

Supplementary Figure S1: Generation of *Pycr1* knockout mice. (A) Strategy and allele description for *Pycr1* knockout mice. (B) Schematic of gDNA from WT *Pycr1*. Arrows are depicting the primers used to genotype $Pycr1^{+/+}$ (619 bp, F + R1) and $Pycr1^{-/-}$ (354 bp, F + R2). (C) Genotyping of $Pycr1^{+/+}$, $Pycr1^{+/-}$ and $Pycr1^{-/-}$ animals by PCR. (D) Quantitative real time PCR demonstrating that $Pycr1^{-/-}$ dermal fibroblasts have virtually no Pycr1 transcripts left compared to WT. Two-tailed Student's t test, ****p<0.0001 (n = 4). (E) Distribution of genotypes from heterozygous intercrosses and $Pycr1^{+/-}$ x $Pycr1^{-/-}$ crosses illustrate that $Pycr1^{-/-}$ mice are born at expected Mendelian ratios. Two-tailed Student's t test, ns p>0.05. (F) Herovici staining shows that $Pycr1^{-/-}$ have less collagen I fibers (pink), whereas collagen III fibers (blue) appear unchanged. Scale bar, 100 µm. (G) Quantification shows no significant difference in collagen I and collagen III fibers between WT and $Pycr1^{-/-}$ mice. Intensity was calculated by averaging measurements from three mice/genotypes. Error bars indicate mean \pm SEM. Two-tailed Student's t test, ns p>0.05, **p<0.01, ***p<0.001.