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Abstract 

Background: Socioeconomic differences in body mass index (BMI) have widened alongside the 

obesity epidemic. However, the utility of socioeconomic position (SEP) indicators at the individual 

level remains uncertain, as does the potential temporal variation in their predictive value. Examining 

this is important in light of the increasing incorporation of SEP indicators into predictive algorithms 

and the possibility that SEP has become a more important predictor of BMI over time. We thus 

investigated SEP differences in BMI over three decades of the obesity epidemic in England and 

compared population-wide (SEP group differences in mean BMI) and individual-level (out-of-sample 

prediction of individuals’ BMI) approaches.  

Methods: We used repeated cross-sectional data from the Health Survey for England, 1991-2019. 

BMI (kg/m2) was measured objectively, and SEP was measured via educational attainment and 

neighborhood index of deprivation (IMD). We ran random forest models for each survey year and 

measure of SEP adjusting for age and sex.  

Results: The mean and variance of BMI increased within each SEP group over the study period. 

Mean differences in BMI by SEP group also increased across time: differences between lowest and 

highest education groups were 1.0 kg/m2 (0.4, 1.6) in 1991 and 1.5 kg/m2 (0.9, 1.8) in 2019. At the 

individual level, the predictive capacity of SEP was low, though increased in later years: including 

education in models improved predictive accuracy (mean absolute error) by 0.14% (-0.9, 1.08) in 

1991 and 1.06% (0.17, 1.84) in 2019. Similar patterns were obtained when analyzing obesity, 

specifically.  

Conclusion: SEP has become increasingly important at the population (group difference) and 

individual (prediction) levels. However, predictive ability remains low, suggesting limited utility of 

including SEP in prediction algorithms. Assuming links are causal, abolishing SEP differences in 

BMI could have a large effect on population health but would neither reverse the obesity epidemic nor 

explain the vast majority of individual differences in BMI. 

 

Keywords: variation explained; predictive accuracy; body mass index; obesity; social inequalities; 
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Introduction 

Obesity rates have more than tripled among adults in England since 1980 [1]. Average body mass 

index (BMI) has also increased, but the population distribution of BMI has become more spread and 

more skewed [2], implying that individuals have not been equally affected by the obesity epidemic. 

Given the substantial health and economic costs associated with obesity [3], identifying solutions to 

the obesity epidemic continues to be an area of significant policy and research interest.  

A large amount of research has focused on social inequalities in obesity and BMI (see, e.g., [4–7] for 

reviews). Recent evidence finds that adults in the most deprived areas of England are twice as likely 

to be obese as those in the least deprived areas [8]; a similar difference is observed comparing highest 

and lowest education groups [8]. Evidence further suggests that, in England, inequalities in obesity 

and BMI according to education level have widened – in absolute terms – alongside the development 

of the obesity epidemic [8–10], a pattern observed in multiple other countries [11], though not all 

[12]. 

Research on social inequalities in BMI has typically taken a population level approach and focused on 

estimating associations – for instance, examining the mean difference in BMI according to 

educational attainment. Less attention has been paid to the explanatory power of socioeconomic 

factors at the individual level – for instance, the proportion of between-person variability in BMI that 

can be predicted by socioeconomic position (SEP) [13]. Though measures of SEP have been included 

in predictive algorithms for BMI [14] and reducing social inequality has been proposed as a way to 

tackle high obesity rates [15], SEP appears to explain only a small amount (< 6%) of between-person 

variability in BMI [12,16–20]. This is the case even when multiple indicators of SEP across life are 

used [16,17]. 

The comparatively low explanatory power of SEP accords with more general observations. Twin 

studies find that the variance in adult BMI explained by environmental factors shared between twins 

(such as parental SEP) is very low, in contrast to the proportion explained by genetics and non-shared 

environmental factors [21,22]. This low explanatory power is observed across almost all traits – so 

much so that it is known as the ‘gloomy prospect’ in behavioural genetics [23–27]. Attempts to 

directly predict individual life outcomes using SEP and other survey data have produced humbling 

results. For example, a recent scientific mass collaboration showed that several socioeconomic 

outcomes were largely unpredictable using a range of sophisticated predictive models and unusually 

rich survey data (including socioeconomic histories) [28].  

While the explanatory power of SEP on BMI may be lower than perhaps expected [15], it could have 

systematically changed across time. The increasing variation of population BMI partly reflects 

increasing inequalities between SEP groups, but it reflects increasing variation within these groups, 
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too [2,18,29–32]. If the increasing variation within groups exceeds increasing variation between 

groups, the explanatory power of SEP – already low – may have fallen further still. Determining 

whether this is the case is important for understanding the role of SEP as a contributor to the obesity 

epidemic [29] and for understanding the (continuing) potential for using SEP in predictive algorithms. 

However, research on this question is limited. Studies from the United States [12] and Indonesia [18] 

find the explanatory power of SEP on BMI has decreased over time, but social inequalities declined in 

these countries over the periods assessed. Thus, results may not generalize to England or other 

countries that have experienced widening inequalities across time. 

Existing research is further limited by a focus on individual-level (education) and not area-level (e.g., 

neighbourhood deprivation) measures of SEP – research has highlighted the role of area based factors, 

such as neighbourhood walkability and fast food outlet density, as contributors to the obesity 

epidemic [33]. Existing research is also limited by the use of methods not tailored for prediction. In 

particular, studies have used linear regression models of limited flexibility, which may not have 

captured interactions and other non-linearities. They have also assessed explanatory power within the 

same sample as used to estimate models (thus biasing towards more optimistic results) and have not 

assessed predictive ability (i.e., the difference between predicted and observed BMI), specifically – a 

metric of particular importance for creating accurate prediction algorithms for BMI. 

In this paper, we examined trends in the explanatory and predictive power of individual and area-level 

SEP on BMI more formally by adopting principles and methods from machine learning. We used 

random forest models and repeat cross-sectional data from the Health Survey for England (HSE) to 

examine changes in the predictive ability of educational attainment and neighbourhood deprivation 

for BMI and obesity between the years 1991-2019, a period in which obesity rates doubled in England 

[1]. 

Methods 

Participants 

The HSE is an ongoing series of annual nationally representative cross-sectional health surveys that 

began in 1991. Detailed description of the survey is available elsewhere [34]. The HSE uses a multi-

stage sampling design with households drawn from a list of postcode sectors. Non-response weights 

are provided with the data from 2002 onwards, due to increasing refusal rates. We used these where 

available, assuming weights of 1 in other survey years. We limited our analysis to individuals aged 

25-64 – the lower bound chosen to focus on ages with few members (1-8%) in full-time education 

(whose eventual education level is not known) and the upper bound chosen to reduce selection biases 

that could arise due to higher mortality rates among high BMI individuals [35]. We further limited our 

sample to those of White ethnicity to create comparable populations less liable to changes in 
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composition due to inflow and outflow of migration. For similar reasons, we also excluded a small 

number of individuals whose highest qualification was obtained abroad as well as individuals 

currently in full time education (4.2% of observations). There was only a small amount of missingness 

on our covariate data (< 0.1%), so we analysed complete cases only. Our final sample size was 

145,421. This excluded 10.7% of the eligible sample who had missing BMI data. The sample size 

each year ranged from 1,813 in 1991 to 9,556 in 1993. 

Measures 

Body Mass Index 

BMI was calculated by dividing weight in kilograms by height in metres squared. Height and weight 

were measured directly by interviewers. From 1995, individuals weighing more than 130 kg were 

asked to give an estimate of their weight due to limitations with the scales, so measurements for these 

individuals are based on self-report. 

Socioeconomic Position 

The HSE contains few measures of SEP that are measured consistently in each wave. We chose to 

focus on educational attainment and neighbourhood deprivation. Education was recorded using the 

national vocational qualification schema (NVQ 4/5, higher education below degree level, NVQ 3, 

NVQ 2, NVQ1, none). Neighbourhood deprivation was measured using the Index of Multiple 

Deprivation (IMD) and was categorized into quintiles (1st least deprived – 5th most deprived). The 

IMD combines deprivation across seven domains (income, employment, education, health, crime, 

barriers to housing and services, and living environment). It is available in the HSE at the electoral 

ward level from 2001-2002 and lower super output area (LSOA) level thereafter (LSOAs each include 

400-1200 households).  In the HSE, IMD data are available from 2001 only. New versions of the IMD 

are released intermittently. The IMD2000 is available from 2001-2002, the IMD2004 from 2003-

2007, the IMD2007 from 2008-2010, the IMD2010 from 2011-2014, the IMD2015 from 2015-2018 

and the IMD2019 in 2019. We use the data as supplied, with no further attempts made to harmonize 

across years. 

Covariates 

We included age and sex as covariates in our prediction models. Both may confound or moderate the 

association between education and IMD and BMI [10,36]. Age was available in single years prior to 

2015, but only in five-year categories from 2015 onwards. For consistency we randomly imputed 

single year ages from 2015 onwards. Mean age increased in our sample between 1991-2019 (average 

age ~ 43 in 1991 and ~ 45 in 2019). 
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Statistical Analysis 

To maximize predictive ability, we used random forest models; known to provide similar or superior 

predictions to traditional regression approaches in multiple settings [37,38]. Our analysis consisted of 

fitting random forest models and assessing their predictive accuracy and explanatory power. Random 

forests are a decision tree-based method in which data are recursively split according to decision rules 

invoking individual predictor variables (e.g., male or female, age < 45). Decision rules are chosen 

such that splits minimise heterogeneity in the target variable (here, BMI). To avoid overfitting, 

random forests use an ensemble approach where the results of multiple decision trees are averaged, 

with each tree being fit on a subset of predictor variables and a random sample of observations 

[39,40]. As predictions are generated via successive binary splits, random forests can account for non-

linearities or interactions between independent variables (e.g., between age and education) without 

requiring their explicit parameterization, an advantage here given previously observed differences in 

social inequalities in BMI between males and females [41], across cohorts [10], and over the life 

course [10]. 

We fit a random forest (500 trees) for BMI for each year of data collection and measure of SEP, using 

SEP, age, and sex as predictor variables. We then extracted model predictions and used these to 

calculate three metrics of explanatory power and predictive accuracy: variation explained (R2), mean 

absolute error (the difference between observed and predicted BMI), and probability of superiority. 

(In this setting, the probability of superiority is the probability that among two randomly chosen 

participants, the participant with the higher predicted BMI score has the higher observed BMI.) 

Importantly, to avoid overfitting, we generated model predictions using a portion of our data that was 

not used to estimate the random forest model (procedure explained further below). R2 provides a 

(relative) measure of how well SEP can predict between-person differences, while mean absolute 

error and probability of superiority provide summaries of how well SEP can predict individuals. 

We compared the three metrics to (a) baseline predictions where mean BMI was used and (b) the 

results of random forest models including only sex and age as predictor variables. We also examined 

the progression of the magnitude of the association between educational attainment and BMI by using 

the results of the random forest models to predict mean BMI assuming everyone in the population had 

the same SEP. We defined the size of the association between SEP and BMI as the difference in 

predicted population mean BMI for the most advantaged and disadvantaged SEP categories (NVQ 4/5 

vs no qualifications for education and highest vs lowest quintile for IMD). To calculate confidence 

intervals, we used bootstrapping accounting for the complex survey design (Rao & Wu method 

[42,43], 500 bootstrap samples). For the predictive accuracy and explanatory power metrics, we used 

the observations not selected within a given bootstrap to generate predictions to avoid overfitting.  
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As the random forest models were estimated for each year separately, to more easily ascertain trends 

in (a) the proportion of prediction error explained by each SEP variable and (b) the size of the 

association between BMI and each SEP variable, we smoothed the bootstrap estimates by regressing 

estimates upon year splines using generalized additive models (GAMs) – GAMs allow for flexible, 

smooth non-linear associations between independent and dependent variables. The change in the age 

variable to five-year categories from 2015 onwards may have artificially increased the relative 

incremental predictive power of including SEP in models. Consequently, we also ran the GAM 

models using data only up to 2014 to assess whether trends were observable prior to the change in the 

data. 

We also performed a series of further analyses. First, as social inequalities in BMI are typically found 

to be stronger among females than males [5], we repeated the analysis having stratified by sex. 

Second, as obesity (BMI ≥ 30 kg/m2) is of particular research and policy interest, we repeated the 

analysis using obesity as the outcome measure (see Supplementary Information Results S1 for further 

detail on methods used). Third, as random forests could potentially overfit the data, we repeated the 

BMI analysis using simple linear regression. In these models, predictors were included as linear (age) 

or categorical (sex, education, IMD) terms with no interactions included. 

The organization used to conduct the HSE changed in 1994. Some previous studies using HSE have 

accordingly focused on data from 1994 onwards [44,45]. We present results from 1991-2019, but in 

the text report results from 1994 where results from 1991-1993 depart considerably from those in later 

years. 

Results 

Descriptive Statistics 

There was an increase in the overall mean and variance of BMI and the prevalence of obesity between 

1991-2019 (Figures 1a-1c; see also Supplementary Figure S1). Education levels generally increased 

across time; the proportion of individuals with the highest education level increased from 11.7% in 

1991 to 37.2% in 2019 (Supplementary Figure S2). Increasing education levels led to non-linear 

changes in the variance of the education measure; variance decreased overall between 1991 to 2019 

but peaked in 2002 (Figure 1d). 

Predicting BMI 

Mean BMI increased among all education groups and IMD quintiles across the survey period, 

including among those with the highest SEP (Figures 2a-b) – for instance, predicted mean BMI 

increased for the most highly educated group (NVQ 4/5) from 26.2 kg/m2 (95% CI = 25.6, 26.7) in 

1991 to 28.1 kg/m2 (27.7, 28.5) in 2019. More disadvantaged SEP was generally related to higher 

BMI and there was some evidence that social inequalities widened over time. The difference between 
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the lowest and highest educated groups was 1.0 kg/m2 (0.4, 1.6) in 1991 and 1.5 kg/m2 (0.9, 1.8) in 

2019, while the difference between individuals in the most and least deprived neighbourhoods was 0.5 

kg/m2 (0.3, 0.8) in 2001 and 1.4 kg/m2 (0.8, 1.9) in 2019 (see Supplementary Figure S3 for smoothed 

results). The trend cannot be explained by changes in age composition over time – generating effect 

sizes using the age structure of the 2019 HSE sample similar results (results available on request).  

While average BMI increased within SEP groups, so did its variability (Supplementary Figure S4). 

Given this increasing variability, the total prediction error increased over time, regardless of model 

used (Figure 3a). In 1991, using age, sex, and education level to predict BMI generated an average 

prediction error (the difference between predicted and observed BMI) of 3.4 kg/m2 (3.2, 3.6). In 2019, 

prediction error increased to 4.4 kg/m2 (4.2, 4.6). Using age, sex, and IMD level, instead, average 

prediction errors were 3.8 kg/m2 (3.7, 3.8) in 2001 and 4.4 kg/m2 (4.3, 4.6) in 2019. 

While prediction errors increased in absolute size, there was some evidence that education and IMD 

explained a greater proportion of variation in BMI from 1993 onwards, as measured as the proportion 

of prediction error reduced by including education or IMD in the random forest model or, 

alternatively, by incremental R2 (Figure 3b-c; see Supplementary Figure S3 for smoothed results). The 

improvement in prediction attributable to education was 0.14% (-0.9, 1.08) in 1991 and 1.06% (0.17, 

1.84) in 2019 (Figure 3b). (A trend of increasing predictive accuracy improvement from including 

education in models was also observed using data from 1991-2014 only.) Across the studied period, 

the total reduction in prediction error when including education or IMD in models was very small – 

less than 1.1% each year (see Supplementary Figure S5 for model residuals). Equivalently, 

incremental R2 was low; for education, 0.83% (0.37, 1.25) in 1994 and 1.69% (0.31, 2.65) in 2019 

(Figure 3c). Highlighting this, the ability of education and IMD to distinguish pairs of individuals at 

higher BMI levels was also generally poor. The probability of superiority derived from models 

including SEP was 0.59 or lower in each year – little different from the probability of superiority 

derived from models just including age and sex (Figure 3d). 

Further Analyses 

Qualitatively similar results were obtained when linear regression was used instead of the random 

forest algorithm (results available on request). Qualitatively similar results were also obtained when 

predicting obesity instead of BMI: social inequalities increased over time as did the proportional 

improvement in prediction when included SEP in models, but the overall predictive power of SEP 

was low (see the Supplementary Information Results S1 for full detail). Larger social inequalities 

were found among women when stratifying the BMI analysis by sex (Supplementary Figure S6). 

Population level differences in mean BMI according to SEP were approximately twice as large among 

females compared with males. Accordingly, SEP improved individual level predictions to a greater 

extent among females, though improvements in predictive accuracy remained low. The relative 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 29, 2023. ; https://doi.org/10.1101/2023.05.24.23290477doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.24.23290477
http://creativecommons.org/licenses/by/4.0/


 9

improvement in predictive accuracy across the study period was more clearly observed among 

females. 

Discussion 

Summary of Results 

The results demonstrate an increase in mean BMI and an increase in the variability of BMI between 

1991-2019 in England, as well as an increase in the prevalence of obesity. Mean BMI and prevalence 

of obesity increased across all education groups and IMD quintiles, and there was an increase in social 

inequalities over time. However, variability in BMI within SEP groups also increased. Whilst the 

ability of education and IMD to explain the between-person variability of BMI increased over the 

study period, explained variance remained low and absolute prediction errors increased in size. A 

similar pattern of results was found when attempting to predict obesity. SEP further had limited utility 

in identifying, among pairs of individuals, the person with obesity or a higher BMI. Effect sizes were 

larger in females than males. 

Explanation of Findings 

These results are consistent with previous studies showing limited explanatory power of SEP for BMI 

[12,16–18] and accord with studies showing increased variance within SEP groups over the obesity 

epidemic [2,18,29–32]. More generally, they are also consistent with findings that shared 

environmental factors explain limited variance across a wide range of behavioural and health-related 

traits (the “gloomy prospect” of behaviour genetics [23–27]), as well as with the results of a mass 

scientific collaboration study showing that socioeconomic outcomes are largely unpredictable even 

using rich longitudinal survey data [28]. Researchers in one study were able to predict 60% of the 

variance in BMI among older adults using deep learning methods and detailed socioeconomic, 

demographic, and other study data (> 450 variables) [46]. However, their analysis also included 

several variables directly related to health, such as healthcare utilization. Intriguingly, the observed 

small change in the proportion of variance explained by SEP as group level BMI differences have 

increased is consistent with a model in which the effects of risk factors for high BMI have uniformly 

increased in strength over the obesity epidemic [47] – genetic effects have similarly increased, while 

heritability has remained almost stable [22,48,49]. 

Our results raise the question of why such low explanatory power of SEP is observed. One reason is 

that low SEP is neither a necessary nor sufficient cause of high body weight. Instead, SEP is expected 

to operate distally at the end of long causal chains, the steps of which may be blocked, amplified, or 

attenuated in the presence or absence of other exposures. For instance, at a population level, 

neighbourhood deprivation may lead to higher BMI by influencing physical activity via affecting 

walkability [50], but some individuals may compensate by travelling to surrounding areas or may get 
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sufficient exercise if they do physically demanding jobs. The effects of SEP on BMI may thus be 

heterogeneous, a process that would entail greater BMI variance within lower SEP groups, which is 

observed in practice [2,51].  Further, extremely strong effect sizes – stronger than those found in 

typical epidemiological studies – are required to obtain good predictive power at the individual level 

[52]. As such, while SEP had an increasingly large effect size on BMI across time, it was not 

sufficiently large to yield accurate predictions at the individual level. 

Our results may have implications for efforts to tackle obesity rates. Assuming the link between SEP 

and BMI is causal (an assumption supported in some, but not all, quasi-experimental studies; [53–

55]), our results suggest that reducing the social gradient in BMI could reduce but not reverse the 

obesity epidemic: consistent with other work [2], our results show that obesity rates have increased 

among all social groups while inequalities within these groups have also increased over time. As has 

been previously argued, the increasing variability of BMI could mean a one-size-fits-all approach may 

not be effective as increased variability may reflect distinct determinants [56]. We should, however, 

note that predicting the effects of intervening on SEP or its mediating pathways is challenging, and it 

is possible that inequality itself could increase obesity rates [57]. 

Despite an increasing association between SEP and BMI at the population level, the results suggest 

limited utility of the use of SEP indicators in predictive algorithms for obesity or BMI.  Algorithms to 

predict obesity based on high-level SEP data are likely to have an unacceptably low sensitivity and 

specificity – focusing only on those with low SEP would miss the majority of cases. Including SEP in 

models may be justified for health equity reasons, however [58]; without its inclusion, risk will be 

systematically underestimated for low SEP individuals.  

While SEP does not explain much of the between-person variation in BMI, determining its predictive 

ability is important as it can motivate the development of more complex and specific theories and 

highlight the need for other non-standard but highly predictive data. Genetic data are increasingly 

available –  polygenic scores for BMI now achieve R2 of 15% [59] – but text or other ‘big’ data could 

also be useful. A recent study mining the content and style of essays written at age 11 explained 

almost 20% of the variability in childhood cognitive ability [60], though the ability to predict BMI 

and other physical health measures is unlikely to be this high.  

Strengths and Limitations 

Strengths included objective measurement of BMI and use of data spanning almost three decades of 

the obesity epidemic in England. We examined measures of individual and area-level SEP, measures 

that are easy to collect (and thus may appear in predictive algorithms) and have been widely studied in 

the social inequality literature previously. Nevertheless, these variables were relatively high level and 

restricted to a small number of categories, limiting potential predictive accuracy. The measures were 

also based on current SEP; life course measures of SEP – or of body weight (e.g., ever obese) – would 
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have yielded more accurate predictions (though the gloomy prospect makes us circumspect as to the 

degree of improvement). Improvements in predictive accuracy may also have been greater if 

covariates other than age and sex were included in models, as this would allow for the determination 

of more granular interaction effects. The data we used were also cross-sectional. Assuming that our 

estimates at least partly confounded [see, e.g., 61], we are likely to have obtained optimistic estimates 

of predictive accuracy, relative to intervening directly on SEP [62]. Finally, the random forest models 

may have been too flexible and overfit the data, producing poor out-of-sample predictions. 

Nevertheless, using OLS regression yielded similar results. 

Conclusions 

While absolute inequalities in BMI and obesity according to education and neighbourhood 

deprivation increased in England between 1991 and 2019, within group inequalities also increased 

and were large relative to between groups inequalities, contributing to the weak explanatory power of 

SEP. Though explanatory power increased over the study period, it remained low which suggests that 

reducing inequality is unlikely to reverse the large impact on the obesity rates which increased across 

all SEP groups since the beginning of the obesity epidemic. Nevertheless, the possibility of 

heterogeneous effects of SEP means that targeted attention within SEP groups could be fruitful. 
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Figures 

 

Figure 1: Descriptive statistics (+ 95% confidence intervals) by survey year. (a) Mean body mass index. (b) Proportion of individuals who are obese (BMI ≥ 30 kg/m2). (c) Standard deviation of 
BMI. (d) Shannon’s entropy (a measure of variability) for categorical educational attainment variable. All figures are weighted. Confidence intervals derived using Rao & Wu bootstrap method 
to account for complex survey design.
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Figure 2: Results of random forest models predicting BMI by survey year. (a) Predicted mean population BMI assuming all 
individuals have given educational attainment. (b) Predicted mean population BMI assuming all individuals from areas in 
given IMD quintile. (c) Difference in mean BMI at the population level between highest (NVQ 4/5 or 1st quintile IMD) and 
lowest (no qualifications or 5th quintile IMD) SEP groups. Confidence intervals calculated using bootstrap samples 
accounting for complex survey design (500 bootstraps, centile method)
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Figure 3: Predictive accuracy of random forest models predicting individuals’ BMI by survey year. (a) Mean absolute error of model predictions by model (i.e., average difference between 
predicted and observed BMI; baseline prediction uses sample mean, other estimates are random forest models including stated covariates). Higher values are indicative of less accurate 
prediction. (b) Percentage reduction in prediction error when further including educational attainment or IMD in random forest model (compared to model including age and sex). (c) 
Incremental R2 when further including educational attainment or IMD in random forest model (compared to model including age and sex). (d) Probability of superiority by model. 
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