriorate their communication capabilities. Speech-based approaches for
PD assessment rely on feature extraction for automatic classification or
detection. It is desirable for these features to be interpretable to facilitate
their development as diagnostic tools in clinical environments. However, many
studies propose detection techniques based on non-interpretable embeddings
from Deep Neural Networks since these provide high detection accuracy, and do
not compare them with the performance of interpretable features for the same
task. The goal of this work was twofold: providing a systematic comparison
between the predictive capabilities of models based on interpretable and non-
interpretable features and exploring the language robustness of the features
themselves. As interpretable features, prosodic, linguistic, and cognitive
descriptors were employed. As non-interpretable features, x-vectors, Wav2Vec
2.0, HuBERT, and TRILLsson representations were used. To the best of our
knowledge, this is the first study applying TRILLsson and HuBERT to PD
detection. Mono-lingual, multi-lingual, and cross-lingual machine learning
experiments were conducted on six data sets. These contain speech recordings
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from different languages: American English, Castilian Spanish, Colombian
Spanish, Italian, German, and Czech. For interpretable feature-based models,
the mean of the best F1-scores obtained from each language was 81% in
mono-lingual, 81% in multi-lingual, and 71% in cross-lingual experiments.
For non-interpretable feature-based models, instead, they were 85% in mono-
lingual, 88% in multi-lingual, and 79% in cross-lingual experiments. On one
hand, models based on non-interpretable features outperformed interpretable
ones, especially in cross-lingual experiments. Among the non-interpretable
features used, TRILLsson provided the most stable and accurate results
across tasks and data sets. Conversely, the two types of features adopted
showed some level of language robustness in multi-lingual and cross-lingual
experiments. Overall, these results suggest that interpretable feature-based
models can be used by clinicians to evaluate the evolution and the possible
deterioration of the speech of patients with PD, while non-interpretable
feature-based models can be leveraged to achieve higher detection accuracy.

Keywords: Parkinson’s disease, Machine learning, Deep learning,
Interpretable features, Speech

1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative
disease after Alzheimer’s. It results from the gradual neuronal death in the
substantia nigra [1], closely related to the production of dopamine neuro-
transmitters. Clinical diagnosis is based on cardinal motor signs [2] and other
non-motor indicators (physiological and cognitive manifestations). The aver-
age time to diagnose PD in clinical setting can reach 2.9 years, with diagnostic
accuracy around 80.6% (95% Credible Interval [CrI] 75.2%-85.3%) [3, 4]. In
addition, tracking PD progression includes the adoption of subjective rating
scales (e.g., Hoehn & Yahr [5]) that are considered to have low sensitivity
and inter-rater reliability at the mild end of the symptom severity spectrum
[6, 7]. This is due, in part, to the variable and subtle nature of the early
symptomatic presentation. In this respect, novel technologies can speed up
the diagnosis process, help test treatments before largely irreversible brain
damage, and slow down the disorder’s progression. Voice disorders affect
approximately 70 to 90% of individuals with PD [8, 9, 10, 11]. Initial studies
designing interpretable features for PD evaluation have focused on represent-
ing phonatory, articulatory, and prosodic aspects such as perturbations of
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fundamental frequency (jitter), perturbations of amplitude (shimmer), voice
onset time, vowel space area, number of pauses, standard deviation of pitch
and intensity, and formats [12, 13, 14, 15, 16, 17]. Others used linguistic
descriptors to represent word dysfluencies, vocabulary richness, and word
repetitions [18, 19, 20]. These features were usually adopted to classify the
speech of subjects in PD and healthy controls (HC) with different classification
techniques (e.g., Support Vector Machines, k-nearest neighbors, multilayer
perceptrons) [21, 22, 23, 24]. Even though designing interpretable features
is desirable in clinical practice, this process can entail significant effort in
terms of computation and domain expertise. Domain expertise is required
to provide the definition of interpretability for the domain of application
and to design the features for machine learning (ML) [25]. Over the last few
years, Deep Neural Networks (DNNs) have been extensively adopted in PD
detection. In particular, Convolutional Neural Networks (CNNs) have been
used to extract features from spectrograms or phonological features from
Mel-Frequency Cepstral Coefficients (MFCCs) [26, 27, 28]. Other studies
have explored the use of speaker recognition technologies such as i-vectors and
x-vectors in parameterizing articulatory, prosodic, and phonatory information
characteristic of speakers with PD [29, 30, 31, 32]. The use of Deep Learning
(DL) is increasing in neurology, pathology, and medicine in general [33, 34, 35].
However, the lack of transparency and accountability of predictive models can
have severe consequences and generally poor use of limited valuable resources
in medicine and other domains [36].

Among the existing studies developing speech-based features for PD
detection, few of them extended their analysis to a multi-lingual cohort. Hazan
et al. [37] focused on the automatic detection of PD in English and German.
They reached 85% accuracy using Support Vector Machines (SVM) in mono-
lingual and 75% in multi-lingual experiments, respectively. Orozco-Arroyave et
al. [38] performed cross-lingual experiments with Spanish, German, and Czech
data sets. Accuracy ranges from 60% to 99%, depending on the language
combination and the ratio of training/testing data. Regarding a single-
language evaluation, the accuracies were between 85% and 99%. The most
valuable features were based on MFCCs and Bark band energies calculated
from unvoiced segments of reading text. Moro-Velázquez et al. [39] reached
accuracies between 75% and 82% when classifying PD individuals in cross-
lingual experiments considering Castilian Spanish, Colombian Spanish, and
Czech data sets. For this purpose, they used an approach based on phonemic
grouping. Plosives, vowels, and fricatives were the most relevant acoustic
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segments for the detection of PD. Using text-dependent utterances as a speech
task led to the highest performance. Vásquez Correa et al. [40, 27] used CNNs
and a transfer learning strategy to classify PD in Spanish, German, and Czech.
Accuracies varied from 70% to 77%. Classifying German- and Czech-speaking
participants with PD was more accurate when pre-training the model on the
Spanish data set. Kovac et al. [41] showed that particular language tasks used
for PD detection (e.g., monologue) are very language-dependent and that just
a few features (e.g., prosodic) have significant discrimination power across the
Czech and US-English language. The classification accuracy reported in their
experiments dropped from 72–73% to 67% when moving from single-language
modeling to multi-lingual one. Differently, Kovac et al. [42] analyzed acoustic
features of Czech, American, Israeli, Colombian, and Italian PD and HC
participants using correlation and statistical tests. Classification accuracies
ranged from 67% to 85% in mono-lingual experiments and from 53% to 79%
in cross-lingual experiments using leave-one-language-out. Performance varied
depending on the language.

Most of the mentioned studies have different limitations. Some only
analyzed acoustic or linguistic descriptors, which limits the characterization
of PD to a unique domain. Others only leveraged DL techniques to detect
PD from speech, which is not entirely desirable in clinical applications, given
their limited interpretability. Others only considered a single language task
(e.g., sustained vowel phonation, diadochokinetic task) or only one or two
languages simultaneously. Thus, the task of PD detection from language
and speech requires adopting a broader set of languages, focusing on a more
comprehensive set of descriptors, and collecting speech samples from different
tasks to deliver an exhaustive characterization of the disorder.

The main goal of this work is to perform a systematic comparison between
interpretable feature-based models (IFMs) and non-interpretable feature-
based models (NIFMs) for the detection of PD from speech. As previously
discussed by Rudin [25], there is a wide belief that using more complex mod-
els leads to greater accuracy in predictions, which suggests that a complex
black box is necessary for achieving optimal results. However, this notion is
frequently disproven, especially in cases where the data is structured and
has natural, meaningful features to be effectively represented. As shown by
some works in data science [43, 44, 45], in such situations, the performance
of more complex classifiers like deep neural networks tend to be comparable
to that of simpler classifiers such as logistic regression and decision lists after
preprocessing. In our study, we wanted to assess whether simpler models
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Data set
Spontaneous

speech
Read

passage
Text dependent

utterance
NLS 1 2 0

Neurovoz 1 0 6
GermanPD 1 1 5
CzechPD 1 1 0
GITA 1 1 6

ItalianPVS 0 2 10

Table 1: Typologies of tasks analyzed with the corresponding number (#) of samples
available in each data set. Abbreviations: SS, Spontaneous Speech; RP, Read Passage;
TDU, Text Dependent Utterance.

based on meaningful and interpretable features can achieve a performance
comparable to more complex models based on novel DNN-based representa-
tions such as TRILLsson [46], Wav2Vec 2.0 [47], and HuBERT [48]. Moreover,
we intended to evaluate which of the two typologies of representations encodes
more suitable information for the task of PD detection and to which extent
the representations adopted are language robust. To do so, we performed
mono-lingual, multi-lingual, and cross-lingual experiments using three differ-
ent speech tasks and six corpora simultaneously. To the best of our knowledge,
there are no studies that conducted a comparison between the predictive
capabilities of interpretable and non-interpretable speech-derived features in
PD detection across languages.

2. Materials

Mono-lingual, multi-lingual, and cross-lingual experiments comprised six
corpora: American English, Castilian Spanish, Colombian Spanish, German,
Italian, and Czech. The data sets used for each language are described
below. From each data set, we employed speech recordings from three types
of tasks (when available): spontaneous speech (SS) (e.g., monologue, picture
description), reading passage (RP), and text-dependent utterances (TDUs)
(short read sentences). Table 1 summarizes the typology of tasks adopted in
this study and the data sets in which these tasks are available. Demographic
and disease severity statistics of American English, German and Italian
corpora are reported in Table 2, while those of Castillian, Colombian, and
Czech are reported in Table 3.
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2.1. American English

The authors of this study collected a data set called NeuroLogical Signals
(NLS) at Johns Hopkins Medicine (JHM). This data set consists of spoken
responses from participants who are native speakers of American English.
The participants were categorized as either having a neurological disorder or
being HC and received treatment and diagnosis from expert neurologists at
JHM. All participants underwent informed consent, and the data collection
was approved by the Johns Hopkins Medical Institutional Review Board. Due
to the COVID-19 pandemic, all participants wore the same type of surgical
mask during recordings, which minimally interfered with their jaw and lip
movement. Participants with PD continued their usual pharmacological
treatment and took dopaminergic medication before the recording session.
Speech signals were recorded in acoustically and visually controlled conditions
with a computer and microphone. The study included 23 participants with
PD and an HC group of 27 participants matched in age with the PD group.
None of the participants in the HC group has a history of symptoms related
to PD or any other NDs. The subset of tasks analyzed from this corpus
consists of a SS task and two RP tasks. The SS task is represented by a
Cookie Theft Picture description task [49], in which participants are required
to describe the Cookie Theft Picture from the Boston Diagnostic Aphasia
Examination [50]. The protocol sets a limit of 60 s on the execution of this
task. In the two RPs instead, participants are instructed to read two short
passages consisting of 87 and 174 words, respectively, from a printed sheet.

2.2. Castilian Spanish

The Neurovoz data set contains recordings from 47 HCs and 32 participants
with PD who are native speakers of Castilian Spanish. The Bioengineering
and Optoelectronics Group at Universidad Politecnica de Madrid and the
Otorhinolaryngology and Neurology Departments of the Gregorio Marañón
hospital (Madrid, Spain) collected the speech samples. The experimental
protocols and methods were approved by the Ethics Committee of Hospital
General Universitario Gregorio Marañón in accordance with the Helsinki Dec-
laration [51], and all participants gave informed consent. Before the recording
session, a neurologist assessed the neurological state of participants with PD,
while a survey was administered to evaluate the neurological condition of HC
participants. PD participants were under pharmacological treatment and took
dopaminergic medication before the recording session. Speech signals were
collected in a room with controlled acoustic characteristics using a headset
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microphone. Recordings were sampled at 44.1 kHz with a resolution of 16 bits.
The data set included recordings from six TDUs and running speech from the
description of a picture (SS task). The SS task did not have a time limit. For
the TDUs, participants did not read the sentences from a text document but
instead listened to them from a recording of a standard speaker and repeated
them out loud to reduce noise, reading mistakes, and cognitive load.

2.3. Colombian Spanish

The GITA data set was collected by Universidad de Antioquia in Medelĺın,
Colombia, and includes speech samples from 50 individuals with PD and 50
age- and sex-matched HC who are native speakers of Colombian Spanish.
The data collection adhered to the Helsinki Declaration and was approved
by the Ethics Committee of Cĺınica Noel in Medelĺın, and all participants
provided informed consent. PD patients were diagnosed by neurology experts
and took dopaminergic medication within 3 hours before the start of the
recording session. HC participants reported no symptoms related to PD
or other NDs. The recordings were conducted in a quiet room using an
external microphone at a sampling rate of 44.1 kHz with a resolution of 16
bits. The data set includes three types of speech tasks: a SS task (monologue)
where participants describe their typical daily activities, six TDUs, and a
phonetically balanced RP. The SS task had no time limit, and the recorded
samples were approximately 44 s long.

2.4. German

The GermanPD data set comprises speech recordings from 88 participants
with PD and 88 HC participants who are native German speakers. The data
were collected at the Hospital of Bochum in Germany and approved by the
ethics committee of the Ruhr-University Bochum. All participants provided
informed consent. The participants with PD received dopaminergic medication
before the recording session. Speech samples were collected using commercial
audio software and a headset microphone in a quiet room. Recordings were
sampled at 16 kHz with a resolution of 16 bits. The subset of tasks analyzed
in this study includes ten TDUs, one RP composed of eighty-one words, and
a SS task. The protocol did not impose a time limit on the execution of
the SS task, and the SS samples last about 33 s. The neurological state of
participants with PD was assessed by a neurologist, and none of the HC
participants reported symptoms associated with PD or other neurological
disorders.

7

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 3, 2023. ; https://doi.org/10.1101/2023.05.29.23290697doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.29.23290697


2.5. Italian

The ItalianPVS corpus1, comprises recordings from 22 elderly HCs, 28
young HCs, and 28 participants diagnosed with PD. All information regarding
participant consent is available in their reference papers or dissemination
platforms, which are cited in this paper. None of the participants with PD
reported any speech or language disorders unrelated to their PD symptoms
prior to this study. All participants with PD received dopaminergic medication
at the time of the recording. Speech samples were collected in a quiet, echo-
free room, using ab external microphone. Recordings were sampled at 16
kHz. The set of tasks analyzed in this study consists of recordings from
ten phonetically balanced TDUs and one phonetically balanced RP. Prior to
starting the reading tasks, a specialist introduced the participants to the task
to be performed, and both the short sentences and the RP were read from a
printed sheet.

2.6. Czech

The CzechPD data set was collected in the General University Hospital
in Prague, Czech Republic. It comprises speech recordings from 20 untreated
male participants newly diagnosed with PD and 15 age-matched HC individ-
uals who speak Czech natively. The data collection process adhered to the
Helsinki Declaration, and the Ethics Committee of the hospital approved it.
Every participant provided informed consent. Participants with PD did not
take any antiparkinsonian treatment before recording. The recording session
took place in a quiet room. Speech samples were collected with an external
condenser microphone and originally sampled at 48 kHz with a resolution of
16 bits. Participants were familiarized with the task and procedure before
each recording session. In this study, participants performed various speaking
tasks, including a phonetically balanced reading passage and a monologue
task, where they spoke about their daily activities, interests, jobs, or family.
The SS samples lasted approximately 90 s, and there were no time limits
imposed on the recording.

1https://ieee-dataport.org/open-access/italian-parkinsons-voice-and-s

peech (last accessed on 4 February 2023)
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Data set NLS German PD ItalianPVS

Gender Female Male Female Male Female Male

Group PD HC PD HC PD HC PD HC PD HC PD HC

Number of
Subjects

9 16 14 11 41 44 47 44 9 12 19 10

Age, Average 68.00 63.31 66.62 66.09
67.23
(9.7)

62.6
(15.2)

66.7
(8.7)

63.8
(12.7)

64.3
(12.2)

65.3
(4.1)

68.6
(6.4)

69.3
(5.6)

Age
Range

50-75 26-83 55-79 41-79 27-84 28-85 44-82 26-83 40-80 60-72 50-77 60-77

UPDRS-III*,
Average
(SD)

25.33
(9.72)

–
27.71
(13.63)

–
23.3
(12.0)

–
22.1
(9.9)

– – – – –

UPDRS-III.I
Average
(SD)

0.88
(0.56)

–
0.83
(0.68)

– – – – –
1.10
(1.3)

–
1.00
(1.00)

–

Hoehn and Yahr*
Scale Average

(SD)

2.37
(0.41)

–
2.23
(0.37)

–
2.61
(0.83)

–
2.59
(0.60)

– – – – –

Years Since
Diagnosis

(SD)
– – – –

6.47
(5.83)

–
6.59
(4.93)

– – – – –

Table 2: Demographic and disease severity statistics of NLS, GermanPD, and ItalianPVS
data sets. Ages are expressed in years. *NLS contains global values of Movement Disorder
Society UPDRS part III (i.e., movement examination); GermanPD contains global values
of UPDRS part III (i.e., movement examination). The ItalianPVS corpus only contains
UPDRS-III.I (i. e. speech examination). The Hoehn and Yahr* scale is available only for
NLS, and GermanPD, but not for ItalianPVS.

3. Methods

Our pipeline employed a standard “feature extraction-classification” scheme.
Nested Cross-Validation (NCV) was applied in the experiments to evaluate
the two different representation techniques.

3.1. Data Pre-processing

All recordings were resampled at 16 kHz as required by the algorithms
employed for the feature extraction (see Section 3.2). The resampling was
performed using SoX.2 We also applied EBU R128 loudness normalization
procedure using the Python library ffmpeg-normalize.3 This type of normal-
ization leads to a more uniform loudness level compared to simple peak-based
normalization. Normalized audios were used to extract intensity-related fea-
tures (see Section 3.2.1). Moreover, whenever a given participant had more

2https://sox.sourceforge.net/, last accessed on 26 January 2023.
3https://pypi.org/project/ffmpeg-normalize/, last accessed on 26 January 2023.
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Data set Neurovoz GITA CzechPD

Gender Female Male Female Male Male

Group PD Ctrl PD Ctrl PD Ctrl PD Ctrl PD Ctrl

Number of
Subjects

18 18 29 14 25 25 25 25 20 16

Age, Average
(SD)

70.9
(8.4)

68.4
(6.0)

71.9
(12.3)

66.6
(6.4)

60.7
(7.3)

61.4
(7.0)

61.5
(11.6)

60.5
(11.6)

61
(11.7)

61.8
(12.9)

Age
Range

59-86 58-83 41-88 55-77 49-75 49-76 33-81 31-86 34-83 36-80

UPDRS-III*,
Average
(SD)

16.9
(11.5)

–
19.6
(11.8)

–
37.5
(14.0)

–
37.7
(22.0)

–
17.9
(7.1)

–

Hoehn and Yahr
Scale Average

(SD)

2.30
(0.68)

–
2.30
(0.80)

–
2.28
(0.53)

–
2.34
(0.53)

–
2.17
(0.45)

–

Years Since
Diagnosis

(SD)

6.4
(6.4)

–
7.6
(4.7)

–
12.6
(11.5)

–
8.9
(5.9)

–
2.4
(1.6)

–

Table 3: Demographic and disease severity statistics of Neurovoz, GITA and CzechPD
data sets. Ages are expressed in years. *The Neurovoz corpus only contains UPDRS-III, i.
e. motor examination; GITA contains global values of Movement Disorder Society UPDRS;
CzechPD contains global values of UPDRS.

than one speech sample within a given task, we concatenated all the record-
ings to form a single one. In doing this, we trimmed silences at the end and
beginning of each recording. We supervised all the recordings in the NLS data
set to ensure they had appropriate quality. Criteria for appropriate quality
encompassed no distortion, minimal background noise, and a task-related
response. When the recordings contained speech from the investigator at the
beginning and end, we trimmed the recordings. All the recordings from the
SS task were automatically transcribed using OpenAI’s Whisper4 [52], an
Automatic Speech Recognition (ASR) system trained on 680.000 hours of
multi-lingual and multitask supervised data collected from the web. American
English transcriptions underwent manual supervision.

3.2. Feature Extraction

We adopted two distinct characterizations to represent speech traits con-
nected to the onset and progression of PD. On the one hand, we configured a
set of interpretable features, some of them already proposed in our previous

4https://openai.com/blog/whisper/
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Feature type # of features Feature description
Interpretable features

Acoustic

30
48
24
20

Features based on F0 (e.g., F0-standard deviation)
Features based on energy (e.g., energy-contour on voiced segments)
Features based on duration (e.g., voiced rate)
Feature based on pauses (e.g., mean pause length)

Linguistic
10
2

Features based on the part of speech (POS) (e.g., number of verbs)
Features based on syntactic phrases (e.g., number of noun phrases)

Cognitive
2
1

Feature based on rhythm (i.e., speech rhythm standard deviation)
Feature based on informational content
(e.g., number of correct informational units)

Non interpretable features
X-vectors – X-vector embeddings pre-trained on Voxceleb1 and Voxceleb2

TRILLsson –
TRILLsson1 embeddings distilled on AudioSet and Libri-light from
a CAP12 teacher model pre-trained on YT-U

Wav2Vec 2.0 – Wav2Vec 2.0 embeddings pre-trained on LibriSpeech
HuBERT – HuBERT embeddings pre-trained on LibriSpeech

Table 4: Summary of the interpretable and non-interpretable features extracted.

works [53, 54, 55], encoding prosodic, linguistic, and cognitive information. A
more detailed list of the interpretable features extracted is provided in the
Supplementary Material. On the other hand, non-interpretable speech repre-
sentations, namely neural network embeddings extracted using pre-trained
DNNs, were utilized. A summary of the features extracted for both approaches
is reported in Table 4.

3.2.1. Interpretable Features

Prosodic Features. Prosody is one of the most deteriorated speech dimensions
in hypokinetic dysarthria, a motor speech disorder associated with PD [56, 57].
The speech of individuals with PD is usually characterized by monopitch,
monoloudness, reduced overall loudness, short rushes of speech, speech rate
abnormalities, excessive and longer speech pauses, and reduced stress [56,
58, 59, 60]. To extract prosody features based on duration, fundamental
frequency, and energy, we used Disvoice5, a Python library designed to
extract phonological, prosodic, articulatory, and glottal features from speech.
To compute loudness variation, we used Parselmouth6, a Python library for

5https://github.com/jcvasquezc/DisVoice
6https://parselmouth.readthedocs.io/en/stable/
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the Praat software7. We also used the Python library DigiPsychProsody8, to
compute features related to pauses such as total speech time, total pause time,
percentage pause time, mean pause duration, silence to speech ratio, and
pause variability. This library uses the WebRTC Voice Activity Detector9. A
total of 125 prosodic features were extracted.

Linguistic Features. In some studies, individuals with PD report selective
impairments in syntax and semantics, especially in action-verbs and action
semantics, with relative preservation of noun processing [61]. In others,
individuals with PD exhibit difficulties in both actions and object naming [62]
and improved action naming more than object naming upon stimulation of
the subthalamic nucleus [63]. To model the syntactic abilities of participants
with PD during a SS task, we calculated the frequency of occurrence of
different parts of speech (POS), such as nouns, verbs, adjectives, adverbs,
numerals, and auxiliaries during spontaneous production. We also measured
the syntactic complexity in terms of the number of words, average word
length in characters, number of sentences, average sentence length in words,
number of noun phrases (NPs), number of verb phrases (VPs), and number
of prepositional phrases (PPs). To extract these features, we used the pre-
trained pipeline for English, German, and Spanish available on Spacy10. Since
there is no available pipeline for Czech to perform POS tagging and syntactic
analysis, we did not perform the linguistic feature extraction on the CzechPD,
even though this data set contains a SS task. A total of thirteen linguistic
features was extracted.

Cognitive Features. Previous works demonstrated that individuals with PD
have difficulties with regulating the rhythm and timing of speech during
spontaneous production [64, 65]. In our analysis, we modeled the regularity
of speech rhythm in terms of the occurrence of the individual words in time.
Namely, we measured the time between the starting points of consequent
words, and we computed the standard deviation, kurtosis, and skewness of
these measurements for each recording. To derive the starting point of each
word, we computed word alignment using a modified method of Whisper’s

7https://www.google.com/search?q=praat+software&oq=praat+software&aqs=c

hrome.0.0i512l2j0i22i30l8.4071j0j15&sourceid=chrome&ie=UTF-8
8https://github.com/NeuroLexDiagnostics/DigiPsych_Prosody
9https://github.com/wiseman/py-webrtcvad

10https://spacy.io/models
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model.11 In addition, it has been shown that subjects with PD report a
lower informational content than HCs when required to mention the main
characters or events represented in a picture [54, 66, 67, 68].

We also represented the informativeness of the narratives in terms of the
number of correct informational units (IU). According to [69], an IU is a
word that is intelligible in context, accurate in relation to the picture or topic,
and relevant to and informative about the content of the picture(s) or the
topic. In our analysis, we employed the speech transcripts of the recordings
collected during the picture description tasks from both NLS and Neurovoz.
We considered IUs, the salient events displayed in the picture presented as a
stimulus to elicit the narrative [55]. To identify the salient IUs for the CTP
task, we leveraged the published checklists for the CTP [70, 71]. Thus, IUs
were represented by verbs like washing, drying, stealing, overflowing, trying
to help, falling, wobbling, hanging, ignoring, reaching up, asking for cookie,
laughing, standing. On the other hand, we adopted the verbs barrer, lavar,
pesar, ducharse to represent the four main actions displayed in the picture
used in Neurovoz. A total of four cognitive features were extracted.

3.2.2. Non-interpretable Features

X-vectors. These are embedding features extracted from DNNs used for
speaker recognition tasks [72]. They are very robust speaker representations,
and their network scheme can be adapted to apply to language and emotion
recognition as well [73, 74]. Previous studies showed that x-vectors are effective
in differentiating between the speech of PD and HC, and they work equally
well for early PD detection in bi-class scenarios [31, 32]. More importantly,
x-vectors display robustness to language dependency. In the two studies
mentioned above, x-vector models were trained on Voxceleb1 [75] to extract
speaker embeddings. An excellent performance was achieved when evaluating
both French and Spanish PD data sets. Besides the benefit of capturing
multi-lingual PD characteristics, x-vectors have large pre-trained models.
When it comes to DNN schemes for PD detection, more training data is
needed. However, since pre-trained x-vector models can be directly applied
without further training, they can be extracted from all the different data sets
regardless of the amount of available data. In our analysis, the pre-trained

11The code used to extract word token timestamp is available at https://github.com
/jianfch/stable-ts.
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x-vector model12 available from SpeechBrain [76] was used. SpeechBrain is
an open-source and all-in-one conversational AI toolkit based on PyTorch.
This particular x-vector model was trained on both Voxceleb1 (English only)
[75], and Voxceleb2 (multi-lingual) [77]. Given a speech recording as input,
the model extracts an x-vector of size 512. Recordings need to be sampled at
16 kHz.

Self-Supervised Representations. Depending on the domain of application,
labeled data are challenging to obtain. Thus, research into pre-training
models with unlabelled data has significantly advanced. In this respect,
self-supervised learning (SSL) involves training a model on a large amount
of unlabelled data and learning an acoustic representation to be used on
a downstream task. Most SSL models rely on unsupervised pre-training
followed by supervised fine-tuning on a downstream task. The unsupervised
pre-training allows a model to benefit from the large amounts of unlabeled
data which are readily available. The following approaches were used in this
study.

• TRILLsson. Paralinguistic representations encode non-lexical elements
of communication of speech, such as emotion and tone. In [78], the
CAP12 model was introduced. The model extracted state-of-the-art par-
alinguistic representations from large-scale, fully self-supervised training
of a 600M+ parameter Conformer-based architecture. It has been
shown that simple linear classifiers trained on top of time-averaged
CAP12 representations outperformed nearly all previous state-of-the-art
representations on paralinguistic tasks such as speech emotion recog-
nition, synthetic speech detection, and dysarthria classification. The
publicly available versions of CAP12 are TRILLsson models. They
use knowledge distillation to derive smaller, faster, and more mobile-
friendly architectures than the original CAP12 model [46]. Distillation
was performed on the public data sets Audioset [79], and Libri-light
[80], with CAP12 as teacher model trained on YT-U [81]. The distilled
TRILLsson1 model13 was used in this study. Despite being much smaller,
TRILLsson models outperformed publicly available representations like
TRILL [82] and Wave2Vec2.0 [47] on multiple paralinguistic tasks. Sim-

12https://huggingface.co/speechbrain/spkrec-xvect-voxceleb
13https://tfhub.dev/s?q=trillsson

14

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 3, 2023. ; https://doi.org/10.1101/2023.05.29.23290697doi: medRxiv preprint 

https://huggingface.co/speechbrain/spkrec-xvect-voxceleb
https://tfhub.dev/s?q=trillsson
https://doi.org/10.1101/2023.05.29.23290697


ilar to the x-vector model, given a speech recording of any length as
input, the TRILLsson1 model extracts embedding of a fixed size (i.e.,
1,024). Recordings need to be sampled at 16 kHz. Because feature ex-
traction from long recordings required relatively complex computation,
recordings were separated into 1 s segments. If a speech segment was
less than 10 s, it was zero-padded to be so. For each recording, the final
embedding was set to be the average of the embeddings extracted from
its 10 s segments. As a pre-trained model, TRILLsson has the same ad-
vantage as x-vectors: it can be directly applied without further training.
Thus, embeddings can be extracted without particular concerns about
the amount of data available. To our knowledge, no previous studies
have employed TRILLsson representations for the automatic detection
of PD from speech.

• Wav2Vec 2.0. This is a self-supervised architecture that learns speech
representations by masking latent representations of the raw waveform
and solves a contrastive task over quantized speech representations [83].
Wav2Vec 2.0. models are widely used to extract features that can be
used as input to downstream speech-related tasks, such speaker identi-
fication [84, 85], speaker verification [86], dementia, dysfluency, vocal
fatigue detection, and Parkinson’s detection [87, 88, 89]. In this study,
we used a ported version of S3PRL’s Wav2Vec 2.0 for the SUPERB
Speaker Identification task [90]. In [90], a Wav2Vec 2.0. base-model
(95M parameters) [83] pre-trained on Librispeech (LS-960) was used as
the upstream model and fine-tuned on a Speaker Identification (SID)
task14 using the VoxCeleb1 data set. The downstream model is consti-
tuted by mean-pooling followed by a linear transformation, and it is
optimized using cross-entropy loss. Differently from the experiments
in the SUPERB benchmark, in our task, we used a single-layer repre-
sentation instead of the weighted sum of outputs of all layers from the
base model. We used the 768−dimensional intermediate representations
outputted from one of the layers of the model. Representations from all
layers were considered. Similar to TRILLsson, because feature extrac-
tion from long recordings required relatively complex computation, long
recordings were separated into 10 s segments. If a speech segment was

14https://huggingface.co/superb/wav2vec2-base-superb-sid
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less than 10 s, it was zero-padded to be so. At each layer, the model
extracts an embedding for every 20ms of each 10 s audio segment. A
1−D feature vector of size 768 representing each audio segment was
then obtained by computing the mean of the embeddings along the
time axis. For each recording, the final embedding was set to be the
average of the feature vectors extracted from its 10 s segments. To our
knowledge, we are the first to apply this representation in multi-lingual
and cross-lingual PD detection.

• HuBERT. Among the various speech SSL models, Hidden-unit BERT
(HuBERT) is one of the most prominent models for speech recognition
[48]. On the LibriSpeech [91] benchmark, fine-tuned HuBERT using
connectionist temporal classification (CTC) [92] achieves state-of-the-
art word error rate (WER) results. Typical approaches to improve
model efficiency include knowledge distillation [93], pruning [94], and
model quantization [95]. Only a few works explored the performance of
HuBERT on different downstream tasks. Yang et al. [90] showed that
HuBERT attained the most competitive performance on a set of differ-
ent downstream tasks such as speaker diarization, automatic speaker
verification, and slot filling. In this study, we used a ported version of
S3PRL’s HuBERT for the SUPERB SID task[90]15. Like Wav2Vec 2.0.,
we used a single-layer representation instead of the weighted sum of all
layers. Representations from all layers were considered. Long recordings
were separated into 10 s segments. If a speech segment was less than
10 s, it was zero-padded to be so. At each layer, the model extracts an
embedding for every 20ms of each 10 s audio segment. An 1−D feature
vector of size 768 representing each audio segment was then obtained by
computing the mean of the embeddings along the time axis. For each
recording, the final embedding was set to be the average of the feature
vectors extracted from its 10 s segments. To our knowledge, no previous
studies have analyzed this representation for the task of PD detection.

3.3. Classifiers

The classification process is depicted in Figure 1 for each cross-validation
iteration. The standardization part will be further explained in Section
4. As classifiers with the interpretable features, we used: Support Vector

15https://huggingface.co/superb/HuBERT-base-superb-sid
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Machine (SVM), K-Nearest Neighbors (KNN), Random Forest (RF), Ex-
treme Gradient Boosting (XGBoost), and Bagging (BG).16 As classifiers
with non-interpretable features, we used Probabilistic Linear Discriminant
Analysis (PLDA) after performing Principal Components Analysis (PCA)
dimensionality reduction, similarly to Moro-Velazquez et al. [31]. The PCA
transformation matrix was trained with the training embeddings and was sub-
sequently applied to transform training, validation, and testing embeddings
for each iteration. After feature dimensionality reduction to a dimensionality
range between 5 to 55 with a step size of 5 by PCA (hyperparameter to be
tuned), the PLDA model17 was trained from the PCA-reduced training subset.
Both the mean of PCA-reduced PD training embeddings and the mean of
PCA-reduced HC training embeddings were used as enrollment embeddings
in PLDA for scoring. Given a PCA-reduced testing or validation embedding,
a log-likelihood ratio with respect to the two enrollment embeddings was
obtained. This ratio was compared with the equal error rate (EER) threshold
from all of the ratios from the training subset. If the ratio was greater than
the EER threshold, the given testing or validation sample was classified as
PD. Otherwise, it was classified as HC.

3.4. Nested Cross-Validation (NCV)

A Nested Cross-Validation (NCV) scheme was applied in our experiments.
Feature selection, hyperparameter grid search, and a train-validation-test split
can improve the accuracy of ML algorithms. However, it can contribute to
overfitting in most cases, especially with small data sets. NCV is a common
approach that can be adopted for feature selection and parameter tuning to
obtain reliable classification accuracy and prevent overfitting [96, 97]. We split
the data set into ten outer folds, and each fold was held out for testing while
the remaining k − 1 folds (9 folds) were merged to form the outer training
set. Each outer training set was further split into stratified inner folds for
inner training and validation. In the inner folds, we identified the 30 best
features (IFMs only) and hyperparameters via grid search. An Extremely

16To implement the different classifiers, we used the Scikit-learn (Sklearn) library in
Python. See https://www.tutorialspoint.com/scikit_learn/scikit_learn_intro

duction.htm
17The PLDA model was implemented by the SpeechBrain toolkit. See https://speech

brain.readthedocs.io/en/latest/API/speechbrain.processing.html
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Figure 1: Machine learning pipeline.

Randomized Trees Classifier was used to perform feature selection.18 It is a
type of ensemble learning technique which aggregates the results of multiple
de-correlated decision trees to output its classification result. After getting
the best hyperparameter configuration for each outer iteration using their
corresponding inner folds, ten sets of unique best configurations were obtained.

Because we used small data sets, the best features, and hyperparameters
selected across different outer iterations could have been unstable. To evaluate
more stable architectures, the standard NCV process was modified. We used
the average (or mode if not applicable) configuration across the ten sets of

18The documentation of the Python library used to implement the Extremely Random-
ized Trees Classifier can be found at https://scikit-learn.org/stable/modules/gene
rated/sklearn.ensemble.ExtraTreesClassifier.html.
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unique best configurations as the final configuration across all outer iterations.
After obtaining the final best configuration, we trained and tested the model
from scratch with the final best set of features and hyperparameters on the
corresponding outer training/test fold and stored the results. The final results
for each model corresponded to the average model performance on the test
sets of the outer folds.

We adopted the same NCV process described above in the mono-lingual
and multi-lingual experiments. In doing so, we ensured that training and
testing subsets never contained the same speakers. This restriction is of crucial
importance since mixing the same speakers across training, and testing sets
enables models to learn characteristics specific to these speakers, making final
prediction results biased and over-optimistic. For the cross-lingual experiment,
a direct train-test split was applied instead since testing data and training data
must not come from the same language or data set. 10-fold cross-validation
was then performed using all training data for hyperparameter search. Data
partition details are explained in the following section.

4. Experiments

In this study, we employed and compared the predictive capabilities
of model based on interpretable and non-interpretable representations to
detect the presence of PD. All experiments were conducted task-wise, using
recordings from a unique language task at a time (i.e., SS, TDU, RP). Three
types of experiments were performed:

• Mono-lingual: models were trained and tested on six different data sets
separately. The aim of this experiment was to compare the performance
of IFMs and NIFMs.

• Multi-lingual: models were trained using training data from all the
languages and tested on each of them separately. The aim of this exper-
iment was threefold. The first was exploring the language robustness of
the features used in the detection task. The second was investigating
whether using more data from different languages could benefit the clas-
sification results. The third, as reported for mono-lingual experiments,
was comparing the performance of IFMs and NIFMs.

• Cross-lingual: models were trained with data from all but one language
used for testing. The aim of this experiment was twofold. The first
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Figure 2: Mono-lingual experiment - data partition on a single data set.

was exploring the language robustness of the features used in the detec-
tion task. The second, as reported for mono-lingual and multi-lingual
experiments, was comparing the performance of IFMs and NIFMs.

4.1. Mono-lingual

In mono-lingual experiments, NCV was applied to each data set individu-
ally, as depicted in Figure 2. Inner folds were split from the training subset
assigned in outer folds. Data standardization was applied language-wise. Dur-
ing each outer iteration, every data set was standardized using the following
transformation adapted from Kovac et al. [42]:

fT =
f − f̃HC

fHC−std

,

where, for a certain feature f , fT is the transformed feature, f̃HC and
fHC−std are the median and the standard deviation, respectively, of the HC
observations for that feature in the training data.

4.2. Multi-lingual

In multi-lingual experiments, NCV was applied on all data sets together,
as depicted in Figure 3. Each data set was split into outer folds separately.
Then in each outer iteration, the training subsets of all data sets were merged
into a common training set (e.g., Train 1 + Train 2 + Train 3, as shown
in the figure) and split into inner folds for a grid search. After getting the

20

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 3, 2023. ; https://doi.org/10.1101/2023.05.29.23290697doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.29.23290697


Figure 3: Multi-lingual experiment example - data partition on multiple data sets, with Data
set 1 as the target data set to be evaluated. This illustration exemplifies our experimental
approach with only three data sets but six data sets were used in our experiments.

optimal hyperparameters, in each outer iteration, training was conducted
from scratch on the common training set, and testing was conducted on the
target language test fold (e.g., Test 1, if the target data set is data set 1,
as shown in the figure). Data standardization was performed in the same
way as in mono-lingual experiments. In each outer iteration, language-wise
data transformation was performed. That is, data in Train 1 and Test 1 will
be standardized by the f̃HC and fHC−std computed on Train 1 (see Figure
3). This type of standardization was introduced in order to avoid differences
between the features’ values of the language data sets. These differences can
be caused by the acoustic and linguistic peculiarities of the languages, and
by the different recording conditions adopted when collecting the data.

4.3. Cross-lingual

The training and testing set were separated in cross-lingual experiments
(see Figure 4). All data sets but the target test data set were merged into a
common training set (e.g., Train 1 + Train 2) and split into cross-validation
folds for a grid search. After identifying the optimized hyperparameters
on the training split, training was conducted from scratch on the common
training set. The testing was conducted on the target language whole data
set. For training data, data standardization was applied in the same way as in
mono-lingual experiments. Data transformation was performed language-wise.
For testing data, since the feature distribution was unknown, features were
standardized by the average f̃HC and fHC−std of all the data sets used in
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Figure 4: Cross-lingual experiment example - data partition on multiple data sets, with Data
set 1 as the target data set to be evaluated. This illustration exemplifies our experimental
approach with only three data sets but six data sets were used in our experiments.

training. That is, data in Train 1 was standardized by f̃HC1 and fHC−std1,
computed on Train 1. Data in Train 2 was standardized by f̃HC2 and fHC−std2,
computed on Train 2 (see Figure 4). Lastly, data in Test was standardized
by the mean of f̃HC1 and f̃HC2 and the mean of fHC−std1 and fHC−std2.

5. Results and Discussion

Model performance was primarily evaluated in terms of F1-score (F1), and
area under the ROC curve (AUC). Complete experimental results reporting
accuracy (ACC), F1-scores, specificity (SPE), sensitivity (SEN), and AUC
are reported in the Supplementary Material. For Wav2Vec 2.0. and HuBERT,
all layers were experimented on. However, for Wav2Vec 2.0., embeddings
extracted from the 4th layer generally performed the best. For Hubert,
embeddings extracted from the 7th layer generally performed the best. Thus,
only results obtained using embeddings from layer 4 (for Wav2Vec 2.0.) and
layer 7 (for HuBERT) are considered. In the following subsections, we first
discuss the results for IFMs and NIFMs separately. We then compare their
performances in mono-lingual, multi-lingual, and cross-lingual experiments,
respectively. The differences in model performances are reported in absolute
terms.

5.1. Interpretable features

In mono-lingual experiments, F1-scores ranged from 50% to 98% and
AUC from 0.50 to 1.00. In multi-lingual experiments, F1-scores ranged
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from 50% to 87%, and AUC from 0.56 to 0.93. In cross-lingual experiments
instead, performance significantly varied depending on the target language
used in testing. In some experiments, higher performance was achieved
using SS samples, while in others read speech samples. Figure 6 shows the
results reported by the different classifiers employed during the mono-lingual
experiments. Table 5 instead reports results obtained in mono-lingual, multi-
lingual, and cross-lingual experiments when employing XGBoost as classifier.
In this regard, XGBoost performed better on average than the other types of
classifiers across data sets and tasks. ItalianPVS and Neurovoz were the two
data sets on which IFMs achieved the best results in terms of F1 and AUC.

Figure 5: Results of mono-lingual experiments using interpretable features with 5 different
classifiers: SVM (in yellow), KNN (in red), RF (in violet), XGBoost (in pink), and BG (in
green). Results are reported in terms of F-1 score (%) on all the six different data sets
considered. These results were obtained in the SS task, except for ItalianPVS, for which
they were obtained in the TDU task.

5.2. Non Interpretable features

In mono-lingual experiments, F1-scores ranged from 63% to 91% and AUC
from 0.64 to 1.00. In multi-lingual experiments, F1-scores ranged from 62%
to 95% and AUC from 0.71 to 0.99. Similarly to what was observed for IFMs,
in cross-lingual experiments, the performance of NIFMs did significantly vary
depending on the target language considered in the experiments. Overall,
TRILLsson, Wav2Vec 2.0., and HuBERT reported better classification results
than x-vectors in mono-lingual and multi-lingual experiments. Experimental
results obtained with non-interpretable features in the RP task and the TDU
task (for Neurovoz only), respectively, are displayed in Fig. 6 (mono-lingual),
7 (multi-lingual), and 8 (cross-lingual).
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Mono Multi Cross
Test Task F1 AUC F1 AUC F1 AUC
NLS

(American English)
SS
RP

0.73
0.60

0.80
0.63

0.70
0.72

0.77
0.77

0.72
0.72

0.75
0.79

Neurovoz
(Castilian Spanish)

SS
TDU

0.80
0.71

0.93
0.88

0.80
0.74

0.80
0.86

0.69
0.68

0.71
0.79

GermanPD
(German)

SS
RP

0.70
0.71

0.71
0.77

0.71
0.76

0.75
0.83

0.52
0.53

0.60
0.60

CzechPD
(Czech)

SS
RP

0.79
0.71

0.70
0.85

0.82
0.72

0.65
0.80

0.49
0.70

0.69
0.79

GITA
(Colombian Spanish)

SS
RP

0.55
0.70

0.57
0.71

0.60
0.66

0.62
0.74

0.51
0.51

0.55
0.50

ItalianPVS
(Italian)

RP
TDU

0.92
0.98

0.98
1.00

0.85
0.86

0.88
0.87

0.77
0.64

0.76
0.83

Table 5: Results of mono-lingual, multi-lingual, and cross-lingual experiments using
interpretable features and XGBoost as classifier. Results are reported for SS, RP, and
TDU tasks respectively. F-1 score and area under the ROC (AUC) are used as evaluation
metrics. Abbreviations: mono, mono-lingual; multi, multi-lingual; cross, cross-lingual.

Figure 6: Results of mono-lingual experiments using non-interpretable features: x-vectors
(in blue), Wav2Vec 2.0 (in orange), TRILLsson (in green) and Hubert (in pink). Results
are reported in terms of F-1 score (%) on all the six different data sets considered. These
results were obtained in the RP task, except for Neurovoz, for which they were obtained in
the TDU task.
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Figure 7: Results of multi-lingual experiments using non-interpretable features: x-vectors
(in blue), Wav2Vec 2.0 (in orange), TRILLsson (in green) and Hubert (in pink). Results
are reported in terms of F-1 score (%) on all the six different data sets considered. These
results were obtained in the RP task, except for Neurovoz, for which they were obtained in
the TDU task.

Figure 8: Results of cross-lingual experiments using non-interpretable features: x-vectors
(in blue), Wav2Vec 2.0 (in orange), TRILLsson (in green) and Hubert (in pink). Results
are reported in terms of F-1 score (%) on all the six different data sets considered. These
results were obtained in the RP task, except for Neurovoz, for which they were obtained in
the TDU task.
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5.3. Interpretable vs. Non-Interpretable Features

Figures 9 and 10 report the best experimental results in terms of F1-
score and AUC obtained in mono-lingual, multi-lingual, and cross-lingual
experiments using interpretable and non-interpretable features, respectively.
Results are reported language-wise for each task analyzed.

Mono-lingual. For IFMs, the mean of the best F1-scores across languages
was 81%, and that of AUC was 0.87. For NIFMs, the mean of best F1-scores
across languages was 85%, and that of AUC was 0.91. In particular, NIFMs
worked better than IFMs in Colombian Spanish, Czech, and German. On
Italian, Castilian, Spanish, and American English, IFMs achieved similar
results to those reported by NIFMs and, in some cases, slightly better, as
observed on ItalianPVS. On average NIFMs performed better than IFMs by
∼4% and 0.04 considering F1-score and AUC, respectively.

In mono-lingual experiments, NIFMs had more inconsistent distributions in
specific languages, resulting in varying optimal decision thresholds. This fact
contributed to a discrepancy between F1 and AUC results. The classification
results achieved using interpretable features were lower than those achieved
using non-interpretable features. However, our IFMs reported an improvement
over previous models. Namely, the performances of our best IFMs on CzechPD
and ItalianPVS outperformed those reported by Kovac et al. [41, 42] based
on acoustic descriptors by more than 10 percentual absolute points in ACC.
Similarly, TRILLsson reported best AUCs of 0.95, 0.87, 0.84 on Neurovoz,
GITA, and GermanPD, which were 0.01, 0.03, and 0.16 higher than the
x-vector approach of [31], the CNN approach of [28], and the mono-lingual
CNN approach of [27], respectively. In this regard, HuBERT/Wav2Vec
2.0. reported best AUCs of 0.96, 0.90, and 0.88 on Neurovoz, GITA, and
GermanPD, respectively, which were even higher than those achieved with
TRILLsson.

Multi-lingual. For IFMs, the mean of the best F1-scores across each language
was 81%, and that of AUC was 0.86. For NIFMs, the mean of the best
F1-scores across each language was 88%, and that of AUC was 0.93. On
average NIFMs performed better than IFMs by 7% and 0.07 considering
F1-score and AUC, respectively.

For both IFMs and NIFMs, using a multi-lingual training data set led
to an improvement ≥0.05 for both F1 and AUC in some tasks in almost
all languages, with respect to the mono-lingual experiments. In addition,
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Figure 9: Bar plots describing the best F1-scores (left panel) and AUC (right panel) across
tasks using IFMs (in red) and NIFMs (in blue), respectively. For each evaluation metric,
mono-lingual, multi-lingual, and cross-lingual experimental results on NLS, Neurovoz, and
GermanPD are reported. Abbreviations: Mono, Mono-lingual; Multi, Multi-lingual; Cross,
Cross-lingual.
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Figure 10: Bar plots describing the best F1-scores (left panel) and AUC (right panel) across
tasks using IFMs (in red) and NIFMs (in blue), respectively. For each evaluation metric,
mono-lingual, multi-lingual, and cross-lingual experimental results on CzechPD, GITA,
and ItalianPVS are reported. Abbreviations: Mono, Mono-lingual; Multi, Multi-lingual;
Cross, Cross-lingual.
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universal paralinguistic representations provided by TRILLsson allowed reach-
ing better performances compared to x-vectors and other non-interpretable
representations. In a previous study, Vásquez-Correa et al. [27] increased the
AUC on the test set of GermanPD from 0.68 to 0.82 by adding GITA in the
training set, and the test AUC on GITA from 0.78 to 0.82 by adding Czech
data in the training set. Similarly, our TRILLsson-based models increased
the AUC on the test set of GermanPD (RP task) from 0.83 to 0.88 and that
on GITA (SS task) from 0.84 to 0.91 in the multi-lingual scenario. Altogether,
the results of multi-lingual experiments confirmed some level of language
robustness of all the representations adopted.

Cross-lingual. In cross-lingual experiments, performance significantly varied
depending on the target language considered in the experiments. For IFMs,
the mean of best F1-scores across each language was 71%, and that for AUC
was 0.76. For NIFMs, the mean of best F1-scores across each language
was 79%, and that for AUC was 0.91. Even though results achieved using
interpretable features were lower than those reported using non-interpretable
ones, our IFMs reported an improvement over previous IFMs reported in the
literature that adopted a similar training scheme (i.e., leave-one-language-out).
Namely, our best IFMs on CzechPD and GITA outperformed those of Kovac
et al. [42] by 12% in terms of ACC. Our models reported higher SEN and SPE
by approximately 10% for American English and 5% higher for ItalianPVS
than than those reported by Kovac et al. [41].

For both IFMs and NIFMs, we observed a performance improvement
≥0.05 in F1-score and AUC with respect to mono-lingual experiments in
only a few data sets (i.e., NLS for IFMs and HuBERT-based models, and
CzechPD for TRILLsson based models). In most cases, classifying subjects
from a language group not included in the training set led to a significant
decrease in the classification results, as shown in previous works [41, 42, 40].
In addition, not seeing the test language in the training set might have
contributed to non-optimal data standardization and shifted distributions of
classifier decision scores, making F1-scores unstable, especially for NIFMs.

6. Additional Remarks

In this section, we analyze the limitations observed in the present work.
The data sets adopted differ in size and case severity. Thus, in multi-lingual
and cross-lingual experiments, the training and testing sets might not be
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severity-matched. The time since the last medication, as well as the peak-dose
duration, may impact performance. In some studies, participants with PD
received medication before starting the recording session, which can result in
better speech and language performances. In contrast, they did not receive
any medication in other data sets (e.g., CzechPD). Furthermore, even though
we analyzed three different types of tasks (i.e., TDU, RP, SS), only some data
sets contain all of them. This fact limits the generalizability of our results
and represents a limitation in multi-lingual and cross-lingual experiments. In
addition, even though we performed the experiments task-wise, comparing
the predictive capabilities of models based on features extracted from the
same type of tasks, there could be differences occurring between variants
of the same task. These differences can influence the feature values and
make the comparison between languages biased. More generally, if a data set
has relatively more complex tasks than others in terms of cognitive load or
tasks’ length, this fact might affect the features extracted and, in turn, the
classification results. Finally, even though the same machine learning pipeline
has been followed to perform the experiments using interpretable and non-
interpretable features, we are not using the same classifiers for the two types
of representations. This fact could have affected the models’ performances as
well. On one hand, classifiers like SVM, random forest, and bagging are used
with low-dimensional data. On the other, PCA and PLDA techniques are
typically employed with speech embeddings because they are better suited
for high-dimensional data and can provide better generalization performance
[72].

7. Conclusions and Future Work

The proposed study presents a systematic comparison between inter-
pretable and non-interpretable speech-based representations for the automatic
detection of PD. Six data sets containing speech recordings from different
languages were used, which allows comparison in mono-lingual, multi-lingual,
and cross-lingual experiments. The set of interpretable features encompassed
prosodic descriptors (e.g., pitch, loudness variation, and speech pauses), lin-
guistic descriptors (e.g., frequency of occurrence of different POS and syntactic
complexity), and cognitive descriptors (e.g., regularity of speech rhythm and
the number of correct IU). The set of non-interpretable features included
x-vectors, TRILLsson, Wav2Vec 2.0., and HuBERT speech representations,
with TRILLsson and HuBERT being applied to PD detection for the first
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time. Based on the experimental results, we observed that:

1. In mono-lingual experiments, where classifiers were trained and tested on
each data set separately, non-interpretable representations outperformed
interpretable ones on average by ∼4% and 0.04 considering F1-score
and AUC, respectively. In this regard, HuBERT, Wav2Vec 2.0., and
TRILLsson provided better and much more stable results compared to
x-vectors.

2. In multi-lingual experiments, where classifiers were trained on all lan-
guages and tested on each language individually, NIFMs performed
better than IFMs by ∼7% and 0.07 considering F1-score and AUC,
respectively, with Wav2Vec 2.0. and TRILLsson reporting the best
performances. Both approaches reported a performance improvement
≥0.05 with respect to mono-lingual results in some tasks across almost
all languages. This suggests that using more data, even when it comes
from other languages, helps improve classification results. This phe-
nomenon can be motivated by the fact that there are common patterns
in PD-related dysarthria across languages that can be leveraged to train
more robust models.

3. In cross-lingual experiments, where classifiers were trained on all lan-
guages but the target test language, NIFMs outperformed IFMs by
∼5.8% and 0.14 in terms of F1-score and AUC, respectively, with
TRILLsson reporting the best performance. A performance improve-
ment ≥0.05 in AUC with respect to mono-lingual results was observed
in only a few data sets (i.e., NLS for IFMs and HuBERT-based models,
and CzechPD for TRILLsson-based models).

Some more general considerations are worth mentioning. First, using
TRILLsson, Wav2Vec 2.0., and HuBERT self-supervised representations
reported better classification results than using x-vectors in mono-lingual and
multi-lingual experiments. Using heavier pre-trained models that are more
complex in architecture, such as TRILLsson 2∼5 or larger Wave2Vec 2.0. and
HuBERT models, might further increase the performance too. Second, in
cross-lingual experiments, TRILLsson significantly outperformed x-vectors
and reported a better performance compared to Wav2Vec 2.0. and HuBERT
in terms of AUC but, in some cases, performed very poorly in terms of
F1-score.

Overall, the performance of NIFMs was significantly better than that of
IFMs, especially in cross-lingual scenarios, even though the difference in the
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performance between IFMs and NIFMs was not always remarkable, as shown
in some mono-lingual and multi-lingual experiments. Altogether, the results
of these experiments did not confirm the findings reported in previous studies
that suggested that providing a structured data set with a comprehensive
representation of meaningful features can considerably enhance classification
results and narrow the performance gap between IFMs and NIFMs [25, 45,
44, 98, 99, 100]. In the current work, paralinguistic representations from
DNNs seem to deliver a more exhaustive characterization of the pathological
speech of PD individuals. However, the performance of models based on
these complex features can still be complemented with hand-crafted features.
Hence, clinicians can leverage IFMs to have clear insights into the evolution
and the possible deterioration of the spoken production of patients with PD,
while NIFMs can be employed to achieve higher detection accuracy.

In future work, we intend to validate the experimental results obtained
in this work, balancing the classes in terms of the number of subjects, age,
gender, time of medication, PD disease severity, and specific phenotype.
We also plan to explore the language robustness of a more comprehensive
set of interpretable and non-interpretable speech-based representations to
provide a more exhaustive characterization of PD and to experiment with
new classification techniques. Finally, as individuals with Parkinson’s disease
mimics conditions might be often misdiagnosed with PD, it is important to
create a separate group when performing differential diagnosis. Altogether,
both IFMs and NIFMs showed a satisfying generalization capability in multi-
lingual and cross-lingual experiments. As such, after further validation in
clinical trials, they might be used to deploy screening tools for the automatic
assessment of speech of people with PD in different languages.

8. Abbreviations

PD, Parkinson’s Disease; HC, Healthy Control; DL, Deep Learning;
ML, Machine Learning; CNN, Convolutional Neural Network; MFCC, Mel-
Frequency Cepstral Coefficient; ASR, Automatic Speech Recognition; POS,
Part of Speech; IU, Informational Unit; SVM, Support Vector Machines;
KNN, K-Nearest Neighbors; RF, Random Forest; XGBoost, Extreme Gradi-
ent Boosting; BG, Bagging; PCA, Principal Components Analysis; PLDA,
Probabilistic Linear Discriminant Analysis; EER, Equal Error Rate; NCV,
Nested Cross-Validation; ROC, Receiver Operating Characteristic; AUC, Area
under the Receiver Operating Characteristic curve; SS, Spontaneous Speech;
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RP, Reading Passage; TDU, Text-Dependent Utterances; ACC, Accuracy;
SEN, Sensitivity; SPE, Specificity; IM, Interpretable Feature-based Model;
NIFM, Non-Interpretable Feature-based Model; Mono, Mono-lingual; Multi,
Multi-lingual; Cross, Cross-lingual.
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