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ABSTRACT 

Objectives: The emergence of artificial intelligence (AI) is catching the interest of hospitals pharmacists. Massive 

collection of pharmaceutical data is now available to train AI models and hold the promise of disrupting codes and 

practices. The objective of this systematic review was to examine the state of the art of machine learning or deep 

learning models that detect inappropriate hospital medication orders.  

Methods: A systematic review was conducted according to the PRISMA statement. PubMed and Cochrane 

database were searched from inception to May 2023. Studies were included if they reported and described an AI 

model intended for use by clinical pharmacists in hospitals.  

Results: After reviewing, thirteen articles were selected. Eleven studies were published between 2020 and 2023; 

eight were conducted in North America and Asia. Six analyzed orders and detected inappropriate prescriptions 

according to patient profiles and medication orders, seven detected specific inappropriate prescriptions. Various 

AI models were used, mainly supervised learning techniques. 

Conclusions: This systematic review points out that, to date, few original research studies report AI tools based 

on machine or deep learning in the field of hospital clinical pharmacy. However, these original articles, while 

preliminary, highlighted the potential value of integrating AI into clinical hospital pharmacy practice. 

 

What is already known on this topic – AI models for pharmacists are at their beginning. Pharmacists need to 

stay up-to-date and show interest in developing such tools. 

What this study adds – This systematic review confirms the growing interest of AI in hospital setting. It highlights 

the challenges faced, and suggests that AI models have a great potential and will help hospital clinical pharmacists 

in the near future to better manage review of medication orders.   

How this study might affect research, practice or policy – AI models have a gaining interested among hospital 

clinical pharmacists. This systematic review contributes to understand AI models and the techniques behind the 

tools. 
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Introduction 

Clinical pharmacy is a health science discipline in which pharmacists provide patient care that optimizes 

medication therapy and promotes health, and disease prevention (1). Computerization of the medication use 

process (from prescribing to administration) allowed clinical pharmacists to access prescriptions more easily and 

to perform tasks that make medication use safer, including the review of medication orders. With this 

computerization, tools were then developed such as computerized clinical decision support systems (CDSS) 

dedicated to drug alerts. CDSSs are intended to improve patient safety by assisting clinicians in making decisions. 

It can help pharmacists in their task, but despite the benefits, it also has pitfalls. CDSS fragments the workflow of 

the user, but also over alerts for non-relevant or inappropriate signals leading to fatigue (desensitization) and 

subsequent inefficiency (2). A drug alert CDSS is usually interfaced with a national drug database. These systems 

alert the prescriber and/or the pharmacist if a prescription is inappropriate, based on the implemented rules. These 

are usually based on the summaries of product characteristics and/or other validated drug databases available.  

The computerization of health data has led to a large-scale collection of data. This massive quantity of data has 

become a powerful mine for the development of new tools to help healthcare professionals in their clinical practice. 

Technologies using artificial intelligence (AI) need massive collection of data to be generated. Such applications 

are already developed and in use in imaging (3) or cancer prediction and diagnosis (4) for examples.  

AI is the ability of a machine to display human-like capabilities such as learning and classifying. AI is a vast field 

regrouping several techniques, such as machine learning (ML). ML systems are designed to define its own set of 

rules based on data during training. The main tasks of ML are classification, regression, clustering, dimension 

reduction, or association. By defining their own rules, these algorithms will predict the probability of the outcome 

occurring on new data, generalizing from previously learnt data. The different models are based on the available 

data and the aim of the prediction. The learning methods are multiple: supervised (based on a labeled dataset 

indicating the expected outcome), unsupervised (based on the selection of relevant features between data of a given 

dataset), semi-supervised (based on mixing labeled and unlabeled data in the training set), self-supervised (based 

on learning the input data from another part of the input dataset) or also reinforced (based on interacting with the 

environment: reinforcement by a reward/punishment system) (5). Deep learning (DL) is a subset of ML, based on 

a neural network composed of hidden layers selecting distinguishing features of the training dataset (6). DL mimics 

the complexity of the human decision process.  

These AI technologies definitely offer the potential to disrupt clinical practices by developing tools to help 

pharmacists prioritize medication order reviews for high-risk patients, to facilitate decision-making process in drug 

selection, to predict dosage of narrow therapeutic index drugs, drug-drug interactions or adverse drug reactions, to 

enable efficient pharmacy workforce allocation in a resource-constrained environment.  

In light of such prospects, there is currently a growing interest among research teams to develop AI tools to assist 

clinical pharmacists in their daily practice. Two literature reviews (7,8) have gathered information on such studies 

and have highlighted the potential value of integrating AI into pharmacy practice. Our study complements these 

reviews by adding the latest developed models and focusing specifically on AI-derived tools designed to detect 

inappropriate prescribing in the hospital setting for clinical pharmacists. 

 

Objective 

The goal of this systematic review was to summarize the existing literature on predictive algorithms to detect 

inappropriate medication orders, in a hospital setting and using ML or DL technologies. 

 

Methods 

Eligibility criteria 

To enter the systematic review, the inclusion criteria were the development and description of a ML or DL 

algorithm detecting inappropriate prescription in a hospital setting. Articles had to be written either in English or 

in French and be peer-reviewed and published in a journal. 
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Information sources 

The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis 

(PRISMA) statement (9). PubMed database and the Cochrane Library were searched from inception to May 2023.  

 

Search strategy 

A targeted search of the literature was done, to analyze the vocabulary and choose the appropriate keywords for 

our review. The following terms (MeSH terms associated with complementary terms) were selected:  

- “artificial intelligence” AND “clinical decision support system”,  

- “artificial intelligence” AND “clinical pharmacy”,  

- “clinical pharmacy” AND “clinical pharmacy information systems”,  

- “computerized” AND “clinical decision support systems”,  

- “computerized” AND “pharmacy data”,  

- “machine learning” AND “clinical decision support system”,  

- “pharmaceutical” AND “algorithm”,  

- “pharmaceutical” AND “decision support system”,  

- “pharmacy” AND “machine learning”,  

- “pharmacy” AND “deep learning”.  

 

Selection process 

To enter the selection process, the articles were screened based on their title. To be selected, they had to address 

the use of AI for clinical pharmacists in the hospital setting. After this initial selection, the articles were screened 

based on their abstract, which had to detail the AI technology used. Finally, the selection was based on full texts. 

Were excluded articles reviews, articles not oriented towards the detection of inappropriate prescriptions, not 

hospital-based articles and non-available articles (access or language issues). 

 

Data collection process 

Extracted data included: references of the article, objectives, description of the AI model, dataset used, main 

results, contributions and limitations of the model. 

 

Selection and data extraction were conducted by one reviewer. 

 

Study risk of bias assessment 

This systematic review has a risk of bias since the first selection process was done based on the title of the article. 

Articles without an explicit title were not included in the study. 

 

Results 

Identification and selection of studies 

The queries identified 504 articles. 316 articles, after abstract screening, did not meet the inclusion criteria. Of the 

188 remaining articles, 175 were excluded for various reasons: review articles (n=20); not relevant (n=101) 

because no AI was used or the model used was not described but only evaluated; not oriented towards inappropriate 

orders detection (n=35) but used for pharmacovigilance surveillance; not hospital-based (n=8); not accessible 

(n=6); or written in a language other than English or French (n=5). Finally, 13 articles were included in the 

systematic review. (Figure 1) 
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Figure 1: PRISMA flow diagram of the selection of the included studies 

 

General description of the articles 

The studies were mainly conducted in North America (n= 4) and Asia (n=4). Eleven articles (84.6%) were 

published between 2020 and 2023.  

Six articles aimed to analyze orders and detect inappropriate prescriptions according to patient profiles and 

medication orders:  

- Prediction of high risk of QT prolongation due to drug interactions (10), 

- Prediction of orders requiring an intervention after analyzing the order provider’s interaction with the 

electronic health record (11), 

- Characterization of the risk factors associated with medication ordering errors (12), 

- Detection of medication errors in neonatal intensive care unit (13), 

- Identification of atypical medication orders and pharmacological profiles (14), 

- Prioritizing of medication order reviews to reduce the risk of errors (15). 

Two articles (16,17) were oriented towards antibiotic resistance detection: 

- Detection of antimicrobial inappropriate prescriptions (16), 

- Prediction of antibiotic resistance on bacterial infections for five different antibiotics (17). 

Two articles (18,19) presented algorithms predicting the risk of adverse drug events (ADE): 

- Prediction of ADE for elderly patients (18), 

- Prediction of the risk of ADE for individual patients (19). 

Two articles (20,21) described an algorithm detecting dosage abnormality in prescriptions: 

- Detection of prescription outliers (wrong dosage and frequency) (20), 

- Detection of extreme overdosing or underdosing in prescriptions (21).  

Finally, one article (22) described an algorithm capable of screening high alert drugs errors from prescriptions.  
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Algorithmic models description 

Eight publications (10–13,17–19,22) used supervised ML models (Table 1) and unsupervised ML algorithms 

(Table 2) were used in three publications (14,20,21). 

To optimize the performance of a rule-based system, combining ML models with such systems (Table 3) was 

explored in two publications (15,16). 

These models were evaluated using different metrics. Commonly the following metrics used are (23,24):  

- Accuracy: ratio between correctly classified samples and the total samples of the evaluation set, 

- Recall: also called sensitivity or true positive rate, ratio between the true positive samples and the total of 

positive samples, 

- Precision: also called positive predictive value, ratio between correctly classified samples and the total of 

samples assigned to that class, 

- Specificity: also called true negative rate, ratio between true negative samples and the total of negative 

samples, 

- F1-score: harmonic mean of precision and recall, 

- Area Under the Receiver Operating Characteristic (AUROC): measure of the overall performance of the 

test, 

- Area Under the Precision-Recall Curve (AUCPR): summary of the precision-recall curve. 

 

Supervised ML models 

Eight articles (10–13,17–19,22) described the use of supervised ML. Five ML models were tested: DT 

(10,12,13,18), SVM (10), bagging (10,12,18), boosting (10–12,17,18,22) and neural network (12,17,19). Three 

articles (11,19,22) compared distinct ML techniques. Lewin-Epstein et al (17) combined multiple techniques to 

enhance the results. Three articles (10,12,22) compared ML algorithms with conventional statistical methods.  

 

Table 1: Algorithm using supervised learning models 
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Reference Outcome AI model Dataset Main results Contributions Limitations 

Characteristics Acc Rec Prec Spe F1 AUROC AUCPR 

Machine 

Learning 

Techniques 

Outperform 

Conventional 

Statistical 

Methods in 

the Prediction 

of High Risk 

QTc 

Prolongation 

Related to a 

Drug-Drug 

Interaction 

(Van Laere 

S., et al., 

Belgium, 

2022) (10) 

Develop an 

algorithm 

predicting high 

risk of QTc 

prolongation and 

alert when DDIs 

increase the risk 

of QTc 

prolongation 

Linear 

regression, 

LR, 

Gaussian 

Naïve 

Bayes 

classifier, 

DT, SVM, 

RF, 

boosting 

algorithms 

Training set: 
512 QT-DDIs 

(284 low risk 

QT-DDIs, 228 

high risk QT-

DDIs, 289 

male patients, 

223 female 

patients).  

Hold-out set: 
102 QT-DDIs 

(57 low risk 

QT-DDIs, 45 

high risk QT-

DDIs, 52 male 

patients, 50 

female 

patients) 

RF 0.82 0.76 0.83 0.88 / / / ML techniques 

have higher 

performances as 

conventional 

statistical 

methods, 

especially 

random forest 

and Adaboost 

models. The 

analyze of the 

top-8 features 

used in the 

classification 

helps explain the 

model. The 

training set was 

stratified with 5 

different folds, 

balancing the 

predictive model 

used in the 

validation set. No 

The small 

dataset used and 

requiring a strict 

QTc monitoring. 

The validation 

set was predicted 

from the 

strongest 

performing 

model. Missing 

values were 

imputed with the 

median of the 

known values. 
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Adaboost 0.82 0.73 0.83 0.88    indication of the 

DDI was 

modeled making 

the algorithm 

generalizable to 

another sample 

of QT-DDIs. 

Predicting 

inpatient 

pharmacy 

order 

interventions 

using 

provider 

action data 

(Balestra M., 

et al., USA, 

2021) (11) 

Predict orders 

requiring 

intervention 

from the 

ordering 

provider's 

interaction with 

the EHR 

XGBoost 1811407 

individual 

orders, from 

2708 

prescribers, 

extracted from 

3 hospitals 

 0.41 0.99 / 0.37 / 0.91 0.44 With proper 

tuning, such 

models can 

significantly 

improve the 

workloads on 

pharmacists. 

Dataset extract 

from a short 

period (2 

weeks), 

seasonality of 

behaviors may 

be explored. 

Comparison of 

the results across 

hospital systems 

to explore the 

context 

influence on 

behavior.   
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Predicting 

self-

intercepted 

medication 

ordering 

errors using 

machine 

learning 

(King C. R., 

et al, USA, 

2021) (12) 

Characterize the 

risk factors 

associated with 

medication 

ordering errors 

LR-DT-RF-

MLP-

GBDT 

Medication 

orders 

(+associated 

data) over a 6-

year period in 

a single 

hospital 

(58041920 

orders - 28695 

voided orders) 

GBDT      0.80 0.07 Large collection 

of data. GBDT 

model has the 

best 

performance. 

Identification of 

factors associated 

with order errors 

and of 

medication 

orders in a high-

risk context. 

The performance 

of the models is 

below the 

standards 

expected to use 

such models in 

clinical practice. 

Generalizability 

to other data not 

studied. 

Development 

and 

validation of 

a machine 

learning-

based 

detection 

system to 

improve 

precision 

screening for 

medication 

errors in the 

neonatal 

intensive care 

unit (Yalçin 

N. et al., 

Türkiye, 

2023) (13) 

Develop a ML 

model predicting 

the presence of 

medication 

errors 

RF Prospective 

study, 

included 412 

NICU-patients 

to whom at 

least one 

systemic drug 

was prescribed 

over a 17-

month period 

in a single 

hospital 

(11 908 

medication 

orders) 

 0.92 0.92 0.94 0.92 0.93 0.92 / First developed 

and validated 

model to predict 

the presence of 

medication errors 

using work 

environment and 

pharmacotherapy 

parameters. 

Expectation to 

predict the 

occurrence of a 

medication error 

without causing 

alert fatigue. RF 

had the highest 

performance. 

Small and single 

unit hospital 

dataset limiting 

the 

heterogeneity of 

the data pool and 

the 

generalizability 

to other 

populations. 
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Predicting 

Antibiotic 

Resistance in 

Hospitalized 

Patients by 

Applying 

Machine 

Learning to 

Electronic 

Medical 

Records 

(Lewin-

Epstein O., et 

al., Israel, 

2021) (17) 

Predict the 

antibiotic 

resistance of 

bacterial 

infections to the 

five antibiotics 

tested for 

resistance: 

ceftazidime, 

gentamicin, 

imipenem, 

ofloxacin, 

sultrim 

Ensemble-

based ML 

(LR, 

GBDT, 

Neural 

network) 

Electronic 

medical 

records of 

patients 

hospitalized in 

a single 

hospital, over 

a 32-month 

period: 16000 

antibiotic-

resistance tests 

of bacterial 

cultures 

Identity of 

bacterial 

species known 

0.70 / / / / 0.76 / Ability to predict 

antibiotic 

resistance from a 

large relatively 

incomplete 

dataset. An 

ensemble of three 

algorithms 

produces robust 

results, without 

the pitfalls of 

single 

algorithms. 

Additional 

information in 

the EMR could 

improve the 

patient’s profile 

thus the 

resistance 

prediction. The 

model should be 

periodically 

retrained to 

reflect the 

resistance 

patterns and 

antibiotic 

consumptions. 

Identity of 

bacterial 

species 

unknown 

0.74 / / / / 0.82 / 

Predicting 

adverse drug 

events in 

older 

inpatients: a 

machine 

learning 

study (Hu Q. 

et al., China, 

2022) (18) 

Develop a 

model to predict 

ADE in older 

inpatients 

XGBoost, 

AdaBoost, 

CatBoost, 

GBDT, 

LightGBM, 

TPOT, RF 

1880 

randomly 

selected 

patients over a 

year period 

Adaboost  0.88 0.43 0.69 / 0.53 / / ML techniques 

catch the 

complex 

relationships 

between the 

variables and 

learn from data 

situations. 

Adaboost model 

has high 

performance 

results. 

Small and 

single-centered 

sample. The 

retrospective 

review of the 

medical records 

depends on the 

documentation 

quality. Adding 

more 

information to 

the algorithm 

could help 

predict ADE 

more accurately. 
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Validation of 

the usefulness 

of artificial 

neural 

networks for 

risk 

prediction of 

adverse drug 

reactions 

used for 

individual 

patients in 

clinical 

practice (Imai 

S., et al., 

Japan, 2020) 

(19) 

Validate the 

usefulness of 

ANNs using 

MLP algorithm 

to predict the 

risk of ADRs for 

an individual 

patient 

ANNs: 

MLP 

1141 subjects 

who had 

received 

Vancomycin 

intravenously, 

over a 7-year 

period in a 

single hospital 

 0.86 / / / / 0.83 / MLP have 

slightly better 

results than 

logistic 

regression, thus 

enabling better 

prediction. ANN 

models would 

help clinicians in 

drug selection 

and avoiding 

ADRs. 

Small dataset 

(single center 

study). Factors 

included in study 

without 

evaluation at the 

time. 

High alert 

drugs 

screening 

using 

gradient 

boosting 

classifier 

(Wongyikul 

P., et al., 

Thailand, 

2021) (22) 

Develop a ML 

model and a 

HAD screening 

protocol aiming 

the 

appropriateness 

of HAD use: 

screening HAD 

errors from drug 

prescriptions 

Gradient 

booster 

classifier 

OPD: 991270 

prescriptions, 

3280 unique 

ICD10 codes, 

1184 unique 

drug codes; 

IPD: 1200000 

prescriptions, 

2020 unique 

ICD10 codes, 

1767 unique 

drug codes 

HAD binary 

classification: 

OPD dataset 

0.75 0.83 0.23 / / 0.36 / Potential benefit 

to reduce the 

manual drug 

verification 

process and 

precisely verify 

the 

appropriateness 

between high 

alert drug 

prescriptions and 

ICD10s. 

Manual final 

check process of 

HAD-ICD10 

mismatches and 

relies on a 

clinical 

judgment. 

Insufficient 

number of some 

HADs and 

ICD10s. Not 

able to scale to a 

large amount of 

data. Only use of 

information 

between drugs 

and ICD10s to 

evaluate the 

appropriateness 

of HAD use. 

HAD binary 

classification: 

IPD dataset 

0.69 1.00 0.67 / / 0.80 / 

HAD type 

classification: 

OPD dataset 

0.64 0.93 0.12 / / 0.20 / 
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HAD type 

classification: 

IPD dataset 

0.59 0.93 0.20 / / 0.32 / 

Acc: Accuracy; ADE: Adverse Drug Event; ADR: Adverse Drug Reaction; ANN: Artificial Neural Network; AUCPR: Area Under the Precision-recall Curve; AUROC: Area 

Under the Receiver Operating Characteristic; DDI: drug-drug interaction; DT: Decision Tree; EHR: Electronic Health Record; EMR: Electronic Medical Records; F1: F1-score; 

GBDT: Gradient Boosted Decision Tree; HAD: High Alert Drug; ICD10: International Classification of Diseases 10th Revision; IPD: InPatient Department; LightGBM: Light 

Gradient-Boosting Machine; LR: Logistic Regression; ML: Machine Learning; MLP: MultiLayer Perceptron; NICU: Neonatal Intensive Care Unit; OPD: OutPatient 

Department; Prec: Precision; QTc: corrected QT interval; Rec: Recall; RF: Random Forest; Spe: Specificity; SVM: Support Vector Machine; TPOT: Tree-based Pipeline 

Optimization Tool; 
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Unsupervised ML models 

Three articles (14,20,21) reported the use of unsupervised ML. Each study described a specific model: Jaccard 

similarity, Support Vector Machine and GANomaly-based model. The datasets contained less prescription orders 

than in the studies using supervised ML. The same metrics were used to evaluate the model (recall, precision, F1-

score), but Hogue et al reported additional results (specificity, AUROC, AUPR). The results were heterogeneous: 

Santos et al and Nagata et al had similar performances (F1-score of 0.68 and 0.97 respectively), whereas Hogue et  

al had lower results (F1-score of 0.30 for the identification of atypical medication orders and an F1-score of 0.59 

for identifying atypical pharmacological profiles). 

 

Table 2: Algorithm using unsupervised learning models 
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Reference Outcome AI model Dataset Main results Contributions Limitations 

Characteristics Acc Rec Prec Spe F1 AUROC AUCPR 

Pharmacists' 

perceptions 

of a machine 

learning 

model for the 

identification 

of atypical 

medication 

orders 

(Hogue S.-

C., et al., 

Canada, 

2021) (14) 

Identify atypical 

medication 

orders and 

pharmacological 

profiles 

GANomaly-

based 

model (self-

learner) 

12624 

medication 

orders and 2114 

pharmacological 

profile, over a 

4-month period 

 

Medications 

orders 

/ 0.26 0.35 0.97 0.30 0.80 0.25 Better 

performance of 

the model to 

identify atypical 

pharmacological 

profiles than 

atypical 

medication 

orders. 

Pharmacists 

seemed to find 

medication 

order 

prescriptions 

more useful. 

Medication 

ordering 

patterns may 

include 

suboptimal 

but common 

practices. 

This model 

should rather 

be combined 

with classical 

rule-based 

approaches to 

detect such 

issues 

independently 

of practice 

patterns. 

Single-center 

study. 

Pharmacological 

profiles 

/ 0.75 0.49 0.82 0.59 0.88 0.60 

DDC-

Outlier: 

Preventing 

Medication 

Errors Using 

Unsupervised 

Learning 

(Santos H., et 

al., Brazil, 

2019) (20) 

Detect 

automatically 

wrong dosages 

and frequencies 

for medications 

in electronic 

prescriptions: 

detection of 

prescription 

outliers 

Density 

distance 

centrality 

algorithm 

(Jaccard 

similarity) 

240000 orders, 

2 million 

medications, 

16000 patients, 

over a 9-month 

period 

/ / 0.90 0.61 / 0.68 / / The algorithm 

could detect 

other 

prescriptions to 

be improved by 

the pharmacy 

department. The 

outlier detection 

of prescriptions 

with 

homogeneous 

prescription 

distribution was 

better, than 

sparse 

prescription 

distribution. 

Medicine 

depending on 

the patient's 

weight were 

discarded to 

avoid a false 

outlier, 

because the 

patients' 

weights were 

not available 

in the dataset. 

The 

algorithm 

detects 

overdose/ 
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underdose as 

the unique 

medication 

problem. No 

detection of 

non-standard 

prescriptions. 

Detection of 

overdose and 

underdose 

prescriptions-

An 

unsupervised 

machine 

learning 

approach 

(Nagata K., 

et al., Japan, 

2021) (21) 

Detect 

prescription 

errors of 

overdoses and 

underdoses 

using ML: 

detect extreme 

overdose and 

underdose 

prescriptions 

that occur rarely 

in clinical 

practice 

One-class 

SVM 

31 clinical 

overdose and 

underdose 

prescriptions of 

oral drugs (21 

drugs, > 1000 

in-hospital 

prescriptions) 

were analyzed. 

87% were 

detected as 

abnormal. 

Overdose 

prescriptions 

/ 0.96 0.99 / 0.97 / / "Age" and 

"weight" 

parameters are 

crucial when 

detecting dose 

prescription 

errors. The 

addition of 

synthetic data 

increased the 

performance of 

the model. 

Insufficient 

clinical 

overdoses 

and 

underdoses 

data were 

used to 

evaluate the 

model's 

performance. 

The model 

may not be 

able to detect 

rare 

prescription 

errors. The 
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Underdose 

prescriptions 

/ 0.79 0.98 / 0.84 / / detection of 

underdose 

prescription 

errors were 

slightly lower 

than the 

overdose 

prescription 

errors. 

Additional 

factors 

affecting 

dosage 

should be 

added. 

Acc: Accuracy; AUCPR: Area Under the Precision-recall Curve; AUROC: Area Under the Receiver Operating Characteristic; DDC: Density-distance-Centrality; F1: F1-

score; ML: Machine learning; Prec: Precision; Rec: Recall; Spe: Specificity; SVM: Support Vector Machine
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Hybrid models 

Two selected articles (15,16) presented hybrid models, meaning the algorithm mixed ML techniques with selected 

rule-based data. Both studies used supervised ML algorithms: boosting and k-nearest-neighbor classification 

methods.  

 

Table 3: Algorithm using hybrid models 
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Reference Outcome AI model Dataset Main results Contributions Limitations 

Characteristics Acc Rec Prec Spe F1 AUROC AUCPR 

A machine 

learning-

based clinical 

decision 

support 

system to 

identify 

prescriptions 

with a high 

risk of 

medication 

error (Corny 

J., et al., 

France, 2020) 

(15) 

Prioritize 

prescription 

reviewing 

to reduce 

the risk of 

prescribing 

errors 

LightGBM, 

a gradient-

boosting 

framework 

based on 

DT 

algorithms 

+ rule-

based 

expert 

system 

DxCare, 

national drug 

database, 

Thériaque, 

published 

literature, 

133179 

prescription 

orders 

(medication 

order data, 

laboratory 

reports, 

demographics, 

medical 

history, vital 

signs), over a 

18-month 

period 

/ / 0.74 0.74 / 0.74 0.71 0.75 Prediction at 

the patient 

level. 

Algorithm 

outperforms 

classic 

systems in 

detecting 

medication 

errors. The use 

of a hybrid 

system could 

help 

identifying 

critical 

medical errors 

(never-events) 

and reduces 

the number of 

false alerts.  

Study 

conducted in a 

single hospital, 

excluding 

neonatology 

and intensive 

care unit 

patients. More 

pharmaceutical 

interventions 

were 

recommended 

during the test 

phase than in 

the 

development 

phase. No real-

life evaluation. 

An 

Antimicrobial 

Prescription 

Surveillance 

System that 

Learns from 

Experience 

(Beaudoin M. 

et al., 

Canada, 

2014) (16) 

 Hybrid 

model: rule 

induction + 

kNN 

5756 patients, 

19172 

antimicrobial 

prescriptions 

(7027 

prescriptions 

triggered an 

alert), over a 

6-month 

period 

TAZO dataset 0.74 0.99 0.63 / / / / Specific-to-

general search 

and 

modification 

of every rule 

in parallel. 

Clinical 

relevance of 

learned rules. 

Imbalanced 

dataset may 

complicate the 

learning of 

inappropriate 

prescriptions. 

METRO 

dataset 

0.85 0.76 0.54 / / / / 

Acc: Accuracy; AUCPR: Area Under the Precision-recall Curve; AUROC: Area Under the Receiver Operating Characteristic; DT: Decision Tree; F1: F1-score; kNN: k-

Nearest Neighbor; LightGBM: Light Gradient-Boosting Machine; METRO: METROnidazole; ML: Machine Learning; Prec: Precision; Rec: Recall; Spe: Specificity; TAZO: 

piperacillin-TAZObactam;  
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Discussion 

This literature review identified research articles presenting algorithms developed in a hospital setting for 

inappropriate medication orders detection. It is still too early to predict the impact of such AI-tools in real clinical 

pharmacy practice conditions, but this review underlines the importance of addressing this issue and highlights the 

multiplicity of prediction methodological approaches used. 

The diversity of the models developed attests the many possibilities of AI. Supervised ML were meanly used 

because they are well adapted to classification problems. Boosting and bagging methods, seem to have the best 

results (10,12,13,18). The lack of results-metric standardization makes it hard to compare the studies (25). It is 

indeed challenging to confront algorithms across studies because different measures were reported to summarize 

the AI-tools performance and the metrics were not based on the same datasets and contexts. For example, some 

studies only published “AUCPR-AUROC” results (12), whereas other teams used “recall-precision-F1-score” 

(10,16,18,20–22) or both metrics (11,13–15). In addition, training models on a defined dataset questions the 

generalization and applicability of the model on a new dataset. Most of the studies were single-centered, meaning 

the data used were representative of only one specific hospital. Implementing models trained on a specific dataset 

in a new setting, may require model adjustments before using the model routinely. Furthermore, the use of 

retrospective data, including incorrect, non-relevant or partial data, increases the risk of reproducing these errors. 

Processing the data before training is challenging and time consuming, but essential to reflect and adapt the set to 

reality and validate the extraction. The quality of the data determines the performance of the model (26–28). Hybrid 

models can help avoid these limitations by adding rules to counter the lack of data and its quality in the dataset. 

Today, only the hybrid models of this review are used in daily practice (15,16), probably due to their facilitated 

acceptance by the clinical pharmacists since some predicting parameters are more controllable. However, such 

rule-based systems imply a continuous manual-update of the base to reflect up-to-date knowledge, whereas the 

predictive models could update themselves thanks to reinforcement learning methods (29). Clinical pharmacists 

should be able to understand how the proposed algorithms can improve patient care within a realistic workflow, 

but most articles do not attempt to present such information. Guidelines and recommendations are emerging, 

defining a global framework to regulate and provide advice to research and development teams (30,31). Also, 

Lundberg et al developed a method to explain the output of a model: the SHAP (Shapley Additive exPlanations) 

value, by averaging the importance of each variable on the model for each possible combinations of variables (32). 

Explainability and auditability of the technical algorithms will help the clinical pharmacists gain confidence and 

understanding of the differences in the models (33).  

Also, pharmacists should integrate computerization to their trainings in order to understand and acquire knowledge 

in clinical informatics to use such tools and be aware of the limits and the absolute need of an expert validation of 

the outcome (34). These initiatives for training programs in health informatics and AI fundamentals, described in 

the study of Tsopra et al, have been highly valued by undergraduate medical students but also by senior clinicians 

(35). Developers must also grasp the issues faced and tasks completed by the pharmacists: defining the 

requirements, the choice of the model and the dataset are the basis for developing functional AI-models. Without 

interdisciplinary teams, the development of AI models will be compromised. However, pharmacists must be aware 

that the tool is not perfect and a critical mind and pharmaceutical knowledge are still necessary to validate the 

prediction, as false positives and false negatives results will still occur.  

Deploying fully AI tools is challenging. The models must be registered as a medical device and therefore meet 

specific criteria, including risk analysis or clinical evaluation. Beyond demonstrating the benefit of the tool, the 

use of AI complicates the marketing authorization. The competent authorities are legislating on the implementation 

and use of these tools (36,37), to ensure a safe, high quality and trustworthy AI in a lifecycle regulatory framework. 

From the design of the model to its marketing, analysis of the quality of the data, listing of potential bias, technical 

robustness and human supervision are essential. Accountability, regulation and ethical approaches will be shared 

between model developers and end users. 

A major limit of our study is that commercial solutions were not included in this review because of the lack of 

research and development methods publicly available. Research in AI is mainly carried out by private companies, 

thus limiting the number of publications. However, commercial solutions are evaluated by clinicians (38) and 

prove to benefit the patients’ care. The lack of explication of solutions is understandable and ensures the 

preservation of property rights of the technology. Nonetheless, this contributes to maintaining the opacity around 

AI for pharmacists and their reluctance to use such tools (39). Shifting this research field to independent and 
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academic teams will reduce the pharmacists’ hesitation to use these models and help ensure wide availability and 

easy access to the results and characteristics of the algorithms. Open science disseminates good practice and 

knowledge about the advantages but also limits of AI, giving pharmacists the tools to take a critical look at these 

commercial solutions and make informed choices about how to integrate them into their practices.  

The profession of clinical hospital pharmacists is moving towards a practice assisted by AI, to improve clinical 

practices for more safety, to optimize the effectiveness of pharmaceutical human resources and the medico-

economic efficiency of hospitals. As described in our review, AI will be becoming more and more a technological 

companion for pharmacists and will bring help to these professionals. Indeed, the data analysis capabilities far 

exceed human possibilities, allowing much more advanced levels of analysis. Nevertheless, beware, the pharmacist 

must and will always remain the decision-maker. This is the limit of this new technology, which must help more 

than decide. By analyzing large amounts of data and synthesizing them for the clinical hospital pharmacists, 

algorithms must keep their role as companions. In hospitals and in pharmacy in particular, human competence 

must remain the final step before making a decision. One would have to be oblivious to the changes underway not 

to imagine tomorrow integrating AI into the daily practice of clinical pharmacy. Technologies are evolving to 

serve healthcare professionals and patients for greater efficiency and safety.  

 

Conclusion 

The development of AI tools intended for clinical pharmacy practice in a hospital setting is on the rise. The AI 

models presented have great potential that has to be evaluated and confirmed in further studies and at a large scale. 

Some clinical pharmacists expressed concerns about consequences on their professional practice and 

implementation and deployment of AI tools in the hospital setting remain an open question.  Hybrid models may 

be a solution to bridge the uncertainties and guaranty a robust AI-tool. The algorithms presented do not aim at 

replacing the clinical pharmacist expertise, but provide potential and substantial help to facilitate the organization 

and workload of the hospital pharmaceutical teams. 
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