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Abstract 
 
Importance: Forty percent of Parkinson’s disease patients develop levodopa-induced-

dyskinesia (LiD) within  4 years of starting levodopa. The genetic basis of LiD remains poorly 

understood, and there have been few well powered studies.    

Objective: To discover common genetic variants in the PD population that increase the 

probability of developing LiD. 

Design, setting and Participants: We performed survival analyses to study the development 

of LiD in 5 separate longitudinal cohorts. We performed a meta-analysis to combine the 

results of genetic association from each study based on a fixed effects model weighting the 

effect sizes by the inverse of their standard error. The selection criteria was specific to each 

cohort. We studied individuals that were genotyped from each cohort and that passed our 

analysis specific inclusion criteria. 

Main Outcomes and Measures: We measured the time for PD patients on levodopa 

treatment to develop LiD as defined by reaching a score higher or equal than 2 from the 

MDS-UPDRS part IV, item 1, which is equivalent to a range of 26%-50% of the waking time 

with dyskinesia. We carried out a genome-wide analysis of the hazard ratio and the 

association of genome-wide SNPs with the probability of developing LiD using cox 

proportional hazard models (CPH).  

Results: This study included 2,784 PD patients of European ancestry, of whom 14.6% 

developed LiD. Consistent with previous studies, we found female gender (HR = 1.35, SE = 

0.11, P = 0.007) and younger age at onset (HR = 1.8, SE = 0.14, P = 2 ×I10
−5

) to increase the 

probability of developing LiD. We identified three loci significantly associated with time-to-

LiD onset.  rs72673189 on chromosome 1 (HR = 2.77 , SE = 0.18 , P = 1.53I×I10
−8

) located in 

the LRP8 locus, rs189093213 on chromosome 4 (HR = 3.06, , SE = 0.19, P = 2.81I×I10
−9

) in 

the non-coding RNA LINC02353 locus, and rs180924818 on chromosome 16 (HR = 3.13, SE = 

0.20 , P = 6.27I×I10
−9

) in the XYLT1 locus. Subsequent colocalization analyses on 
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chromosome 1 identified DNAJB4 as a candidate gene associated with LiD through a change 

in gene expression. We computed a PRS based on our GWAS meta-analysis and found high 

accuracy to stratify between PD-LID and PD (AUC 83.9). We also performed a stepwise 

regression analysis for baseline features selection associated with LiD status. We found 

baseline anxiety status to be significantly associated with LiD (OR = 1.14, SE = 0.03, P = 

7.4I×I10
−5

). Finally, we performed a candidate variant analysis and found that genetic 

variability  in ANKK1 (rs1800497, Beta = 0.24, SE = 0.09, P = 8.89 ×I10
−3

) and BDNF (rs6265, 

Beta = 0.19, SE = 0.10, P = 4.95 ×I10
−2

) loci were significantly associated with time to LiD in 

our large meta-analysis. 

Conclusion:  In this association study, we have found three novel genetic variants associated 

with LiD, as well as confirming reports that variability in ANKK1 and BDNF loci were 

significantly associated with LiD probability. A PRS nominated from our time-to-LiD meta-

analysis significantly differentiated between PD-LiD and PD. In addition, we have found 

female gender, young PD onset and anxiety to be significantly associated with LiD. 
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Introduction 

 
Parkinson’s disease (PD) is a common neurodegenerative disorder, characterised by the loss of 

dopaminergic neurons in the substantia nigra pars compacta. The development of levodopa 

induced dyskinesia (LiD) is a major clinical problem for PD patients and multiple pharmacological 

and neurosurgical approaches have been developed to try to prevent, attenuate or treat LiD.  

Dopamine (DA) is lost from the nigrostriatal pathway, which manifests as bradykinesia, muscular 

rigidity, rest tremor and postural instability 
1,2

. There are several symptomatic treatments for PD 

motor symptoms, with the metabolic precursor of dopamine, levodopa, being the “gold standard” 

drug. Multiple studies have shown that levodopa improves motor function as measured by the 

Unified Parkinson’s Disease Rating Scale (UPDRS) or the more recent MDS-UPDRS, widely used 

standard clinical assessments to evaluate the motor state in PD patients 
3
. However, a more recent 

study comparing an early treated group against a delayed treated group showed no difference in 

the rate of motor progression, suggesting that levodopa itself is not disease modifying 
4
. One of 

the major drawbacks of long-term levodopa treatment is that many PD patients experience 

levodopa-related motor complications, such as wearing off, dystonia and dyskinesia 
5
. 

The prevalence of LiD varies across academic- and industry-led studies, averaging at around 20-

40% after four years of levodopa treatment. There are two major LiD subtypes: peak-dose 

dyskinesia, which occur during the therapeutic window of levodopa treatment, and diphasic 

dyskinesia, which present at the start and end of a dose cycle
6
. 

Levodopa treatment is necessary for LiD development, but there are likely to be several other 

mediating factors 
6
. Based on research in animal models, it is hypothesised that pulsatile delivery 

of oral levodopa, presynaptic nigrostriatal degeneration and intact striatal neurons are needed for 

the development of LiD 
6
.   Major risk factors for the development of LiD include young age at 

onset (AAO), female gender, low body weight, disease severity, disease duration and treatment 

duration (from the initiation of levodopa) as well as the total dose of levodopa 
7,8

. Disease 
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duration and treatment duration are closely related and delayed start study designs have 

evaluated the effect of delaying the initiation of levodopa, showing an association between longer 

delay and a decreased risk of LiD 
9
. There is increasing evidence to suggest that genetics plays a 

role in the susceptibility to LiD. Rare variants in genes such as PRKN, PINK1, and DJ-1 have been 

reported to be  associated with higher rates of dyskinesia 
10–12

, although patients with autosomal 

recessive PD usually have early onset disease, which is in itself a risk factor for LiD.   A study which 

corrected for age and disease duration variability did not replicate the findings of a higher LiD 

susceptibility among PARK2 mutation carriers 
13

.  

Common variation may also influence the risk of developing LiD. Variation at the DRD2, COMT, 

MAOA, BDNF, SLC6A3 and ADORA2A loci have all been reported to influence the risk of developing 

LiD 
14–23

. 

Recently, an exome-wide association study of LiD in PD  found that variants in MAD2L2 and MAP7 

loci were associated with LiD, and replicated the association of the opioid receptor gene OPRM1 

24
. Due to the high heterogeneity in the genetic determinants that regulate LiD, validation in large 

cohorts is needed. 

Here, we investigated the genetic determinants of LiD by performing a meta-analysis of genome-

wide survival to LiD  in five different cohorts, and assessed previously reported loci. In addition, we 

also performed functional genetic annotation to better understand the nominated loci. Lastly, we 

have investigated the predictive power of a PRS, and explored baseline clinical features that were 

significantly associated with the development of LiD in PD using a  stepwise regression approach. 
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Material and Methods 

The source code with all materials and methods are available on GitHub 

(https://github.com/AMCalejandro/LID-CPH.git;  DOI: https://doi.org/10.5281/zenodo.7802142). 

The README explains each step of the workflow to conduct the analysis and a link to each 

relevant pipeline or protocol. 

 

Patients data and LiD definition 

We accessed clinical and genetic data from the Tracking Parkinson's (Tracking Parkinson's)
25

, 

Oxford Parkinson's Disease Centre Discovery Cohort (OPDC)
26

,  Parkinson's Progression Markers 

Initiative (PPMI)
27

, Parkinson's Disease Biomarkers Program (PDBP)
28

, and simvastatin as a 

neuroprotective treatment for PD trial (PD-STAT)
29

 studies (eTable 1). We carried out clinical data 

QC on each cohort independently (eFigure 1).   Levodopa is necessary for PD patients to develop 

LiD
6
, therefore we excluded those who were not exposed to levodopa. In addition, we removed 

patients who had a disease duration at study entry of more than 10 years from disease onset, 

patients without longitudinal data, and those with missing genotype data. 

We defined PD patients as having dyskinesia if they reached an MDS-UPDRS item 4.1 score equal 

to or higher than 2 which is equivalent to a range of 26%-50% of the waking time with dyskinesia.. 

Patients were excluded if they had dyskinesia at study entry,  as time to the development of 

dyskinesia could not be established. 

 

Genotype data quality control and imputation  

To perform quality control (QC) at both the sample and genotype levels, we used PLINK v1.9 

(RRID:SCR_001757; https://www.cog-genomics.org/plink/1.9/) 
30

. Each quality control step and 

the imputation approach is summarised in eMethods.  
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Whole-genome sequencing data 

The PDBP and PPMI cohorts  included in this study were whole-genome sequenced using Illumina 

HiSeq X Ten Sequencer. More information can be found in https://ida.loni.usc.edu/login.jsp. WGS 

data was QCed using the same pipeline as the array-based data. 

 

Statistical analyses 

We used the R programming language to perform all the statistical analysis (R Project for 

Statistical Computing, RRID:SCR_001905; version 4.1.3; https://www.R-project.org/). 

We studied the association between genome-wide genetic variants and  time to develop 

dyskinesia from self-reported age at PD motor onset with Cox proportional hazard (CPH) 

regression models under a genetic additive model, using the ‘survival’ R package (version 3.3-1; 

RRID:SCR_021137; https://cran.r-project.org/web/packages/survival/survival.pdf). All tests were 

two-tailed.  To investigate the power to detect an association under a Cox regression model with 

the current sample size, as well as to perform a simulation on the relationship between power and  

allele frequency (AF), SNP hazard ratios (HR), and sample size, we used the R package survSNP 

(version 0.25; https://cran.r-project.org/web/packages/survSNP/index.html). 

We ran time-to-LiD GWAS in each cohort separately, adjusting by AAO (or age at diagnosis in the 

cohorts where AAO was not available), gender, and first 5 PCs, using as our outcome the midpoint 

between the visit the threshold was met and the previous time point (eMethods). 

Multiple studies indicate that the risk of dyskinesia relates to disease severity. To increase the 

power to detect genetic associations, we explored the goodness-of-fit of the model in each cohort 

independently after adding the following baseline covariates, which provide surrogate measures 

of disease severity and dopaminergic denervation at baseline: levodopa or LEDD dose, disease 

duration from onset to baseline assessment and baseline motor score as measured by MDS-

UPDRS part III. For each cohort, we selected the model which provided the most  accurate 
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prediction of LiD based on the Akaike Information Criteria (AIC). We used the resulting model as 

the main model in our analysis. We summarised the nominated set of covariates in each cohort 

(eTable 2). We verified that the proportional hazards assumption held true by assessing the 

independence between scaled Schoenfeld residuals and time through the cox.zph function from 

the ‘survival’ package. Schoenfeld residuals are obtained by subtracting the individuals’ covariate 

values at the time “t” and the corresponding risk-weighted average of covariates among all those 

that are at risk at the time “t”. Then, they are scaled by performing a variance-weighted 

transformation. A non-significant relationship between the scaled residuals and time reveals 

proportionality of the hazards in the model. 

We used METAL software (version released on the 2011-03-25; RRID:SCR_002013; 

 https://genome.sph.umich.edu/wiki/METAL_Documentation) for meta-analysis of genome wide 

association summary statistics, with a fixed effects model weighted by β coefficients and the 

inverse of the standard errors 
31,32

. We applied a genomic control correction to the cohort-specific 

summary statistics by computing the inflation of the test statistic, and then applying the genomic 

control correction to the standard errors. We chose a meta-analysis over a merged analysis 

because of the heterogeneity in the inclusion and exclusion criteria across the clinical cohorts, as 

well as differences in the genotyping approaches (eTable 1). Statistical significance was assessed at 

the conservative threshold of P =I5I×I10
−8

, derived from a Bonferroni correction accounting for 

the number of independent tests and the linkage disequilibrium (LD) structure of the genome
33

. 

We proved  that the model met the proportional hazard assumption after including significant 

SNPs using the cox.zph function from the ‘survival’ package.  We evaluated whether signals were 

replicated across  different cohorts  with the R package ‘forestplot’ (version 2.0.1; https://CRAN.R-

project.org/package=forestplot). 
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Sensitivity analyses 

To validate the genome wide significance findings, we performed four sensitivity analysis to 

discard the associations we found in our analysis were confounded (eMethods).  

 

Post-GWAS analyses 

We used the ‘echolocatoR’ R package (v 0.2.2; https://github.com/RajLabMSSM/echolocatoR) as a 

wrapper to perform fine-mapping which allows us to nominate causal variants for further study. In 

particular, we used the ABF approach through the ‘coloc’ R package, FINEMAP software in Unix (v 

v1.3; http://www.christianbenner.com/ ), the ‘susieR’ R package (v 0.11.92; https://cran.r-

project.org/web/packages/susieR/index.html) , and Polyfun-SuSiE( V1.0; 

https://github.com/omerwe/polyfun) 
34–38

. We produced the 95% Probability Credible Set (CS95%), 

which is the minimum set of SNPs that contains all causal SNPs with 95% probability.  We reported 

the consensus SNPs at each locus, i.e. those that were included in the 95 CS95% of at least two fine-

mapping tools, therefore increasing the confidence in the nominated causal SNPs. We reported 

the Posterior Probability (PP) as the mean PP across all fine-mapping tools. To account for SNP LD 

at each region, we used the precomputed LD matrix from the UK Biobank 

(https://alkesgroup.broadinstitute.org/UKBB_LD/)
39

. 

To evaluate the potential effect of SNPs on candidate loci on the control of gene expression we 

also used echolocatoR as a wrapper to access brain cell type-specific epigenetic marks from Nott 

and colleagues
40,41

(Data accessed using echolocatoR v 0.2.2). We mapped each locus to cell type-

specific chromatin immunoprecipitation sequencing (ChIP-seq) results generated by quantifying 

H3K4me3 and H3K27ac  epigenetic modifications, Assay for Transposase-Accessible Chromatin 

using sequencing (ATAC-seq) results, and Proximity Ligation-Assisted ChIP-Seq (PLAC-Seq) results, 

to detect  and quantify chromatin contacts anchored at genomic regions. In addition, we also 

mapped such loci to cell-type specific transcription factors binding sites (TFBS) marks on Chip-seq 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.24.23290362doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.24.23290362
http://creativecommons.org/licenses/by/4.0/


11 
 
 

experiments from the ENCODE project (RRID:SCR_006793; data accessed from echolocatoR R 

package v 0.2.2)
40,41

. This dataset contains 690 Chip-seq datasets representing 161 unique 

regulatory factors and spanning 91 human cell types. We used echolocatoR to query the ENCODE 

Uniform TFBS and retrieve the top 4 cell types with the highest probability density function for the 

top 5 regulatory elements. 

To  investigate whether there were several independently associated SNPs at each GWAS 

nominated locus, we performed a conditional and stepwise selection procedure with GCTA-COJO 

(version 1.93.0 beta for Linux; https://yanglab.westlake.edu.cn/software/gcta/#Overview)
42

. We 

used the Accelerating Medicines Partnership: Parkinson’s Disease (AMP-PD, v.2.5)
43

 data (n = 

10,418) as the reference panel to estimate the correlation between SNPs. The reference sample 

was subjected to the same QC steps as described above, needed to get unbiased LD estimates 
44

.  

We used the ‘coloc’ R package (version 5.1.0; https://cran.r-

project.org/web/packages/colocr/index.html) to perform colocalization analysis between the SNPs 

associated with progression to LiD and SNPs defining gene expression in the region (eMethods).  

We used cis-eQTL data from MetaBrain cortex tissue
45

  (N = 6,601 individuals) and blood cis-eQTLs 

from eQTLGen (N = 31,684)
46

. 

We used Functional Mapping and Annotation of Genome Wide Association Studies (FUMA) 

(RRID:SCR_017521; version 1.3.8; https://fuma.ctglab.nl/) to further characterise the nominated 

loci by querying GWAS Catalogue to retrieve uncharacterised GWAS loci SNPs in our meta-analysis 

and to get positional mapping information based on MAGMA
47

. We used a threshold of P < 1 x 10
-6

 

to nominate tag SNPs. Additional SNPs that were in high LD with tag SNPs were inferred using 

European samples 1Kg Phase3 reference panel (with r2 > 0.6 and independent from each other 

with r2 < 0.6). 
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Candidate gene analysis 

In order to validate variants that have been reported in previous studies to be associated with 

time-to-LiD or LiD risk, we accessed the LiDPD website (Date accessed: 12/01/2023; 

http://LiDpd.eurac.edu/) and downloaded a list of curated variants from the literature. We 

explored these in our time-to-LiD GWAS meta-analysis 
48

. 

 

LiD prediction modelling 

We used PRSice software (version 2; RRID:SCR_017057) to compute a polygenic risk score (PRS)  

using the summary statistics of our time-to-LiD meta-analysis as base data and the Tracking 

Parkinson's cohort as target data. We chose the Tracking Parkinson's cohort as it is the single 

largest cohort, which reduces the standard error (SE) of the PRS estimates, leading to more 

confident estimates. We then replicated the association of the nominated SNPs composing the 

PRS in the second largest cohort we had access to, OPDC, resembling a discovery / replication 

study design, although in this case the OPDC data had contributed to the LID PRS.  

We set a threshold of P < 1 × 10
−6

 to nominate GWAS variants that make up the PRS. We selected 

independent SNPs by clumping within  ±250 Kb from the index SNPs ( the most significant SNP on 

a Kb window). We used the SNP betas as the estimated to compute the PRS from. Sex, 

standardised AAO, and the first 5 PCs were added as covariates to the PRS estimation process.  To 

compute the LD estimates, we used the imputed cohorts from which we calculated the PRS, as 

they were large enough to provide accurate LD estimates (N > 500). To validate the PRS as an 

instrument to distinguish between PD patients with and without  LiD, we derived time-dependent 

ROC curves, under the assumption that different PRS loads might cause changes to time-to-LiD 

onset. We used the Inverse Probability of Censoring Weighting (IPCW) estimation of 

Cumulative/Dynamic time-dependent ROC curve from the ‘timeROC’ R package (version 0.4; 
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https://cran.r-project.org/web/packages/timeROC/index.html). To compute the weights, we used 

the Kaplan-Meier estimator of the censoring distribution. 

Next, we used a stepwise logistic regression model with an in-house script using the ‘stats’ R base 

package (version 4.2.2; https://search.r-project.org/R/refmans/stats/html/00Index.html) to find 

whether any baseline clinical variable was significantly associated with LiD status. We used data 

from the Tracking Parkinson's cohort, as it is deeply phenotypically characterised (number of 

baseline covariates = 702). After removing variables with high missingness rate ( missing rate > 

10%) or categorical variables with only one level, we defined a total of 502 baseline features 

(including the PRS) (eData 1). Then, we created a base logistic regression model (adjusted for sex 

the first 5 PCs and standardised AAO). At each step of the stepwise regression approach, we 

refitted the base model with each of the baseline predictors individually, and selected the model 

with the variable that decreased AIC the most. We ran the model until no variable further 

decreased the AIC, or until the AIC score was equal to 1. Once the model was fitted, we selected 

only those predictors that were significantly associated with the binary outcome, applying the 

conservative Bonferroni correction accounting for the number of predictors assessed. We set the 

significance threshold as 0.05 / 502 = 1 × 10
−4

. 
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Results 

 

Cohort clinical features and prevalence 

Across all cohorts (n= 2,784 PD patients), the rate of LiD was 14%,  consistent across cohorts  

(Table 1), except in the PPMI cohort where it was 21%. This is consistent with other studies that 

reported that younger PD onset is more frequently associated with LiD
49–51

, given that PPMI is a de 

novo study that recruited younger patients on average. We did not exclude any patient from the 

PPMI cohort due to left-censoring. 

We explored the effect of demographic and clinical factors previously reported to be associated 

with LiD. We merged baseline clinical data from all the cohorts. We found that patients with 

younger PD AAO (grouped as people with age at onset higher than 50 years and lower or equal 

than 50 years), had a higher probability of developing LiD than older patients along the time 

interval from disease onset to study end (HR = 1.8, SE = 0.14, P = 2 × 10
−5

) (data excluding PDBP as 

AAO was not available). Female PD patients showed a consistent decrease in the survival 

probability (increase in the probability of developing LiD) during a 12.5 years time interval  

(eFigure 2 a and b). Body mass index (BMI) was available in PPMI and Tracking Parkinson’s, and 

smoking status data was available in the Tracking Parkinson's cohort only. We did not find a 

significant increase in the probability of developing dyskinesia either for PD patients with low 

baseline BMI nor for PD smokers at baseline (eFigure 2 c and d). 

 

Power analysis 

We performed a power analysis to estimate the power to find a genetic association between time-

to-LiD and genome-wide SNPs with the current sample size and LiD event rate, and how this varied 

with a range of genotype hazard ratios (GHRs) and AFs. We were well-powered (80% power) to 

detect genetic variants associated with the development of LiD with a HR equal or higher than 2 

and a MAF as low as 0.01 (eFigure 3a). In addition, we performed a simulation to show as the 
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sample size increases, the power to detect rarer associations improves. As we increased the 

sample size to 18000, we achieved 80% power for genetic variants with a MAF lower than 0.01, 

and with a HR lower than 2 (eFigure 3b). 

 

Time-to-LiD GWAS 

We ran time-to-LiD GWAS independently for each cohort. We confirmed that  there was no  

genomic inflation in any cohort-specific GWAS (eTable 3). We identified three loci significantly 

associated with time-to-LiD onset in the meta-analysis of the adjusted model on chromosome 1 , 

chromosome 16 and chromosome 4 (Figure 1). The most significant SNPs at each loci were 

rs72673189, rs189093213, rs180924818. rs72673189 (HR = 2.77 , SE = 0.18 , P = 1.53 × 10
−8

) in 

chromosome 1, is a variant in the third intron of the LRP8 gene. rs189093213 (HR = 3.06, SE = 0.19, 

P = 2.81 × 10
−9

) in chromosome 4 was found in the non-coding RNA LINC02353 (PCDH7 1.2Mb 

downstream). rs180924818 (HR = 3,13, SE = 0.20 , P = 6.27 × 10
−9

) in chromosome 16 was found 

very close (0.15Mb upstream) to the 3'-UTR of the XYLT1 protein coding gene  in a non-coding 

region of the genome (Table 2). The direction of the effects was consistent and replicated across 

the meta-analysed cohorts in which the SNPs were present (Figure 2). To visually represent the 

survival probability of patients carrying the lead SNP on each locus we found on our meta-analysis, 

we extracted per cohort patients' genotypes and showed the difference in the probability of LiD 

between carriers and non carriers through Kaplan-Meier curves (Figure 3). 

 

Sensitivity analysis 

The three variants found to significantly increase LiD susceptibility in the adjusted model approach 

remained associated in the basic model including only known confounders (eTable 4). We found 

the correlation of the SNP metrics between the basic and the adjusted model to be high (eFigure 

4). This indicated that adding additional predictors based on baseline variation increased the 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.24.23290362doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.24.23290362
http://creativecommons.org/licenses/by/4.0/


16 
 
 

power to detect SNP-outcome associations, presumably by explaining other sources of variance in 

the model, and that there was no source of confounding given by disease duration and severity 

measures (suggested by the high correlation in the SNP metrics). 

Using data from Tracking Parkinson’s only, we investigated whether these associations could be 

confounded by levodopa dose or the disease stage at the LiD event time point. For each of the 

genome-wide significant SNPs, we repeated the CPH analysis adjusting for levodopa dose or 

disease stage as measured by MDS-UPDRS part III at the first visit when the LiD threshold was 

reached or at the last available visit for patients who did not develop LiD during the study length. 

We did not find a change either in the effect size or the test-statistics that could suggest an 

unaccounted source of confounding (eTable 4).  

Finally, excluding PDBP from the meta-analysis did not have any significant change in the lead 

SNPs effect sizes and significance levels eTable 5). 

 

Functional annotation 

We performed fine-mapping using ABF, SuSiE, FINEMAP, and Polyfun-SuSiE as described in 

Methods and found Consensus SNPs on each CPH GWAS nominated loci (eTable 6). We found the 

lead SNP on each locus to be Consensus SNPs, which are those selected by at least two different 

fine-mapping tools. We plotted each locus found to have at least one variant significantly 

associated with time to reach LiD against brain cell type-specific epigenomic data. We found that 

the lead (and fine-mapped SNP) at the LRP8 locus belonged to a neuronal specific chromatin 

accessible region, which is a target region for DNA-associated proteins, as measured with the 

ATAC-seq and CHIP-seq (H3K27ac and H3K4me3) assays (Figure 4). We also found  this SNP to be 

part of a neuronal specific enhancer-promoter interaction within LRP8, as defined by PLAC-seq 

(Figure 4). This implies that this specific LRP8 intronic signal is an active neuronal enhancer of the 

LRP8 expression, forming an anchored chromatin loop recruiting the transcription machinery to 
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the LRP8 transcription start site (TSS). In addition, we found suggestive evidence for the lead SNP 

lying in  a transcription factor binding site (TFBS), as measured by the ENCODE project (eFigure 5).  

Similarly, we found that some of the fine-mapped SNPs (including the lead SNP) in the XYLT1 locus 

were forming chromatin loops towards the XYLT1 promoter, as measured by the PLAC-seq assay, 

suggesting that regulation of this gene associated with susceptibility to LiD (eFigure 6). We found 

this region to also overlap with TFBS marks (eFigure 7). We did not find any functional regulatory 

mark at the LINC02353 locus. 

Next, we performed colocalization analysis in all genes within 1Mb from  lead SNPs with                   

P < 1 × 10
−7

. We found suggestive support for colocalization between the LiD GWAS meta-analysis 

signals and ci-eQTL data from Metabrain Cortex (PP H4 > 0.7 on the unadjusted colocalization 

analysis; PP H4 > 0.5 on the colocalization analysis after adjusting the priors based on the number 

of overlapping SNPs in the locus of interest) for the DNAJB4 gene on chromosome 1 (eTable 7). We 

did not find evidence of colocalization in the XYLT1, LRP8 nor the non-coding RNA loci. 

A few loci approaching genome-wide significance (GWS) in chromosome 1, were in proximity with 

DNAJB4. Therefore, we decided to investigate if the single causal variant assumption holds in the 

DNAJB4 locus, necessary to validate the colocalization signal in DNAJB4. We ran GCTA-COJO under 

stepwise and conditional model selection procedures. We filtered all SNPs within the DNAJB4 

locus that were used to perform the colocalization analysis and that matched the AMP-PD 

reference panel (4590 out of 4840 SNPs included in the colocalization analysis). After performing 

the stepwise selection procedure assuming complete linkage equilibrium between SNPs that are 

more than 10Mb from each other, and setting a collinearity cutoff of 0.9, only the lead SNP in the 

locus retained nominal significance  (rs278853, MAF = 0.26, beta = 0.40 , se = 0.08, P =  4.07 × 

10
−6

). Similarly, running an association analysis on each of the 4590 SNPs conditioning on the lead 

variant (rs278853) did not show any of these SNPs to be nominally significantly associated, 

confirming the single causal variant assumption and that the results obtained with coloc on the 
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DNAJB4 locus were unbiased. Lastly, to understand whether the DNAJB4 signal was independent 

of the GWS LRP8 locus signal, we ran an analysis conditioning on the genome-wide significant 

LRP8 SNP (rs72673189). We found that rs278853 remained nominally associated ( P = 4.40 ×I 

10
−6

), indicating these two signals were independently associated with the risk of developing LiD.  

 

Candidate variant analysis 

We determined whether previously reported variants in the LiD literature (from LiDPD) had an 

impact on the time to LiD (eTable 8). We found ANNK1 and BDNF variants to be nominally 

significantly associated (P < 0.05) with the time to dyskinesia. Nonetheless, ANNK1 or BDNF 

variants did not reach the significance threshold after applying Bonferroni correction according to 

the number of SNPs tested (P < 2 × 10
−3

). 

LRP8 has previously been reported to be associated with APOE and the microtubule associated 

protein tau (MAPT)
52

. A previous retrospective study including 855 caucasian PD patients found a 

suggestive association between the H1b MAPT haplotype and a higher likelihood of dyskinesia at 

an initial visit
53

. In the case of XYLT1, a previous study has found a regulatory effect of a XYLT1 

variant on the mRNA levels of GBA in the substantia nigra and cortex 
54

. We investigated whether 

MAPT variants (rs1800547; rs242562; rs3785883; rs2435207) were associated with the time to 

LiD. In addition, we explored whether APOE and GBA variants increased the risk to develop LiD 
55

. 

We did not find an association between time to LiD and APOE variants rs429358 and rs7412, or 

GBA rs2230288 variant (E326K), or MAPT rs1800547, rs242562, rs3785883, rs2435207.  

In addition, we explored genetic associations from PINK1, DJ-1, and PRKN intergenic variants. 

Whereas we did not find any genetic variant associated with time to LiD on the PINK1 locus, we 

found 26 DJ-1 intergenic variants on the with a P-value < 0.05 (rs1641433611 lead SNP; HR = 1.84, 

SE =  0.2, P = 4 × 10
−4

). Similarly, we found 162 intergenic variants with a Pvalue < 0.05 in the PRKN 

locus ( rs113276175 lead SNP; HR = 1.84, SE =  0.2, P = 4 × 10
−4

) (eTable 9). 
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PRS is capable of distinguishing patients that develop LiD. 

We nominated a total of 67 independent SNPs to compute the PRS in the Tracking Parkinson's 

cohort (eTable 10). We then validated the proposed SNP set on the OPDC cohort by measuring the 

ability to distinguish LiD PD patients. We found that genetic data as summarised by PRS, without 

any other clinical or demographic data, could accurately distinguish PD patients that developed 

LiD at 10 years from disease onset in two separate cohorts: Tracking Parkinson's (AUC 83.9) and 

OPDC (AUC 87.8) (eFigure 8). 

 

Stepwise regression approach to determine baseline predictors of LiD development. 

We used Tracking Parkinson's data at baseline in a stepwise regression approach using a logistic 

model. We then filtered out from the final model predictors that were not significantly associated 

after applying Bonferroni correction (P < 0.05 / 502 = 1 × 10
−4

). 

In addition to the PRS, which was significantly associated with a increase of the odds of LiD (OR = 

962.94, SE = 0.57, P = 1.07 × 10
−30

), we found that anxiety at baseline (as measured by the Leeds 

Anxiety and Depression Scale
56

) was significantly associated with a increase of the odds of LiD (OR 

= 1.14, SE = 0.03, P = 7.4 × 10
−5

). We also explored clinical features previously reported as being 

associated with an increased or decreased LiD risk. Sex, AAO, and 5PCs were added in the base 

model of the stepwise regression approach. Consistent with previous studies as well as with our 

CPH model highlighted above, younger AAO increased the LiD odds (OR = 2.41, SE = 0.04, P = 4 × 

10
−3

) . However, sex was not found to be significantly associated in our final model including PRS 

and Leeds anxiety status.  

Neither smoking status nor BMI were selected on the stepwise regression approach, consistent 

with what we found when we individually explored known LiD risk factors (eFigure 2). 

Interestingly, we also found that PD family history was selected on the stepwise regression 
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analysis, and was nominally significantly associated with an increase in the odds of LiD (OR = 1.62, 

SE = 0.14, P = 6.9 × 10
−4

). 

Finally, we attempted to replicate the association between dyskinesia state and anxiety using 

State-Trait Anxiety Inventory
57

 available in PPMI. We did not find the Trait Anxiety Score to be 

significantly associated with LiD patients in PPMI (OR = -0.03, SE = 0.04, P = 0.44).  

 

Patients with LiD have  an average higher cognitive scoring 

We were interested in assessing the cognitive status of LiD patients because of the association 

between the LRP8 nominated locus and APOE. We explored whether the cognitive state differed 

between patients developing LiD and patients who did not develop LiD during the study length 

using the Wilcoxon rank sum non-parametric test with continuity correction, as we observed the 

data was not normally distributed. In addition, we also looked into differences in the MDS-UPDRS 

part III scores between the two groups, using the unpaired two samples t-test to compare the 

mean of two independent groups. We compared the LiD group (N = 172) against the non-LiD PD 

group (N = 1318) using data from Tracking Parkinson's alone as it is the largest deeply phenotype 

cohort we had available. We did not find differences in the average MDS-UPDRS part III total 

score, either at baseline nor at the visit when patients first developed LiD (or the last available visit 

in cases who did not develop LiD) (eTable 11). On the other hand, we found that PD patients who 

did not develop LiD had a significantly lower MoCA score on average at baseline as well as at the 

visit the outcome was met (eTable 11).  
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Discussion  
 
We have performed an untargeted genome-wide study to uncover genetic variants associated 

with the time-to-LiD in PD, using a CPH model under a genetic additive effect and analysed the 

effect of  genetic and baseline clinical variation on the development of LiD. We found  genome-

wide significant associations with the time-to-develop LiD at the  LRP8, LINC02353 and XYLT1 loci. 

These associations were replicated across all the cohorts included in the meta-analysis. We also 

performed a candidate gene analysis, exploring genetic variants reported to be associated with LiD 

risk in our large GWAS meta-analysis. We found that genetic variability in BDNF and ANKK2, were 

nominally associated with LiD. 

Post-hoc functional annotation analysis revealed a chromatin loop between an enhancer within  

LRP8 third intron (where the lead variant was found) and the LRP8 promoter, thus providing 

functional support for LRP8 as the causal gene at this locus. In addition, a colocalization analysis, 

looking at all genes within  ±1Mb from all GWAS variants with P-value < 1 × 10
−7

 revealed a second 

association in chromosome 1 with the DNAJB4 gene. Conditional analysis further confirmed that 

both regions were in linkage equilibrium, hence both LRP8 and DNAJB4 were independently 

associated with the time-to-LiD. We also found a similar event of distal regulation in the XYLT1 

locus, although the chromatin loop did not perfectly match with the GWAS signals, making the 

functional annotation analysis inconclusive. Moreover, we found that the two GWAS nominated 

signals overlapped with Transcription Factor Binding Sites marks from the ENCODE project, adding 

further support for the transcription machinery being recruited in the GWAS loci and regulating 

both genes expression after forming the enhancer-promoter distal chromatin loops. Nevertheless, 

whereas we found a chromatin loop suggesting regulation of XYLT1 and LRP8 gene expression,  we 

did not find statistical support for gene regulation based on the colocalization Bayesian 

framework.  
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The three nominated protein coding genes have been previously reported to be functionally 

associated with putative PD genes, which may provide an insight into the development of  LiD. 

LRP8 encodes the low-density lipoprotein receptor-related protein 8, and it has been found to be 

associated with APOE. In addition, the LRP8 protein stabilises microtubule associated protein tau 

(MAPT) and it has been shown that knocking out LRP8 in mice increases tau phosphorylation
52

. 

DNAJB4 gene encodes a molecular chaperone tumour suppressor, and member of the heat shock 

protein-40 family. Mutations in the DNAJ family protein have been reported to cause or increase 

the risk of several neurological disorders, including Parkinson's disease 
58

.  In the case of XYLT1, it 

encodes a xylosyltransferase enzyme which takes part in the biosynthesis of glycosaminoglycan 

chains. A previous study has found a regulatory effect of a XYLT1 variant on the mRNA levels of 

GBA in the substantia nigra and cortex 
54

. We did not find support for colocalization with eQTLs 

nor evidence suggestive of epigenetic regulation of genes in the LINC02353 locus. PCDH7, the 

nearest gene coding protein gene,  encodes a protein with an extracellular domain containing 7 

cadherin repeats. This gene has been described as a potential PD biomarker 
59

. 

At an individual patient level, treatment strategies including levodopa and non-levodopa 

therapies, and the use of deep brain stimulation (DBS) are determined by the emergence of motor 

complications including LID. The ability to develop a predictive algorithm to enhance clinical care 

would improve the outlook for PD treatment.  Here, we have shown that both clinical and genetic 

variables have the potential to have a high predictive value for the development of LID. This will 

need to be validated in further cohorts and we hypothesise that the integration of further omics 

data (e.g. RNA and proteomics), using machine learning  may lead to discovering an accurate 

predictive model determining PD patients at risk of developing dyskinesia when treated with the 

therapies available to date. 

To our knowledge, this is the largest study to date with detailed clinical, drug exposure and genetic 

data. We have carefully tested for confounding by PD age at onset, gender, population structure 
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and shown that our results are free of confounding effects as well as demonstrating they are 

consistent across cohorts. Because the dose of levodopa may be a major confounder in our study, 

we tested the effects of adjusting for levodopa dose on a sensitivity analysis, and found that the 

lead SNPs on LRP8, LINC02353 and XYLT1 loci remained significantly associated with the outcome, 

concluding that levodopa treatment was not a confounder in our study design. Likewise, adjusting 

for the MDS-UPDRS part III total score at the time of LiD development did not change the 

significance levels of the lead SNPs, suggesting that our findings were not confounded by the 

motor severity of the disorder. Although this is a large study there are limitations  based on 

sample size. According to our sample calculation, we would be 80% powered to detect 

associations with the LiD phenotype from variants with a MAF of 0.01 when we reached a sample 

size of 18000 patients. Expanding this analysis on growing PD genetic datasets with deeply 

phenotypic data available from initiatives such as the Global Parkinson's Genetic Program (GP2) 

will give us new insight into the genetics of PD LiD patients as well as serve as a valuable resource 

for validation of findings 
60

. 

Overall, we have found new evidence of common genetic variability associated with the time-to-

LiD. We have been able to map genes nearby risk loci, as well as give fine mapping support of 

which might be the causal variants of the LiD trait. Likewise, we hope to help design personalised 

medicine strategies that prevent PD patients developing dyskinesia according to their genetic 

burden which could be tested with the proposed PRS in this study. Similarly, we hope to help 

understand the molecular pathways that, when altered, lead to LiD. Targeting nominated genes 

might allow the development of LiD treatment strategies. Further investigation regarding the 

overlap between anxiety GWAS and our GWAS might help understanding common causal 

pathways between the two conditions. Understanding shared mechanisms will help us prevent 

medication adverse events affecting non-targeted pathways and to fine-tune current treatments. 
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Code availability 

All the code has been made publicly available on GitHub (https://github.com/AMCalejandro/LID-

CPH.git) DOI: https://doi.org/10.5281/zenodo.7802142) Analyses were performed using open-

source tools as described in the Methods section.  

Data availability 

GWAS summary statistics are publicly available in the Zenodo ASAP data repository 

(https://doi.org/10.5281/zenodo.7795604). Supplementary Figures and Tables are available in the 

Zenodo ASAP data repository (https://zenodo.org/record/7802755#.ZC2RAnbMK38). TPD data is 

available upon access request from https://www.trackingparkinsons.org.uk/about-1/data/. The 

PDBP and PPMI data was accessed from Accelerating Medicines Partnership: Parkinson’s Disease 

(AMP-PD) and data is available upon registration at https://www.amp-pd.org/. OPDC data is 

available upon request from the Dementias Platform UK 

(https://portal.dementiasplatform.uk/Apply). PD-STAT is available upon request to the principal 

investigator (C Carroll, Plymouth University, 

https://penctu.psmd.plymouth.ac.uk/pdstat/#:~:text=PD%20STAT%20%2D%20Simvastatin%20as

%20a,brain%20from%20injury%20or%20loss.). HapMap phase 3 data (HapMap3) is available for 

download at ftp://ftp.ncbi.nlm.nih.gov/hapmap/. Cis-QTL eQTLGen data was downloaded from 

(https://www.eqtlgen.org/cis-eqtls.html). MetaBrain cis-eQTL data can be accessed upon access 

request form (https://www.metabrain.nl/cis-eqtls.html). eQTL data from eQTL catalogue can be 

ftp-accessed (https://www.ebi.ac.uk/eqtl/Data_access/). ENCODE TFBS marks and Nott brain cell 

type-specific enhancer-promoter interactome data were accessed through echolocatoR. 

(https://github.com/RajLabMSSM/echolocatoR). 
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Table 1. Cohort summary statistics. 

Cohort 

PD patients 

Post-QC 

(n) 

Follow up, 

years 

No.(%) 

LiD 

No.(%) left-

censored 

No.(%) 

male 

Time to 

midpoint event 

 (mean +- sd) 

AAO, years 

(mean +-sd) 

AAB, years 

(mean +- sd) 

Disease 

duration at 

baseline from 

onset, years 

(mean +- sd) 

MDS-UPDRS part 

III at baseline 

(mean +- sd) 

Levodopa dose 

at baseline 

(mean +- sd) 

Tracking 

Parkinson's 
1478 7.5 177 (12) 16 (1) 

945 

(64.23) 
7.47 (2.18) 64.43 (9.16) 67.29 (9) 2.86 (1.58) 22.36 (11.69) 217 (197) 

OPDC 705 9.0 92 (13) 8 (0.8) 451 (64) 7.87 (2.87) 64.35 (9.47) 67.21 (9.26) 2.85 (1.70) 26.27 (10.82) 280 (205) 

PPMI 283 9.0 82 (21) 0 (0) 259 (66) 8.28 (2.27) 60.16 (9.93) 62.08 (9.78) 1.92 (1.30) 21.38 (9.10) 0 (0) 

PD STAT 77 2.0 10 (13) 4 (4.9) 48 (62) 8.77 (2.83) 57.23 (8.7) 64.84 (9.24) 7.61 (1.73) 28.86 (11.61) NA 

PDBP 241 5.0 33 (14) 16 (6) 149 (62) 5.93 (2.66) NA 64.58 (9.3) 2.85 (2.51) 20.9 (11.11) 414 (207) 

No. (%) of LiD. This is the percentage with respect to (n) 

No. (%) of left-censored. This is the percentage of left-censored patients with respect to (n) 

No.(%) male. This is the percentage of males with respect to (n) 

MDS-UPDRS part III (mean +- sd). MDS-UPDRS part III total at baseline 

 

 

 

 

 

 . 
C

C
-B

Y
 4.0 International license

It is m
ade available under a 
 is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
(w

h
ich

 w
as n

o
t certified

 b
y p

eer review
)

T
he copyright holder for this preprint 

this version posted M
ay 30, 2023. 

; 
https://doi.org/10.1101/2023.05.24.23290362

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2023.05.24.23290362
http://creativecommons.org/licenses/by/4.0/


34 
 
 

Table 2. Independent significant SNPs with a P-value lower than 1e-7. 

CHR BP SNP MAF BETA HR SE 
SNP P-value on the 

Adjusted model 

SNP P-value on 

the Basic model 
nSNPs NEAREST_GENE FUNC 

1 39646765 rs71642678 0.01 1.61 5 0.3 8.555e-08 1.89e-07 12 MACF1 intronic 

1 53778300 rs72673189 0.03 1.02 2.77 0.18 1.527e-08 2.65e-08 2 LRP8 intronic 

1 80950480 rs12133858 0.04 0.76 2.14 0.14 8.692e-08 1.01e-06 48 RP11-115A15 intergenic 

1 168645690 rs79432789 0.05 0.77 2.16 0.14 7.037e-08 2.47e-06 4 DPT intergenic 

4 32435284 rs189093213 0.02 1.12 3.06 0.19 1.673e-09 
6.15e-08 

3 LINC02353  ncRNA_intergenic 

9 22664277 rs77115593 0.02 1.26 3.52 0.24 9.192e-08 4.37e-07 1 LINC02551 ncRNA_intronic 

14 22020490 rs139943801 0.03 1 2.72 0.19 9.522e-08 2.63e-07 1 RBBP4P5 intergenic 

16 17044975 rs180924818 0.03 1.14 3.13 0.2 6.265e-09 8.20e-08 3 XYLT1 intergenic 
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Figure 1. LiD GWSS meta-analysis Manhattan plot. The GWSS was conducted using a Cox proportional 

hazards model in each cohort separately, and results were meta-analysed. Red dots indicate the variant 

with the lowest P-value at each genome-wide significant genetic locus. Genome-wide significance was set 

at 5x10
-8

 and is indicated by the red dashed line. 
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Figure 2.Forest plots of top hits of GWSS meta-analysis. a, LRP8 rs72673189 variant (I² = 0  ; Cochran's Q 

test: �
2
 = 0.24 , df = , P = 1.53e-08). b, LINC02353 rs189093213 variant (I² = 21.4 ; �

2
 = 5.09, df = , P = 1.67e-

09). c, LINC02353 rs180924818 variant (I² = 0; �
2
 = 0.77, df = 3, P = 6.27e-09). HR hazard ratio, CI confidence 

interval, P p-value, r2 imputation info score.  
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Figure 3. Survival curves of candidate SNPs. a, Kaplan-Meier curve for Survival probability (LiD free 

probability)  based on rs72673189 carrier status in PD patients. b, Kaplan-Meier curve for Survival 

probability (LiD free probability)  based on rs189093213 carrier status in PD patients.  c, Kaplan-Meier curve 

for Survival probability (LiD free probability)  based on rs180924818  carrier status in PD patients. The blue 

curve represents genetic variant carriers, whereas the yellow curve represents non-carriers. p = p-value. 

Number at risk represents the number of PD patients remaining on the study at the different time points (0, 

5, 10, 15 years). The colour expansion on each curve represents the confidence interval (CI).  

a                                                                               b 

    

c 

 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.24.23290362doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.24.23290362
http://creativecommons.org/licenses/by/4.0/


38 
 
 

Figure 4. LRP8 locus fine-mapping and brain cell type specific regulatory marks. From top to bottom, locus 

plot, transcript plot, the fine-mapping nominated variants across fine-mapping tools,  brain cell type 

specific regulatory element marks.  In the locus plot, the SNPs are coloured in red as LD (given by R2) 

increases, and blue as the LD decreases. In the fine-mapping track, we highlight the SNPs with the highest 

posterior probabilities for each fine-mapping tool (ABF, FINEMAP, SUSIE, POLYFUN_SUSIE). In addition, we 

highlight in yellow the Consensus SNP with the highest mean Posterior Probability (mean). In the cell type 

specific regulatory element marks, the first 4 rows are the density marks (y-axis) from ATAC-seq assay (in 

pink), and CHIP-seq assays (H3K27ac in blue, and H3K4me3 in cyan), in astrocytes, microglia, neurons, and 

oligodendrocytes. The next four rows are the distal anchored chromatin loops (black curves). We see how, 

only in neurons, there is a chromatin loop forming from the LRP8 GWS and the fine-mapped consensus 

variant towards the LRP8 promoter (purple). 
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