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Abstract 

 

Clinical trials of pharmacological approaches targeting the core features of autism have 

failed. This is despite evidence from preclinical studies, genetics, post-mortem studies and 

correlational analyses linking peripheral and central markers of multiple candidate 

neurochemical systems to brain function in autism. Whilst this has in part been explained by 

the heterogeneity of the autistic population, the field has largely relied upon association 

studies to link brain chemistry to function. The only way to directly establish that a 

neurotransmitter or neuromodulator is involved in a candidate brain function is to change it 

and observe a shift in that function. This experimental approach dominates preclinical 

neuroscience, but not human studies. There is very little direct experimental evidence 

describing how neurochemical systems modulate information processing in the living human 

brain. As a result, our understanding of how neurochemical differences contribute to 

neurodiversity is limited and impedes our ability to translate findings from animal studies 

into humans. 

Here, we begin by introducing our “shiftability” paradigm, an approach to bridge the 

translational gap in autism research. We then provide an overview of the methodologies used 

and explain our most recent choice of psilocybin as a pharmacological probe of the serotonin 

system in vivo. Finally, we provide a summary of the protocol for ‘PSILAUT’, an exemplar 

“shiftability” study which uses psilocybin to directly test the hypothesis that the serotonin 

system functions differently in autistic and non-autistic adults.  
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1. Introduction 

 

Autistic spectrum disorder (ASD), the overarching definition used by our current diagnostic 

guidelines, is a life-long neurodevelopmental condition characterised by differences in social 

interaction and communication, repetitive or restricted patterns of behaviour, and sensory 

differences1. Clinical trials have failed to offer pharmacological options for those that seek 

support. This in part reflects the complex neurobiology and diversity of autism. However, 

clinical trial efforts have also been hampered because there is no reliable experimental bridge 

from ‘basic’ neuroscience to clinical application. This is not an isolated problem; it is 

common across neuropsychiatric conditions. We do not yet fully understand how 

neurochemical systems regulate information processing within and across different levels of 

brain organisation in neurotypical or neurodivergent people, and in particular, how this links 

to core traits of these conditions. 

A constraint is that human neuroscience research has largely relied on association or 

correlational (and cross-sectional) evidence linking genetic, preclinical, post-mortem and 

neuroimaging data to, for example, trait(s), symptom(s) or diagnoses. However, correlations 

are not causal. The only way to establish that a neurosignalling system is involved in a 

candidate brain mechanism is to change it and observe a ‘shift’ in that mechanism. This is 

basis of preclinical study designs, but there has been limited translation to humans.  

We have developed a direct experimental approach to examine neurochemical regulation of 

information processing across the organisational levels of the human brain which is sensitive 

to individual differences in neurotypical and neurodivergent people. We call this a 

“shiftability” paradigm. To date, our “shiftability” studies have demonstrated that the autistic 

brain responds differently when different neurochemical systems are perturbed by a single, low 

dose pharmacological challenge2–11.  

Here, we begin by introducing our “shiftability” paradigm, a novel approach to bridge the 

translational gap in autism research. We then provide an overview of the methodologies used 

and explain our most recent choice of psilocybin as a pharmacological probe of the serotonin 

system in vivo. Finally, we provide a summary of the protocol for ‘PSILAUT’, our latest 

“shiftability” study which uses psilocybin to directly test the hypothesis that the brain’s 
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serotonin system functions differently in autistic and non-autistic adults. The end goal across 

our many shiftability studies is to build a pharmacological repository of how different drugs 

‘shift’ brain processing mechanisms across multiple levels of organisation in autistic and non-

autistic individuals. 

 

2. Measuring ‘shift’ 

 

There is currently no reliable ‘biomarker’ that separates people with an autism diagnosis from 

controls12. For example, functional magnetic resonance imaging (fMRI) data from the EU-

AIMS consortium indicates that there is no statistically significant difference in brain activation 

during facial emotion processing in autism13. This work emphasises the message from a recent 

large-scale meta-analysis carried out by Mottron and colleagues. They found that, even if there 

are statistically significant case-control differences, the effect sizes reported from ASD case-

control analyses are modest at best (the largest is around a standard deviation of 1.0 for Theory 

of Mind studies12) and have gotten smaller over time, despite ever larger study sample sizes14. 

One interpretation of this pattern is that we have too broad a diagnostic definition of autism; 

another is that the larger the sample size the more likely it is to revert towards the mean; and 

yet another is that we need to identify more biologically homogeneous subgroups (i.e. stratify). 

None of these approaches have significantly advanced the field. We propose a different strategy 

– that measures should be sensitive to individual diversity and capture more ‘foundational’ 

aspects of brain function; and that they should permit examination of how these functions 

‘shift’ in response to a change in neurochemical pathways in autistic and non-autistic people. 

In selecting measures that capture ‘shift’, we must recognise that the genetic and environmental 

influences which increase the likelihood of neuropsychiatric conditions do not map directly to 

autism. Instead, they generate the neurobiological conditions for autism and other 

neurodevelopmental, neurological and mental health conditions, such as schizophrenia, 

attention deficit hyperactivity disorder, mood disorders, epilepsy and learning difficulties. 

These are life factors which act on the brain systems developing early, namely sensory systems 

and emerging interconnecting whole-brain networks15–20. Altering these ‘foundational’ aspects 

of brain development may have cascading effects as the brain matures, generating diversity in 

cognition and behaviour21,22. Secondary and compensatory mechanisms will also continue to 

act across the lifespan leading to heterogeneous clinical outcomes23. However, early changes 
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to the foundational properties of the brain should persist and could therefore be a measurement 

target of differences in brain function. 

In support of this principle, we and others have evidence that the regulation of sensory 

processing and the functional connectivity of brain networks is associated with ASD across the 

lifespan. For example, using EEG, Kolenik and colleagues have reported that infants later 

diagnosed with autism do not suppress neural responses to repeated auditory stimulation24; 

similarly, Piccardi and colleagues identified that infants with elevated likelihood for autism 

show reduced tactile sensory gating25. Using MRI, we have reported that the local functional 

connectivity of sensory systems is altered in newborns with a higher likelihood of developing 

autism15; and the global functional connectivity of brain networks at full-term predicts 

emergence of later autistic traits26. Moreover, we have reported similar profiles in autistic 

adults, namely reduced sensory suppression detected using EEG10 and altered functional 

connectivity of sensory systems and whole-brain networks using MRI27. This is important 

because these measures not only capture brain function across age groups, they may also be 

back-translated to animal models to support a translational bridge28,29. 

Also important is that selected measures of altered brain function are likely to be sensitive to 

modulation with a pharmacological challenge. Using fMRI, we have consistently found this to 

be the case. For example, we have reported that fMRI response can be modulated with single 

dose drug challenges which target components of the serotonin system (citalopram and 

tianeptine)2,3,8,9, glutamate-GABA system (riluzole)11 and endocannabinoid system 

(cannabidiol)4,5. We have also used EEG recordings during sensory stimulation to capture 

response to GABAB receptor agonist, arbaclofen. We have been able to quantify individual 

‘shifts’ in these measures in response to drug challenge and differences at group-level between 

autistic and non-autistic participants10,30. The range of measures used to capture ‘shift’ and their 

target level of brain organisation is shown in Figure 1.  
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Figure 1. The organisational levels of information processing in the brain and methodologies that 

probe each level. Methodologies used to detect ‘shift’ that are included in our “shiftability” paradigm 

and discussed here are shown in bold. Bidirectional arrows represent interaction between organisation 

levels (adapted from Ahmad & Ellis, 202231).   

 

3. Targeting the serotonin system in autism using psilocybin 

  

Alterations in the serotonin system are consistently reported in autism and hence, whether there 

are functional differences in this system is an important focus for our “shiftability” studies. 

However, the evidence linking serotonin to autism to date, has mostly been indirect from 

associations and/or correlational studies. For example, polymorphisms in genes for serotonin 

synthesis, transporters and receptors are associated with autism32,33. Elevated whole blood 

serotonin levels are also reported in one-third of autistic individuals34,35. In contrast to these 

indirect approaches, direct alteration of serotonergic system function in vivo can be achieved 

using pharmacological probes. In animal model systems, this modulation of receptor targets of 

serotonin has included agonism of 5HT1A and 5HT7 receptors to increase social behaviour and 

reduce stereotypy36; and activation of 5HT2A, 5HT1A and 5HT7 receptors to shift glutamate-

GABA indices of excitation/inhibition (E/I) balance37,38, proposed to be altered in autism39. In 

humans, this approach is less frequently taken, but our team has previously reported that 

acutely elevating serotonin levels with a single dose of selective-serotonin reuptake inhibitor 

(SSRI) citalopram produces sustained activation of brain regions associated with facial 
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expression processing in autistic adults, but not in controls2. This finding suggests that acute 

non-selective activation of the serotonin system may influence behaviours associated with 

autism.  

There is also evidence implicating specific serotonin receptors in autism. The 5HT2A receptor, 

encoded by the HT2RA gene, is a robust functional candidate gene in autism40–43, and lower 

cortical 5HT2A receptor binding has been reported to correlate with social communication 

differences in autism44. The 5HT2A receptor is expressed throughout the cortex but especially 

in regions related to sensorimotor integration45 and the so-called default mode network 

responsible for “self” and “other” processing46. At the circuit level, 5HT2A receptor signalling 

is thought to enhance neural plasticity47 and increases cortical glutamate and thalamic GABA 

levels38. However, it is not known whether there are autistic differences in 5HT2A regulation of 

sensorimotor processes, networks such as the default mode network, and regulation of 

glutamate-GABA levels is not known. To assess this, we need targeted pharmacological 

probes. Unlike animal studies, the choice of probe in humans is constrained by the safety and 

side effect profile of candidate compounds, and few (if any) neuropsychiatric drugs used in 

people are entirely selective. With this caveat in mind, we selected psilocybin (4-

phosphoryloxy-N.N-dimethyltryptamine) as a pharmacological probe of the serotonin system 

based on its affinity for 5HT2ARs.  

Psilocybin is a classic psychedelic compound produced by several species of mushrooms, 

including so-called “magic mushrooms”. Psilocybin is rapidly metabolised into its active 

component psilocin48. Psilocin is a 5HT2AR agonist but also binds several serotonin receptors, 

including 5HT7, 5HT2B, 5HT1D, 5HT6, 5HT5, 5HT2C & 5HT1B receptors in decreasing order of 

reported affinity49.  

Prior studies have used relatively high doses of psilocybin to explore the effects of psychedelics 

on the brain. However, we will use lower doses (2 mg and 5 mg) in our “shiftability” protocol 

to assess whether 5HT2AR-mediated brain responses are uncomplicated by marked psychedelic 

experiences. We are confident that our dose range will generate a ‘shift’ in brain function based 

on evidence using positron emission topography that similar doses of psilocybin engage 

5HT2AR receptors50 and low dose psilocybin is sufficient to alter cognition and obsessive-

compulsive behaviour51,52. Low doses of the serotonergic psychedelic lysergic acid 

diethylamide (LSD) and psilocybin-containing mushrooms also acutely alter brain resting-state 

fMRI and EEG indices in the non-autistic population53,54, as well as neural responses to sensory 
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stimuli55. Therefore, we expect that 2 mg and 5 mg of psilocybin will expose functional 

differences in the serotonin system targeted by psilocybin in autistic and non-autistic 

individuals.  

 

4.   The “shiftability” paradigm: An example study protocol 

4.1.  Overall design of the ‘PSILAUT’ study 

This study will be conducted in accordance with the Declaration of Helsinki at the Institute of 

Psychiatry, Psychology and Neuroscience (IoPPN) at De Crespigny Park, SE5 8AF, London, 

United Kingdom. Our study does not address safety or clinical efficacy and the UK 

Medicines and Health Regulatory Authority (MHRA) has confirmed that our protocol is 

therefore not a clinical trial of an Investigational Medicinal Product (IMP) as defined by the 

EU Directive 2001/20/EC. Nevertheless, as our design incorporates a ‘drug intervention’ our 

protocol has been registered on clinicaltrials.gov for transparency (NCT05651126). Ethical 

approval has been received from the UK Health Research Authority following review by the 

Dulwich Research Ethics Committee (reference: 21/LO/0795).  

We aim to recruit up to 70 healthy adult participants including 40 autistic and 30 non-autistic 

control participants in our placebo-controlled, randomised, double-blind, repeated-measures, 

cross-over, case-control study. All participants will provide written informed consent. 

Participants will receive either placebo or one of two single doses (2 mg or 5 mg) of oral 

synthetic COMP360 psilocybin on three separate visits. The order of administration of 

placebo and psilocybin will be pseudo-randomised to ensure balanced numbers of individuals 

have placebo or drug on their first visit, and to control for order effects. However, the lowest 

dose of psilocybin will always precede the higher dose to allow for unblinding should a 

participant experience unwanted side effects on either of the first two visits. If that visit is a 

low dose psilocybin visit, we will avoid exposing that participant to the higher dose on a 

subsequent visit.  

The study is an Investigator-Initiated Study sponsored by King’s College London and co-

Sponsored by South London and Maudsley NHS Foundation Trust. It is part funded by 

COMPASS Pathfinder Ltd with infrastructure support from the NIHR-Maudsley Biomedical 

Research Centre at South London and Maudsley NHS Foundation Trust and King’s College 

London. COMPASS Pathfinder Ltd are donating psilocybin (as “COMP360”). 
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Figure 2. “PSILAUT” recruitment and study procedures. Autistic and non-autistic participants will be 

recruited from existing local research databases, advertising on the King’s College London website and wider 

dissemination of study information. Participants are welcome to self-refer. Autistic participants will also be 

recruited from clinical contacts South London and Maudsley NHS trust, local and national support groups and 

via a database managed by our collaborators at the Autism Research Centre, University of Cambridge. 

Interested participants will be sent an information sheet and screened via video call (eg. Zoom) or phone for 

eligibility. Written consent will be sought after inclusion criteria are confirmed and the participant is then 

assigned to a study schedule. Participants will be provided with log in details to an online platform (Delosis 

Ltd., London) to complete a battery of questionnaires remotely. Participants will visit the study site on three 

separate occasions. A blood sample will be collected on one of the three visits for quantification of whole blood 

serotonin levels. Each participant will complete an MRI scan session to acquire a structural, resting-state 

functional MRI scan and a face emotion processing task. Participants will wear a wrist wearable (ActiGraph, 

Pensacola, FL, USA) following the MRI scan session for the remainder of the study visit. The EEG paradigm 

will include resting-state and functional activation during a face processing, auditory oddball, visual processing 

and tactile paired-pulse inhibition tasks. Psychophysical tasks will be collected prior to a cognitive battery 

which will include the ‘reading the mind in the eyes’ (RMET), probabilistic reversal learning (PRT), both of 
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which will be delivered using PsyTools (Delosis Ltd., London) and a semantic verbal fluency task. The 5-

dimensional altered states of consciousness (5D-ASC) questionnaire will then be completed to quantify any 

subjective effects experienced by participants.  

 

4.2.  ‘PSILAUT’ Protocol Measures 

 

Baseline characterisation: A comprehensive baseline characterisation will be obtained. An 

expert clinical diagnosis of ASD from a recognised UK assessment service will be accepted. 

This may be supported by the Autism Diagnostic Interview-Revised56 where an appropriate 

informant is available. An Autism Diagnostic Observation Schedule57 will be used to assess 

current symptom level, but if it has already been used to inform the diagnostic assessment in 

adulthood, it will not be repeated. Additional baseline questionnaires will quantify core 

autistic features (e.g. social behaviour or sensory differences), relevant cognitive domains 

(e.g. intolerance of uncertainty and behavioural flexibility) and the symptomology of co-

occurring psychiatric conditions. 

 

4.2.1.  Neurometabolites 

Magnetic Resonance Spectroscopy (MRS): An MRS Hadamard Encoding and 

Reconstruction of MEGA-Edited Spectroscopy (HERMES) sequence58 will be collected 

during the MRI scan for the dorsal medial prefrontal cortex region. HERMES permits the 

quantification of levels of metabolites in the living brain and is focused on estimating GABA 

and Glutamate-glutamine markers of E/I balance. For the purposes of our study, given the 

evidence that E-I pathways are modulated by 5HT2A receptor action in animal models38, we 

will be able to examine the impact of psilocybin on these tissue level measures of E-I 

balance.  
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4.2.2.  Local Circuits 

EEG: 

Resting-state: High-density (64-channel) EEG data will be collected during the resting-state, 

metrics from which local circuit activity can be derived such as beta and gamma band 

power/frequency31. Oscillations in the beta frequency band at rest, for example, are 

associated with inhibitory neurotransmitter levels in sensorimotor cortex59. This, and other 

EEG-derived metrics such as aperiodic activity, are considered a proxy measure for E/I 

balance in vivo31. Hence, we will be able to examine the impact of psilocybin on these 

dynamic measures of E-I balance.  

Passive sensory tasks:  

Visual domain: A visual processing task (contrast saturation) in which steady-state evoked 

potentials (SSVEPs) are elicited by passive surround suppression stimuli will be conducted. 

We have shown that SSVEPs during this task are altered in autism10. 5HT2ARs are 

particularly highly expressed in the primary visual cortex46, and their agonism alters visual 

response amplitudes and surround suppression in mouse primary visual cortex60. In humans, 

we expect visual processing to be altered by 5HT2AR activation given that the marked visual 

perceptual changes robustly induced with higher doses of psychedelics are blocked by 

pretreatment with the 5HT2 receptor antagonist, ketanserin61.  

Auditory domain: A conventional auditory oddball paradigm (mismatch negativity, 

MMN)62 will be used to passively measure ‘repetition suppression’ (or habituation) to 

repetitive auditory stimuli and response to an unexpected ‘deviant’ stimulus (the event-

related mismatch negativity MMN response). We and others have observed less repetition 

suppression in both eight-month-old infants who go on to receive a diagnosis or autism, and 

adults with a diagnosis of autism24,30. Thus, this signal appears linked to autism across 

infancy to maturity. The impact of autism on the event-related MMN is less consistent and 

varies with age63–65. The latter may in part be due to differences in the serotonin system, as 

the MMN response can be modulated by acute elevation of serotonin levels by the highly 

selective SSRI escitalopram66. In this study we will test the prediction that psilocybin alters 

both sensory suppression and MMN in autism differently compared to controls. 

Tactile domain: A tactile paired-pulse inhibition task will be used to passively investigate 

EEG responses as objective markers of sensory gating. Aligning with findings in the auditory 
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and visual domain, less tactile neural repetition suppression in this task is associated with 

autism25. As processing of tactile stimuli is also known to be perturbed by 5HT2AR agonism 

with psilocybin67, we also expect to elicited functional differences following psilocybin in 

autistic and non-autistic individuals in this paradigm. 

 

 

4.2.3.  Global Networks 

Resting-State: 

EEG: Oscillatory power will be assessed across multiple frequency bands during the resting-

state. This will include electrodes over key brain regions implicated in autism such as those 

belonging to the default mode network68. Reduced oscillatory power over DMN regions 

using electrophysiological approaches following 5HT2AR activation by psilocybin has been 

reported previously69. Functional connectivity analyses (e.g. within and between brain 

networks) can also be derived from EEG, and this will complement connectivity analyses 

from resting-state fMRI.  

MRI: Participants will undergo a structural and functional MRI scan. Scans will be acquired 

on a 3.0 Tesla MR Scanner (General Electric Premier). A fMRI scan with a multiband 4 

sequence will be acquired during the resting-state, multiband 4 is preferable for connectivity 

analyses70. In addition, multiband sequences will considerably reduce the repetition time 

(TR), therefore they have the advantage of allowing dynamic functional connectivity 

analyses. Autistic differences in both ‘averaged’ functional connectivity and dynamic 

functional connectivity have been reliably reported across different datasets27,71. Functional 

connectivity of brain networks in neurotypical individuals has also be shown to be acutely 

modulated by 5HT2AR activation72. Notably, psilocybin alters dynamic functional 

connectivity, mediated by 5HT2AR agonism73. It facilitates state transitions and more 

temporally diverse brain activity in neurotypical individuals74. Our study will be the first to 

examine the effects of psilocybin on conventional and dynamic functional metrics in autistic 

individuals.   
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Task-dependent MRI and EEG:  

MRI: fMRI studies of face emotion processing in autism have produced inconsistent results. 

In the largest study to date, no differences between autistic and non-autistic individuals in 

fMRI response to facial expressions of emotion were observed13. However, we have recently 

examined the fMRI response to facial expressions of emotion in a social brain network before 

and after administration of the SSRI, citalopram. We reported that the dynamics of the 

response to faces is different in autism, in that 5HT reuptake inhibition slows habituation2. 

Consistent with this, blockade of 5HT2ARs causes an ‘opposite’ effect and reduces neural 

responses to emotional faces during fMRI in neurotypical individuals75. Therefore, we expect 

that psilocybin will alter the dynamics of face emotion processing, but differently in autistic 

individuals. 

EEG: Event-related potentials (ERPs) in response to face stimuli will also be assessed during 

EEG. The N170 component, a neural response present at 170ms following the presentation of 

facial stimuli and can be modulated by 5HT2AR activation61,76,77. An altered N170 response is 

associated with social communication differences in autism and may have utility as a 

stratification marker that is amenable to support78. It is also going to be the first prognostic 

biomarker for autism (or any neurodevelopmental or psychiatric condition) to be approved by 

regulatory agencies78. The incorporation of this task in our protocol therefore will be an 

important test of whether an autism biomarker can be modified pharmacologically. 

 

4.2.4.  Perception 

Psychophysical approaches are structured approaches in which stimulus characteristics are 

tightly controlled, and they provide robust, objective measures of sensory sensitivity by 

estimating perceptual metrics79,80. Serotonin has been directly implicated in tactile perception, 

such as in affective touch, by studies using tryptophan depletion (which acutely reduces 

central serotonin levels) alongside psychophysical approaches81. Tactile detection threshold 

and amplitude discrimination will be assessed, as differences in tactile thresholds have 

already been reported in autism and are associated with outcomes82. 
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4.2.5.  Additional measures 

Questionnaires: The 5-dimensional altered states of consciousness (5D-ASC) 

questionnaire83 will be completed on each visit following the completion of study procedures 

to quantify the subjective effects of psilocybin, which are primarily mediated by the 

5HT2AR84.  

Cognitive Battery: ‘Theory of mind’ (ie. cognitive empathy, the ability to understand and 

take into account the mental state of another individual) can be investigated using the 

‘reading the mind in the eyes’ (RMET) task85. Other cognitive processes in which differences 

are observed in autism such as language and executive and reward-related functioning (e.g. 

flexible choice behaviour) will be assessed with a verbal fluency task and probabilistic 

reversal learning task, respectively86,87.  

Peripheral biochemistry: Participants will be asked to provide a blood sample on one visit 

prior to placebo/drug administration (their preference). Whole blood serotonin levels will be 

determined for each individual, given that elevated levels are present in one-third of 

individuals with autism34,35. This will allow us to explore whether any ‘shift’ in brain 

function in response to psilocybin depends on overall serotonin ‘tone’ as indexed by proxy. 

Arousal measures: A wrist wearable will be used to passively collect heart rate data, from 

which autonomic nervous system function indices of heart rate and heart rate variability, can 

be derived. Heart rate variability is thought to reflect stress or arousal and is modulated by the 

serotonin system88.  These autonomic measures have also been reported to be different in 

autistic individuals compared to controls89,90. Therefore, in this study we will examine the 

action of psilocybin on these indices of arousal and also consider if arousal interacts with 

other measurements acquired in the protocol. 

 

4.3.  Data analyses  

The overarching goal of our analyses is to assess whether we see a ‘shift’ by psilocybin in 

autistic and non-autistic individuals for each modality. Both parametric and nonparametric 

statistical analyses will be used to test hypotheses that the serotonergic targets of psilocybin 

functioning differently in autistic individuals. Given the heterogeneity of the autistic 

population and our prior observations that there is a wide range of pharmacological responses 

in both autistic and non-autistic individuals, we will calculate individual ‘shift’ for each 
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modality, and what characteristics (eg. clinical scores, questionnaire responses, whole blood 

serotonin) these are associated with. Although we will generate and analyse data from single 

modalities, post-hoc we will also explore multimodal metrics (ie. associations between 

modalities) to understand how ‘shifts’ detected across multiple organisational levels are inter-

related.  

 

4.4.  Power analyses  

We will use a within-subject, repeated-measures design with a placebo condition so that each 

subject is their own control, thus increasing statistical power. Results from our prior 

neuroimaging studies using pharmacological challenge were successful in detecting group 

differences in MRI metrics with sample sizes of n = < 202–7,9,11. This implies an effects size 

(ES, expressed in Cohen’s d) in excess of 1.2. In sensory tasks a sample size of n = 16 per 

cell is estimated to achieve 80% power to detect a medium effect (0.5) at a = 0.05; this has 

been achieved even in mixed sex groups of 20 participants or fewer. This reflects the 

literature in which significant group differences are evident even in mixed sex groups of 20 

participants or fewer (e.g. n = 16)91–93. Our design relies upon participants attending for 

repeat test sessions. Thus, there is a chance that participants may ‘drop-out’ and need to be 

replaced, this is accommodated with our sample size. 

 

4.5.  Limitations  

Our protocol requires active participation despite the passive nature of several of our tasks. 

For example, participants will wear an EEG cap and will be asked to remain focused on the 

screen during the presentation of sensory stimuli. This may limit generalisability across ages 

or to autistic individuals with higher support needs.  

Even in our very capable adult cohort, participants can get restless or become distracted. 

Hence, we have included concurrent eye tracking during EEG to control for the potential 

confound of participant variability in fixation on the screen. However, many of our tasks 

require minimal or no response from participants and so they are less likely to be impacted by 

confounds such as individual cognitive difficulties. We hope that this way, should our indices 

prove worthy of further investigation and/or incorporation in (for example) clinical trials, 
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they will be more accessible for individuals who may otherwise be excluded from drug 

development studies.  

 

5.  Conclusion 

Our “shiftability” paradigm aims to determine how different organisational scales of brain 

function are modulated by neurochemical systems; and identify differences between autistic 

and non-autistic adults at an individual level. Our most recent shiftability study will use 

psilocybin to test the hypothesis that the serotonin system targeted by psilocybin is different 

in autistic and non-autistic people. We believe that the results will expand our understanding 

of brain biology in neurodivergent and neurotypical (autistic and non-autistic) individuals. 

We also hope our work will inform a more personalized medicine approach to autism. Not 

everyone in our study will respond the same way to psilocybin. By capturing individual 

biology in both autistic and non-autistic people, this experimental medicine approach may 

help identify autistic individuals whose serotonin system functions no differently from non-

autistic people, and who might therefore not be expected to show a clinical response in a 

clinical trial. And vice versa; those who respond biologically to psilocybin challenge might 

ultimately benefit clinically. To date, all clinical trials for the core features of autism have 

failed. This is in large part because they have included participants based on diagnosis alone 

and measured outcomes without evaluating mechanisms. In depth pharmacological 

‘profiling’ adopting some of the methods described here may help avoid the unnecessary 

expense and likely failure of clinical trials and facilitate the discovery of novel 

pharmacological support options for those who would like that choice.   
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