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Abstract 

Background: A quantitative measurement of serum proteome biomarkers that would associate 

with disease progression endpoints can provide risk stratification for persons with multiple 

sclerosis and supplement the clinical decision-making process. 

Materials and Methods: 202 persons with multiple sclerosis were enrolled in a longitudinal 

study with measurements at two time points with an average follow-up time of 5.4 years. 

Clinical measures included the Expanded Disability Status Scale, Timed 25-foot Walk, 9-Hole 

Peg and Symbol Digit Modalities Tests. Subjects underwent magnetic resonance imaging to 

determine the volumetric measures of the whole brain, gray matter, deep gray matter and lateral 

ventricles. Serum samples were analyzed using a custom immunoassay panel on the Olink™ 

platform and concentrations of 18 protein biomarkers were measured. Linear mixed-effects 

models and adjustment for multiple comparisons were performed. 

Results: Subjects had a significant 55.6% increase in Chemokine Ligand 20 (9.7pg/mL vs. 

15.1pg/mL, p<0.001) and Neurofilament light polypeptide (10.5 pg/ml vs. 11.5 pg/ml, p=0.003) 

at the follow-up time point. Additional changes in CUB domain-containing protein 1, Contactin 

2, Glial fibrillary acidic protein, Myelin oligodendrocyte glycoprotein, and Osteopontin were 

noted but did not survive multiple comparisons correction. Worse clinical performance in the 9-

HPT was associated with Neurofilament light polypeptide (p=0.001). Increases in several 

biomarker candidates were correlated with greater neurodegenerative changes as measured by 

different brain volumes. 

Conclusion: Multiple proteins representing diverse biological pathways (neuroinflammation, 

immune modulation, and neuroaxonal integrity) associate with physical, cognitive and 
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radiographic outcomes. Future studies should determine the utility of multiple protein assays in 

routine clinical care. 
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Introduction 

Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating, and degenerative disease of 

the central nervous system (CNS) resulting in progressive accrual of physical and cognitive 

disability.1 People with multiple sclerosis (pwMS) have heterogeneous clinical presentation and 

multiple demographics, clinical, and paraclinical risk factors have been associated with poorer 

long-term outcomes.1 Over the last three decades, a plethora of highly effective disease 

modifying therapies (DMTs) have been developed that can significantly lessen the long-term 

disability.1 They generally range from highly effective but immunosuppressive therapies to 

moderately effective immunomodulators with lower rate of adverse events.2 Therefore, 

development of attainable and cost-effective biomarkers can provide risk stratification for pwMS 

and supplement the clinical decision-making process. 

In addition to validated imaging biomarkers such as lesion pathology and whole brain 

atrophy, recent developments in proteomic assay technology have allowed detection and 

measurement of picomolar concentrations of blood biomarkers.3 These biomarkers can provide 

proxy measures regarding the occurrence and extent of pathological changes in the CNS.4 For 

example, higher blood levels of neurofilament light chain (NfL), an intermediate filament present 

in neurons, can indicate greater neuroaxonal destruction, and higher levels of glial fibrillary 

acidic protein (GFAP) can indicate glial cell activation both indicative of presence of disease 

activity.5, 6 Although these individual biomarkers have already emerged as candidate outcomes 

measures in MS, a single protein biomarker can have limited ability in capturing changes within 

multiple parallel pathophysiological MS pathways.7 When compared to MRI measures, blood-

derived analyses are less costly, more accessible, and can be bundled together with routine 

clinical blood work.8 
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The Multiple Sclerosis Disease Activity (MSDA) is a recently developed and analytically 

validated 9 panel of 18 biomarkers that represent changes within four main pathophysiological 

pathways of neuroinflammation, immunomodulation, myelin biology and neuroaxonal integrity.9 

In the first clinical validation study, the MSDA platform was trained and tested as a predictor for 

presence of gadolinium-enhancing lesions or new/newly enlarging T2 lesions in a cohort of 614 

samples.10 The multi-protein scores outperformed the best individual protein (NfL) with area 

under curve change from 0.726 to 0.781.10 Determining the relation of the MSDA panel to long-

term disability outcomes and examining the longitudinal predictive properties of such an assay 

are essential for clinical adoption and wide-spread clinical utility. 

The aims of this study were to determine the relationship between the multiple proteomic 

biomarkers and cross-sectional and longitudinal MS outcomes, including physical disability, 

cognitive performance and conventional MRI outcomes. We hypothesize that proteomic analysis 

could improve the clinical and MRI-based risk stratification when utilized in a heterogenous 

group of pwMS. 

 
Methods 

Study population: 

A total of 202 patients were assessed in these analyses and derived from a larger longitudinal, 

case-controlled study to explore the role of cardiovascular, environmental and genetic risk 

factors in multiple sclerosis patients (CEG-MS).11 In particular, for this study, the pwMS were 

enrolled at baseline between 2009-2012 and returned for a follow-up visit in years 2014-2017. 

The inclusion criteria were: 1) baseline age of 18-75 years old; 2) diagnosed with either MS or 

clinically isolated syndrome (CIS), defined by the 2010-revised McDonald criteria12; 3) 

availability of either baseline or follow-up serum sample, MRI, clinical and neuropsychological 
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assessments within 30 days of each other. The exclusion criteria were: 1) having clinical relapse 

or receiving intravenous corticosteroid therapy within 30 days before the MRI and serum 

sampling, 2) not able to undergo any of the aforementioned study procedures, and 3) pregnant or 

nursing mothers. 

The CEG-MS study and the retrospective proteomic analyses were approved by the 

University at Buffalo Institutional Review Board (IRB) and all subjects provided a signed 

consent form. 

Physical and cognitive disability measures:  

A board-certified neurologist evaluated patients for global disability using the Expanded 

Disability Status Scale (EDSS) score13, a board certified neuropsychologist oversaw a clinical 

assessment that included assessment of quantitative mobility and leg function, using the Timed 

25 Foot Walk Test (T25FWT)14, quantitative finger dexterity using the 9-Hole Peg Test 

(9HPT)15, and cognitive efficiency and speed performance using the Symbol Digit Modalities 

Test (SDMT) and the Paced Auditory Serial Addition Test (PASAT)16. A structured 

questionnaire was also used to collect demographic and clinical information. According to the 

clinical presentation and disease history, pwMS were categorized as CIS, relapsing-remitting MS 

(RRMS), progressive MS (PMS) (further categorized to primary (PPMS), or secondary 

progressive (SPMS)).17 

Presence of disability progression (DP) over the follow-up was defined using standard 

criteria of changes in EDSS scores: 1) An increase of 2 or more points if the baseline EDSS is 

zero; 2) an increase of 1.5 or more points if the baseline EDSS is 0.5, 3) an increase of ≥1 point 

if the baseline EDSS is between 1.0 and 5.0, and 4) an increase of equal or greater than 0.5 point 

if the baseline EDSS is ≥5.5.18 Worsening in T25FWT and 9HPT was defined as an increase of 
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greater than or equal to 20% from baseline to follow-up.14, 15 Worsening in SDMT performance 

was defined using several previously used criteria: 1) decrease of 4 or more points from baseline 

to follow-up 16; 2) decrease of 8 or more points from baseline to follow-up; 3) being classified as 

cognitively impaired based with |z-scores| > 1.5 derived from a healthy control population 

published in the literature with mean and standard deviation of 55.49, 13.06 respectively 5, 19.  

Proteomics analyses: 

All blood samples were processed within 24-hours from acquisition and stored at -80°C until 

analyzed. No freeze and thaw cycles were performed in the interim period. All samples were sent 

to Octave Bioscience (Menlo Park, CA, USA) for proteomic analysis using the MSDA assay 

panel.9 Proteomic analysis was performed blinded to the demographic, clinical and MRI data. 

The MSDA assay uses Proximity Extension Assay (PEA) methodology and is performed on the 

OlinkTM platform. Twenty-one proteins that are associated with key biological pathways of MS 

pathophysiology were selected for inclusion on the panel based on results from discovery 

analyses investigating relative expression of 1196 proteins in previously characterized MS 

cohorts. The MSDA assay utilizes a stacked classifier logistic regression model of 18 age- and 

sex adjusted protein concentrations as previously described to determine four disease pathway 

scores (immunomodulation, neuroinflammation, myelin biology, and neuroaxonal integrity) as 

well as an overall disease activity score.9 The complete list of proteins (with commonly used 

aliases and their abbreviations) are shown in Figure 1. 

MRI acquisition and analyses: 

At baseline and follow-up visits, pwMS underwent an MRI examination using the same 3T 

Signa Excite 12 Twin-Speed scanner (GE Healthcare, Milwaukee, WI, USA) and eight channel 
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head and neck coil. The standard sequences utilized in these analyses were two-dimensional (2D) 

fluid attenuated inversion recovery (FLAIR), 2D T1-weighted spin echo with and without use of 

0.2mL/kg gadolinium (Gd) contrast acquired 5 min post-injection, and high-resolution 3D T1-

weighted imaging. The sequence parameters are explained in details elsewhere. 20 

Lesion analysis was performed in a blinded manner with respect to the patient clinical 

and proteomics status. T2 lesion volume (LV), T1-LV and Gd-LV were obtained using a semi-

automated contouring/thresholding technique using Java Image Manipulation (JIM) version 6.0 

(Xinapse Systems Ltd, http://www.xinapse.com/, Essex, UK). The cross-sectional and 

longitudinal changes in volumes of brain regions of interest (ROIs) of whole brain (WB), white 

matter (WM), gray matter (GM), all normalized for head size, were measured using the SIENAX 

and SIENA algorithms (FMRIB Software Library, http://www.fmrib.ox.ac.uk/fsl).21   A lesion 

inpainting technique was used to avoid tissue misclassification.22 Total deep GM (DGM) volume 

and specific volume of the thalamus were obtained with FMRIB's Integrated Registration and 

Segmentation Tool (FIRST, https://fsl.fmrib.ox.ac.uk/fsl, version 2.6). The number of patients 

who had baseline and follow-up samples are described in Supplementary Table 1. Lastly, 

pathological change in  whole brain volume was determined as an annualized percent brain 

volume reduction of greater than or equal to 0.4%23 and pathological lateral ventricle volume 

change if an annualized percent volume expansion of greater than or equal to 3.5%.24 

Statistical analyses: 

Data and statistical analyses were performed using Python version 3.8.10, SciPy 1.9.3, pandas 

1.5.2, pingouin 0.5.3, and NumPy 1.24.1. Ordinary and mixed-effects models were estimated 

using R version 4.1.3. Logistic regression models were estimated with Python statsmodels 
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package version 0.13.2. 

Student’s t-test and Analysis of Covariance (ANCOVA) were used for statistical analysis 

of parametric continuous variables and longitudinal analysis was performed using the paired 

non-parametric Wilcoxon test. Ordinary least-squares were used to estimate cross-sectional 

univariable models; linear mixed-effects regression models were used to estimate models on 

longitudinal data; linear logistic regression models were used to estimate dichotomous outcomes 

(e.g., pwMS disability progression yes/no). 

MRI-based brain volumes, EDSS, and neuropsychological test outcomes were used as 

dependent variables, and age, sex, BMI, and all proteomic measures as independent predictors 

(outcome score = age + sex + body mass index (BMI) + biomarker concentration) and for the 

linear mixed-effects model, subject ID was set as random effect (outcome score = age + sex + 

BMI + biomarker concentration + (1|patient ID). For entry into the regression models, the 

proteomic data, MRI-based brain volumes, EDSS and neuropsychological test scores were 

transformed using log(10) and all the statistical tests were applied to the log-transformed data. 

Logistic regression models were similarly used if the dependent variable was of categorical 

nature. Outcomes such as R2 for ordinary and mixed-effects regression, McFadden’s pseudo-R2 

for logistic regression, standardized β and p-values were reported. Adjusted p-values lower than 

0.05 were considered statistically significant. The regression and correlation p-values underwent 

false discovery rate (FDR) correction using the Benjamini-Hochberg procedure. 

Data were visualized using Python matplotlib 3.4.2, seaborn 0.12.1, and plotly 5.12.0 

packages. The data distribution was determined using visual inspection of histograms and Q-Q 

plots. Volcano plots were used to visualize the significance (p-value) versus effect size. 
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Results 

Demographic and clinical characteristics: 

Table 1 describes the demographics and clinical characteristics of the pwMS. As expected, the 

pwPMS were significantly older, had longer disease duration and higher EDSS scores both at 

baseline and follow-up visits (p<0.001 for all). We failed to reject the null hypothesis that the 

rate of DP between pwCIS/RRMS and pwPMS were similar (28.6% vs. 37.5%, p=0.251). There 

were no significant differences in terms of baseline and follow-up DMT use. As expected, the 

pwPMS had significantly greater pathology measured by conventional MRI measures of T2-LV 

and T1-LV (p<0.001 and p=0.015) and global measures of WBV, WMV and GMV (p<0.001). 

The pwCIS/RRMS had on average significantly more Gd lesions when compared to the PMS 

group (p<0.001). Supplement Figure 1 depicts the distribution of disease phenotypes at baseline 

and transition over the follow-up.  

Out of the pwMS with available longitudinal disability data, 55 out of 181 (30.4%) 

worsened in EDSS scores, 46 out of 186 (24.7%) had a pathological rate of whole brain atrophy 

and only 19 out of 186 (10.2%) has a pathological rate of ventricle enlargement. The paired 

statistical test revealed that all outcomes worsened significantly at the follow-up time-point 

except for the WMV and PASAT performance (Supplement Table 2). Supplement Figure 2 

visualizes shifts in MRI-based volumes, EDSS and neuropsychological scores between the 

baseline and follow-up time-points. Supplement Figure 3, 4 demonstrate differences in MRI-

based volumes, EDSS, neuropsychological scores and biomarker concentrations between 

pwCIS/RRMS and pwPMS subgroups. 
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Proteomic characteristics of the study population: 

In total, 202 pwMS had serum samples at the baseline visit and 143 pwMS had serum 

samples at both the baseline and follow-up visits. The baseline, follow-up and longitudinal 

change in each of the proteomic biomarkers (shown as median and interquartile range (IQR)) are 

shown in Figure 2 for biomarkers with significant shift between the time points and detailed 

analysis is shown in Supplementary Table 4. Over the follow-up, pwMS had a significant 56% 

increase in CCL20 (9.74pg/mL vs. 15.1pg/mL, p=0.001) and 9.4% increase in NfL (10.5 pg/mL 

vs 11.5 pg/mL, p=0.003). There were also significant shifts in CDCP1, CNTN2, GFAP, MOG, 

and OPN but they did not survive multiple comparisons correction. Supplement Figure 4 

demonstrates significant shifts in the serum biomarkers between pwCIS/RRMS and pwPMS at 

baseline and follow-up time-points. 

In the pwMS who progressed over the follow-up, there were several proteins whose 

levels differed between the visits. For the patients who progressed in the 9HPT test, CDCP1 

increased by 31% (110 pg/ml vs. 144 pg/ml, p=0.003), TNFRSf10A increased by 37% (5.61 

pg/ml vs 7.71 pg/ml, p=0.005) and VCAN increased by 17% (428 pg/ml vs 500 pg/ml, p=0.007). 

The other proteins in Table 2 did not survive the multiple comparisons correction. Although age 

adjusted NfL was increased and PRTG was decreased in patients with progressive type at follow-

up, these findings did not pass the multiple comparisons correction.   

Relationship between proteomic data and outcomes in pwMS: 

Longitudinal models: 

Figure 3 shows the significant biomarkers of the mixed-effects models estimated for both 

time-points and all pwMS. We found six biomarker candidates, namely GFAP, FLRT2, CDCP1, 
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TNFRSF10A, CXCL9 and CCL20, whose increases were correlated with reduction in brain 

volumes and one protein (APLP1) whose decrease was correlated with reduction in brain 

volume. In particular, GFAP (p=0.003), FLRT2 (p=0.001), CDCP1 (p=0.004) and TNFRSF10A 

(p=0.003) were associated with WBV decrease and survived the multiple comparisons 

correction. For the WMV, GFAP was the only protein that survived the statistical test (p<0.001). 

For the DGM, significant associations with CCL20 (p=0.004), CXCL9 (p=0.001), CDCP1 

(p=0.002), FLRT2 (p=0.008), TNFRSF10A (p=0.009) were noted. 

In terms of clinical (EDSS scores) and cognitive assessment, we found that worsening in 

the 9-HPT score was associated with an increase in NfL (p=0.001) surviving the multiple 

comparisons correction. Table 3 details the estimated coefficients, p-values and the qualities of 

the fit (R-squared of the model with standardized features as biomarker, sex, age, BMI) 

corresponding to each biomarker and outcome measure. Note that only significant biomarkers 

(p<0.05) are included in Table 3. 

Cross-sectional models: 

Figure 4 shows the significant biomarkers of linear single-protein models estimated 

individually for the baseline and follow-up outcomes. At the baseline visit, higher GFAP was 

correlated with lower WBV (p<0.001), GMV (p<0.001), thalamic volume (p<0.001), and 

DGMV (p<0.001), and higher LVV (p<0.001). Moreover, higher GFAP was associated with 

higher EDSS scores (p=0.002). Detailed analyses are shown in Table 4. 

At the follow-up GFAP, was correlated with lower WBV (p=0.001), GMV (p=0.001), 

and DGMV (p=0.002), and higher LVV (p<0.001). Both NfL (p=0.001) and GFAP (p=0.003) 

were correlated with worse 9HPT scores. NfL was also correlated with T25FWT (p=0.002) and 

EDSS scores (p=0.002). Detailed analyses are shown in Supplement Table 5. 
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Shifts in biomarker levels as predictors of clinical change: 

It is of importance to assess whether shifts in the biomarker concentration is correlated with 

shifts in outcome scores. Therefore, we fitted a model with shifts in biomarker between baseline 

and follow-up, age, sex, BMI as independent predictors and shifts in outcome scores as 

dependent variables. CDCP1 (p=0.001), FLRT2 (p=0.001), PRTG (p=0.008), TNFRSF10A 

(p<0.001), TNFSF13B (p<0.001) were predicted shift in the WBV. CD6 (p=0.001) was 

predicted shift in the DGMV. Figure 5 and Supplement Table 6 describe the findings of these 

analyses. 

Discussion 

The findings of this longitudinal proteomics study are multifold. Firstly, multiple proteomic 

biomarkers representing different pathophysiological MS pathways are differentially associated 

with phenotypical and macroscopic pathological changes. Secondly, worse physical and 

cognitive outcomes in pwMS were associated with blood-based measures of NfL. Lastly, worse 

neurodegenerative MRI outcomes were associated with a greater number of biomarkers 

including GFAP, CDCP1, CXCL9, CCL20, APLP1, FLRT2, аnd TNFRSF10A.   

The NfL/GFAP relationship with clinical outcomes was recently demonstrated in a 

similar longitudinal Swiss study.25 Over an average follow-up of 7 years, serum GFAP levels 

were prognostic of progression independent of relapse activity (PIRA) and complementary to the 

serum NfL data.25 Moreover, NfL levels were prognostic of atrophy in the WMV, whereas 

GFAP specifically prognosticate GM atrophy.25 The multi-protein panel employed in our study 

was also utilized in a study of 431 unique pwMS and successfully predicted the real-world 

disability status (patient-reported disability score and patient-reported outcomes).26 The 
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proteomic profiles consistently outperformed individual top-ranking markers such as NfL and 

GFAP.26 The fact that the same protein biomarkers implicated in their stacking classification 

algorithm (CDCP1, IL-12B and PRTG) were also seen in our objective disability findings further 

validates the utility and need of multi-protein proteomic assay.26  

We further expand on the literature by demonstrating that the similar set of biomarkers 

(APLP1, CDCP1, FLRT2, TNFRSF10A and CCL20) are also relevant to MRI-based volumetric 

measures. Of note, the directionality of APLP1-DGMV relationship (decrease in the biomarker 

concentration was associated with decreased DGMV) was opposite when compared to the 

remaining ones. Currently, there are no comprehensive proteomic studies that investigate 

associations with MRI measures in pwMS. The literature most commonly describes individual 

associations with one or two proteomic measures (NfL and GFAP).20, 27, 28 Despite the high 

collinearity between serum NfL and GFAP levels, a cross-sectional study of 129 pwMS showed 

that the amount of lesion pathology (T2-LV) and WM/GM volumes were associated only with 

GFAP levels and not with NfL.29 We corroborate these findings with GFAP remaining a strong 

predictor all MRI measures acquired in our study (WBV, DGM, LVV and thalamic volume). 

Serum GFAP levels were also recently associated with greater microstructural pathology in 62 

pwMS assessed by diffusion tensor imaging.30 Our results showed that CCL20 has strong 

association with the DGM volume and it was increased at the follow-up time point. This protein 

was previously shown to be increased in PwMS and specifically with a progression index and 

was higher during remission than in relapse periods. 31, 32 

The multiplex assays could broaden our understanding of key mechanisms underlying 

progression by taking a biological-based approach to objectively quantify disease progression.33 

They have been demonstrated in other neurological disorders as well.34, 35 For example, 
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proteomic data from only 4-Plex assay (NfL, GFAP, tau protein and ubiquitin c-terminal 

hydrolase L1; UCH-L1) better classified people with traumatic brain injury when compared to 

only single proteomic measure.34 Similarly, cognitive performance in Alzheimer’s Disease and 

amyloid PET status can be predicted and classified by a combination of GFAP, amyloid beta and 

neurofilament light chain.35  

While cut-offs of normal versus pathological levels of NfL in pwMS have been 

previously published 36, 37, this information is not available for the majority of proteomic 

biomarkers utilized in this multi-protein assay. A limited number of studies report the reference 

intervals and preanalytical GFAP levels.38, 39 For example, a Danish-based analysis of 371 

apparently healthy subjects reported fairly large ranges with GFAP levels of 25-136 ng/L (20-39 

years old), 34-242 ng/L (40-64 years old) and 4-438 ng/L (for 65-90 years old).38 Moreover, 

there was ~10% variability after three freeze-thaw cycles or storing serum samples at -20 °C for 

an average of 133 days.38 Significant semidiurnal variations in GFAP have been reported (9 AM 

vs. 12 PM vs 9 PM blood draw).40 Based on these references, none of the median pwMS values 

would be considered “pathological”. Other biomarkers such as contactin-1 may be more 

susceptible to pre-analytical factors and have even greater variability.41 After the selection of 

best performing biomarkers and creation of multi-protein scores, future studies should aim at 

determining appropriate cut-offs for best differentiation between normal and pathological states.  

The linear modeling approach taken in this study can be considered as a study limitation. 

Since there is no guarantee that the underlying interaction is inherently linear, an area of future 

work is to consider nonlinear regression techniques to capture more complex interactions of 

serum biomarker concentrations and metrics of disease progression. In addition, multi-protein 

regression approaches in cross-validation studies can be considered to integrate the predictive 
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power of individual biomarkers in one model.42 The shifts in DP outcome measures were not 

uniform. Such imbalance in the training data can deteriorate generalizability of the model.43, 44 In 

the future, it will be of interest to balance the data using up, down techniques or using weighted 

learners. The significantly lower number of available cognitive measures (only 25% of the 

pwMS) for the baseline time point presents as another study limitation. Moreover, the initial 

determination of biomarkers within the assay were based on ability to predict presence of 

contrast-enhancing and new/newly enlarging lesions.9 In comparison to younger more active 

pwMS from the literature, our population was relatively older and had very limited 

neuroinflammatory activity. Future development of a more comprehensive assay that contains 

proteins specific to neurodegenerative changes (vs. neuroinflammation) could better predict the 

occurrence of long-term disability worsening. Moreover, the use and change in DMT should be 

incorporated in future statistical analyses. Additional limitation of our analysis is the lack of a 

third clinical visit that would allow confirmation of the disease progression. Lastly, the lack of 

healthy control data does not allow us to determine pathological protein cut-offs and risk stratify 

the pwMS based on healthy condition. 

In conclusion, the clinical, cognitive, and MRI-based outcomes in pwMS are associated 

with more than one proteomic biomarker. While sNfL had the strongest associations with 

physical disability such as EDSS scores and hand dexterity, additional proteomic biomarkers 

related to neuroaxonal integrity were associated with cross-sectional and longitudinal MRI 

measures of brain atrophy. Multi-protein assays may be essential in capturing the complex MS 

pathophysiology as part of the disease stratification and monitoring. Before implementation into 

routine clinical practice, future studies should determine the treatment responsiveness of such 

proteomic biomarkers.  
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Figure Legends: 

Figure 1. The Octave Bioscience Multiple Sclerosis Disease Activity (MSDA) test was 
developed using Proximity Extension Assay (PEA) methodology on the Olink™. It measures the 
concentrations of 18 proteins, and utilizes an algorithm to determine 4 disease pathways scores 
(immunomodulation, neuroinflammation, myelin biology, and neuroaxonal integrity) and an 
overall disease activity score. 
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Figure 2. Changes in blood serum biomarker concentration between the baseline and follow-up 
time points for those with p-value < 0.05. Legend: Paired Wilcoxon signed-rank test was used to 
compare between baseline and follow-up time points. P-value annotation legend: ns: 5.00e-02 < 
p <= 1.00e+00, *: 1.00e-02 < p <= 5.00e-02, **: 1.00e-03 < p <= 1.00e-02, ***: 1.00e-04 < p <= 
1.00e-03, ****: p <= 1.00e-04. 
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Figure 3. Longitudinal single-protein model parameters with adjustment for age, sex and BMI. 
Legend: The radius of each circle is proportional to the estimated standardized coefficient of the 
corresponding protein, red (blue) circles represent proteins with positive (negative) effects in 
estimating the second-class label. The opacity of each circle represents the p-value; a p-value of 
< 0.001 corresponds to full opacity and a p-value of 0.05 corresponds to the least opacity. 
Biomarkers that survived the multiple comparisons correction are marked with a gold star (*). 
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Figure 4 Cross-sectional single-protein model parameters with adjustment for age, sex and BMI 
for baseline (left) and follow-up (right). Legend: The radius of each circle is proportional to the 
estimated standardized coefficient of the corresponding protein, red (blue) circles represent 
proteins with positive (negative) effects in estimating the second-class label. The opacity of each 
circle represents the p-value; a p-value < 0.001 corresponds to full opacity and a p-value of 0.05 
corresponds to the least opacity. Biomarkers that survived the multiple comparisons correction 
are marked with a gold star (*). 
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Figure 5. Single-protein model parameters predicting shifts in outcome score using shifts in 
biomarker concentration with adjustment for age, sex and BMI. Legend: The radius of each 
circle is proportional to the estimated standardized coefficient of the corresponding protein, red 
(blue) circles represent proteins with positive (negative) effects in estimating the second-class 
label. The opacity of each circle represents the p-value; a p-value < 0.001 corresponds to full 
opacity and a p-value of 0.05 corresponds to the least opacity. Biomarkers that survived the 
multiple comparisons correction are marked with a gold star (*). 
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Tables: 
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Table 1. Demographic, clinical and conventional MRI characteristics of the study population. 

Demographic and clinical characteristics 
pwMS 

(n=202) 
CIS/RRMS 

(n=148) 
PMS 

(n=54) p-value 

Female, n (%) 151 (74.8) 106 (71.6) 45 (83.3) 0.09a 
Age at baseline, mean (SD) 47.1 (11.1) 44.1 (10.6) 55.3 (7.9) <0.001b 
Time of follow-up, mean (SD) 5.4 (0.6) 5.4 (0.6) 5.5 (0.6) 0.732b 
BMI at baseline, mean (SD) 27.5 (5.8) 27.9 (6.2) 26.5 (4.5) 0.1b 
Age of disease onset, mean (SD) 32.9 (9.8) 32.6 (9.0) 33.6 (11.8) 0.6b 
Disease duration at baseline, mean (SD) 13.4 (10.2) 11.1 (8.5) 21.7 (10.5) <0.001b 
EDSS at baseline, median (IQR) 2.5 (1.5-5.0) 1.5 (1.5-2.5) 6.0 (4.0-6.5) <0.001c 
EDSS at follow-up, median (IQR) 3.0 (1.6-6.0) 2.0 (1.5-3.5) 6.5 (4.0-6.5) <0.001c 
EDSS absolute change, mean (SD) 0.4 (0.9) 0.4 (0.9) 0.4 (0.7) <0.001b 
Disability progression, n (%)* 56 (30.9) 38 (28.6) 18 (37.5) 0.251a 
Relapse rate over the follow-up, mean (SD) 0.172 (0.369 0.204 (0.4) 0.09 (0.24) <0.001d 
DMT at baseline, n (%)  
   IFN-β 85 (42.1) 60 (40.5) 25 (46.3) 

0.271a 
   Glatiramer acetate 37 (18.3) 24 (16.2) 13 (24.1) 
   Natalizumab 29 (14.4) 25 (16.9) 4 (7.4) 
   Off-label DMT 5 (2.5) 3 (2.0) 2 (3.7) 
   No DMT 46 (22.8) 36 (24.3) 10 (18.5) 
DMT at follow-up, n (%)  
   IFN-β 68 (33.7) 52 (35.1) 16 (29.6) 

0.797a 

   Glatiramer acetate 45 (22.3) 31 (20.9) 14 (25.9) 
   Natalizumab 15 (7.4) 12 (8.1) 3 (5.6) 
   Oral DMT 28 (13.9) 22 (14.9) 6 (11.1) 
   Off-label DMT 12 (5.9) 8 (5.4) 4 (7.4) 
   No DMT 34 (16.8) 23 (15.5) 11 (20.4) 
T2-LV, mean (SD) 13.5 (16.7) 10.3 (14.09) 22.2 (20.1) <0.001b 
T1-LV, mean (SD) 3.0 (7.2) 2.2 (6.44) 5.5 (8.6) 0.015b 
Gd-LN, mean (SD) 0.05 (3.2) 0.7 (3.7) 0.04 (0.2) <0.001c 
Gd-LV, mean (SD) 0.07 (0.4) 0.1 (0.48) 0.01 (0.03) 0.194b 
WBV, mean (SD) 1466.4 (94.3) 1490.2 (87.7) 1401.7 (80.8) <0.001b 
WMV, mean (SD) 725.9 (62.2) 738.7 (62.1) 689.8 (46.7) <0.001b 
GMV, mean (SD) 740.8 (63.9) 751.4 (65.9) 711.9 (48.1) <0.001b 

Legend: MS – multiple sclerosis, CIS – clinically isolated syndrome, RRMS – relapsing remitting multiple 
sclerosis, PMS – progressive multiple sclerosis, BMI – body mass index, EDSS – Expanded Disability Status Scale, 
DMT – disease modifying therapy, IFN – interferon, SD – standard deviation, IQR – interquartile range. LV – lesion 
volume, LN – lesion number, WBV – whole brain volume, WMV – white matter volume, GMV – gray matter 
volume.  Thirteen (13) CIS/RRMS patients transitioned into PMS over the follow-up. Parametric data is shown as 
mean (standard deviation), whereas non-parametric data is shown as median (interquartile range). The specific 
comparisons were performed using; a – χ2 test, b – Student’s t-test, c – Mann Whitney U test, c – Negative binomial 
regression. P-values lower than 0.05 were considered statistically significant and shown in bold. *- Disability 
progression was available for 181 out of 202 pwMS due to missing EDSS values at either baseline or follow-up 
visit. 
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Table 2. Changes in blood serum protein concentrations between baseline and the follow-up for pwMS with 
worsening in disability measures.  

Endpoint Biomarker 
Baseline median 
(IQR) 

Follow-up median 
(IQR) 

Percentage 
Change (%) 

p-value 

EDSS 
worsening 

CCL20 11.5 (6.12, 19.3) 15.9 (10.3, 41.5) 38 0.041 

CDCP1 108 (81.9, 126) 135 (86.7, 180) 25 0.005 

TNFSF13B 4.82 (4.0, 5.95) 5.19 (4.51, 6.27) 7.6 0.008 

20% 9HPT 
worsening 

CCL20 12.4 (7.68, 19.1) 28.1 (13.9, 42.0) 130 0.027 

CDCP1 110 (105, 125) 144 (112, 193) 31 0.003* 

CXCL13 51.7 (37.8, 78.1) 61.9 (51.0, 103) 20 0.012 

CXCL9 55.7 (39.1, 77.8) 69.1 (43.9, 101) 24 0.042 

OPN 20.9 (16.6, 30.6) 25.2 (19.4, 33.5) 20 0.042 

TNFRSF10A 5.61 (4.66, 7.65) 7.71 (6.51, 8.5) 37 0.005* 

VCAN 428 (393, 473) 500 (460, 571) 17 0.007* 

4 Points 
SDMT 
Worsening 

MOG 29.9 (23.0, 38.5) 32.0 (25.2, 43.4) 6.9 0.027 

8 Points 
SDMT 
Worsening 

SERPINA9 61.3 (34.3, 77.4) 32.1 (16.1, 59.3) -48 0.01 

%0.4 loss in 
WBV 

CDCP1 105 (66.3, 132) 107 (83.7, 147) 1.5 0.014 

3.5% increase 
in LV 

SERPINA9 73.0 (57.1, 89.5) 64.4 (38.2, 76.6) -12 0.049 

Legend: EDSS – Expanded Disability Status Scale, 9HPT – 9-Hole Peg Test, WBV – whole brain volume. 
Wilcoxon signed-rank tested the significance in shifts.  P-values smaller than 0.05 were considered significant and 
are highlighted with bold fonts, and those with asterisks (*) survived the Benjamini-Hochberg correction for false 
discovery rate (FDR). All measures are shown as pg/mL except for TNFSF13B and OPN that are shown as ng/mL. 
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Table 3. Parameters of the linear mixed-effects model predicting outcome score using single-
protein models consisting of a biomarker protein concentration, age, sex, BMI and time-point 
that passed the significant threshold of p<0.05. 
 

Endpoint Biomarker Estimate R-squared P-value 

 
 
 
DGMV 

CD6 -0.003 0.15 0.035 

TNFRSF10A -0.004 0.17 0.009* 

MOG 0.003 0.18 0.045 

FLRT2 -0.004 0.19 0.008* 

CXCL9 -0.005 0.16 0.001* 

CDCP1 -0.005 0.18 0.002* 

CCL20 -0.003 0.16 0.004* 

APLP1 0.004 0.17 0.011* 

 
GMV 

FLRT2 -0.004 0.27 0.017 

CXCL9 -0.003 0.25 0.04 

CCL20 -0.003 0.26 0.006 

LVV MOG -0.008 0.14 0.031 

OPN -0.007 0.14 0.041 

 

Thalamus 

CCL20 -0.003 0.16 0.006 

CXCL9 -0.003 0.15 0.031 

FLRT2 -0.003 0.18 0.037 

CDCP1 -0.005 0.17 0.007 

WMV GFAP -0.008 0.12 <0.001* 

TNFSF13B -0.003 0.11 0.046 

WBV CDCP1 -0.003 0.24 0.004* 

CXCL9 -0.002 0.23 0.014 

FLRT2 -0.003 0.25 0.001* 

GFAP -0.004 0.28 <0.001* 

OPG -0.002 0.23 0.05 

TNFSF13B -0.002 0.24 0.028 

TNFRSF10A -0.003 0.24 0.003* 
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EDSS NfL 0.023 0.24 0.021 

9HPT NfL 0.031 0.21 0.001* 

GFAP 0.022 0.2 0.037 

CDCP1 0.02 0.16 0.028 

PASAT GFAP -0.038 0.07 0.012 

CCL20 -0.018 0.02 0.042 

SDMT CDCP1 -0.021 0.11 0.042 

CCL20 -0.017 0.09 0.008 

T25FWT CXCL9 0.041 0.08 0.014 

 
Legend: pwMS – people with multiple sclerosis, DGMV – deep gray matter volume, GMV – gray matter volume, 
LVV – lateral ventricular volume, WMV – white matter volume, WBV – whole brain volume, EDSS – Expanded 
Disability Status Scale, 9HPT – 9-Hole Peg Test, PASAT – Paced Auditory Serial Addition Test, SDMT – Symbol 
Digit Modalities Test, T25FWT – Timed 25-Foot Walk Test. P-values smaller than 0.05 were considered significant 
and are highlighted with bold fonts, and those with asterisks (*) survived the Benjamini-Hochberg correction for 
false discovery rate (FDR). 
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Table 4. Parameters of the linear model predicting baseline outcome score using single-protein 
models consisting of baseline biomarker protein concentration, age, sex, BMI that passed the 
p=0.05 significance threshold.  

Endpoint Biomarker Estimate R-squared p-value 

DGMV FLRT2 -0.008 0.16 0.035 

GFAP -0.015 0.19 <0.001* 

MOG 0.008 0.15 0.037 

GMV CCL20 -0.006 0.25 0.016 

GFAP -0.009 0.33 <0.001* 

FLRT2 -0.005 0.25 0.036 

LVV MOG -0.028 0.19 0.024 

GFAP 0.060 0.26 <0.001* 

Thalamus MOG 0.011 0.17 0.008 

GFAP -0.016 0.18 0.001* 

FLRT2 -0.008 0.16 0.043 

WMV GFAP -0.008 0.1 0.006 

CD6 0.005 0.1 0.048 

WBV GFAP -0.009 0.29 <0.001* 

FLRT2 -0.004 0.25 0.021 

EDSS PRTG -0.034 0.23 0.023 

GFAP 0.050 0.24 0.002* 

CD6 -0.034 0.23 0.018 

9HPT PRTG -0.037 0.25 0.043 

PASAT GFAP -0.092 0.11 0.022 

APLP1 -0.079 0.09 0.038 

SDMT GFAP -0.055 0.18 0.013 

T25FWT CXCL13 0.074 0.17 0.017 
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Legend: pwMS – people with multiple sclerosis, DGMV – deep gray matter volume, GMV – gray matter volume, 
LVV – lateral ventricular volume, WMV – white matter volume, WBV – whole brain volume, EDSS – Expanded 
Disability Status Scale, 9HPT – 9-Hole Peg Test, PASAT – Paced Auditory Serial Addition Test, SDMT – Symbol 
Digit Modalities Test, T25FWT – Timed 25-Foot Walk Test.  P-values smaller than 0.05 were considered significant 
and are highlighted with bold fonts, and those with asterisks (*) survived the Benjamini-Hochberg correction for 
false discovery rate (FDR). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 29, 2023. ; https://doi.org/10.1101/2023.05.24.23290483doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.24.23290483


All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 29, 2023. ; https://doi.org/10.1101/2023.05.24.23290483doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.24.23290483


All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 29, 2023. ; https://doi.org/10.1101/2023.05.24.23290483doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.24.23290483


All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 29, 2023. ; https://doi.org/10.1101/2023.05.24.23290483doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.24.23290483


All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 29, 2023. ; https://doi.org/10.1101/2023.05.24.23290483doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.24.23290483


All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 29, 2023. ; https://doi.org/10.1101/2023.05.24.23290483doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.24.23290483

