Supplementary appendix

To the manuscript titled:

Information bias of vaccine effectiveness estimation due to informed consent for national registration of COVID-19 vaccination: estimation and correction using a data augmentation model

Index:

Contents

Supplementary methods:	2
Derivation of bias estimation formula:	2
Data sources	3
Statistical methods	4
Supplementary results	6
Figure S1: Model estimation of consent percentage for partial vaccination	6
Figure S2: Model prediction of consent rate for full primary vaccination	7
Figure S3: Convergence of models	8
Figure S4: Uncorrected and corrected VE (A) and RR (B) estimates under different assumed relative risks of endpoint when not providing consent	14
Table S1: Uncorrected and corrected VE estimates assuming lower or higher risk of endpoint work providing consent	
Table S2: Uncorrected and corrected regression coefficients, standard errors and fraction of missing information	24
References	25

Supplementary methods:

Derivation of bias estimation formula:

The relative risk (RR) is:

$$RR = 1 - VE/100$$

Taking a true incidence in unvaccinated i_u yields a true incidence in the vaccinated of

$$i_{\nu} = i_{\nu} * RR$$

Assuming the incidence is independent of providing consent, we can take i_{ν} as the observed incidence in vaccinated i'_{ν} (i.e. in those providing consent) and calculate the observed incidence in unvaccinated i'_{ν} (i.e. in those not vaccinated and those not providing consent) as a weighted mean incidence of unvaccinated and non-consenting individuals:

$$i'_{u} = \frac{i_{u} * (1 - v) + i_{v} * v * nc}{1 - v + v * nc} = \frac{i_{u} * (1 - v) + i_{u} * RR * v * nc}{1 - v + v * nc}$$

where v is the proportion vaccinated in the population and nc is the proportion of vaccinated persons not providing informed consent. The observed RR' is a ratio of i'_{v} and i'_{u} as follows:

$$RR' = \frac{i_v'}{i_u'} = \frac{i_u * RR}{(\frac{i_u * (1 - v) + i_u * RR * v * nc}{1 - v + v * nc})} = \frac{i_u * RR * (1 - v + v * nc)}{i_u * (1 - v) + i_u * RR * v * nc}$$

The incidence parameter can be cancelled out and the formula can be simplified to:

$$RR' = \frac{RR * (1 - v + v * nc)}{1 - v + RR * v * nc}$$

Data sources

The NICE dataset was linked to the CIMS database using the unique national identification number to determine the COVID-19 vaccination status of hospitalized patients. Hospitalization records that could not be linked because of missing or incorrect identification numbers, as well as those with missing birth year or persons born after 2010 (i.e. >= 12 years of age in 2021), were excluded. Disease onset date was not recorded in the NICE data. To avoid attributing admissions occurring directly after vaccination to failure of the vaccine, we assumed a 7-day interval between disease onset and hospital admission, based on the median lag time in notified COVID-19 hospitalizations early in the pandemic. This dataset was aggregated to the daily number of hospital admissions and ICU admissions per vaccination status, birth year, sex and region (defined by the 25 national safety regions), referred to as the 'original events dataset'. For this study we selected hospitalizations between 11 July and 15 November 2021 for three reasons. First, during this period a single SARS-CoV-2 variant (Delta) was dominant. Second, VE estimates were relatively stable over this period, in contrast with later periods in which the emergence of Omicron variants was associated with a rapid decline of the VE over time.(1) Such changes in the true VE would have severely complicated our analysis. Third, booster vaccinations were administered as of 18 November 2021. Because informed consent was obtained separately for the booster vaccination, discordant consents for the primary series and the booster vaccination in CIMS would have further complicated the analysis.

The total population size on January 1st, 2021 per year of birth, sex, and region for individuals born before 2010 was obtained from the Dutch Personal Records Database, and then enriched with CIMS data to provide the daily population size per vaccination status, birth year, sex and region. This is referred to as the 'original population dataset'. Since both the original events dataset and the original population dataset use CIMS to define vaccination status, both suffer from misclassification of vaccination status (i.e. a proportion of individuals marked as unvaccinated had in reality been vaccinated).

Informed consent percentages by date, year of birth, sex, and region were based on an anonymous minimal nationwide COVID-19 vaccine register that consists of vaccination records from all individuals vaccinated by Municipal Health Services (GGDs). This register indicates whether or not informed consent for registration in CIMS was given. Based on this GGD dataset we constructed an aggregated population dataset with similar format as the original population dataset, but representing numbers of individuals who did not provide consent for registration of their primary series vaccination.

Statistical methods

We implemented two different imputation approaches. In the first approach we took the original population dataset as a starting point. Within each stratum of calendar time, birth year, sex and region, we substituted the number of unvaccinated persons by the same number of individuals not providing consent at the GGD with their corresponding vaccination status (partially or fully vaccinated with the primary series). This dataset is referred to as the "partially-corrected population dataset". The implicit assumption for this imputation approach is that individuals vaccinated by providers other than the GGD all provided informed consent.

In the second imputation approach, we fitted a logistic regression model for the proportion providing informed consent among individuals vaccinated by the GGD as a function of calendar time, birth year, sex, and region. The model included an interaction spline for calendar time and birth year, thus assuming smooth changes over time and age. This model was used to predict the number of non-consenting individuals among individuals vaccinated by providers other than the GGD (e.g. general practitioners or hospitals). Thus, we assumed that conditional on calendar time, birth year, sex, and region, the consent percentages were similar for GGD and other vaccination providers. We then replaced individuals classified as unvaccinated in the original population dataset with partially or fully vaccinated individuals according to the number of non-consenting individuals, stratified by calendar time, birth year, sex, and region. This dataset is referred to as the "fully-corrected population dataset". Since this is based on model prediction rather than observation, to incorporate the statistical uncertainty of this imputation, the fully-corrected population dataset was stochastically generated during each iteration (see next sections).

To illustrate the estimated amount of misclassification in the population and the change in vaccination status after correction, the prevalence of different vaccination statuses over calendar time were visually presented by age stratum for the original population dataset, the partially-corrected population dataset, and the fully-corrected population dataset. We also plotted the newly assigned vaccination statuses for individuals that were classified as unvaccinated in the original population dataset.

To model the VE, we used a Generalized Additive Model with a negative binomial link function, using number of hospital or ICU admissions as the outcome of interest and the natural logarithm of the population size as offset. Covariates included calendar time with a smooth function using a penalized thin plate regression spline with 39 degrees of freedom (k=40) and age in 5-year categories. The model yields relative risks (RR) from which the VE can be calculated as (1 - RR) * 100%; and the 95% confidence interval as (1 - upper/lower bound RR) * 100%. First, this model was fit to the original population and events dataset, thus yielding VE estimates affected by information bias due to misclassification of vaccination status.

Next, we fitted the model to the corrected events and population dataset, separately for the partially-corrected and fully-corrected datasets. However, the amount of misclassification in the

original events dataset depends both on the distribution of true vaccination status and non-consent percentage in the population, and on the true VE. Therefore, we used a customized data augmentation model to impute the vaccination status stochastically. First, we determined the expected distribution of true vaccination statuses in those classified as 'unvaccinated' in the original events dataset, using the same stratification factors as for the population dataset: calendar time, birth year, sex, and region. This expected distribution was determined by multiplying the distribution of vaccination statuses in the corrected population dataset, for those classified as unvaccinated in the original population dataset, by the estimated relative risk for each vaccination status (using 1 for status 'unvaccinated'), and subsequently normalizing this to obtain a probability (see example in Figure 1). Next, we stochastically imputed the vaccination status for each hospitalized patient that was classified as 'unvaccinated' in the original events dataset. By refitting the regression model to this augmented dataset we obtained a corrected RR. Since the imputation model step uses an initial RR estimate that is biased, the newly obtained RR is not optimally corrected. Therefore, the stochastic assignment of vaccination status was repeated for a total of 10 iterations, each time using the previous RR estimate. We performed 20 independent imputations to visually inspect whether convergence was reached. This analysis was performed separately for the age groups 12-49, 50-69, and 70+ years old, the two outcome events COVID-19 hospitalization and COVID-19 ICU admission, and the two imputation methods (partially-corrected and fully-corrected).

The implicit assumption underlying the stochastic assignment of vaccination status is that the incidence of an outcome, conditional on calendar time, birth year, sex and region, is independent of providing informed consent. To assess the impact of this assumption, we performed sensitivity analyses in which we assumed that those not providing informed consent would have a higher (RR 1.5) or lower (RR 0.7) incidence compared to consenting vaccinated individuals, conditional on birth year, calendar time, sex, and region.

We calculated 95% confidence intervals for the corrected VE estimates by pooling the estimates and standard errors of the final iteration from the 20 imputations according to Rubin's rules.(2) The estimated bias was expressed as the absolute difference in percentage points of the VE and the relative difference of the RR of the bias-corrected estimates compared to the uncorrected estimates. Finally, we calculated for each scenario the relative efficiency of the data augmentation method as compared to the hypothetical scenario in which there is no misclassification of vaccination status. In multiple imputation, the fraction of observed information can be interpreted as the efficiency of the imputation model in comparison to having observed all data. Its complement, the *fraction of missing information*, can be calculated as:

$$\gamma_{mis} = \frac{B_{MI}(1+1/M)}{V_{MI}}$$

where B_{MI} is the between-imputation variance of the log(RR) estimates, M is the number of imputations, and V_{MI} is the pooled variance of the log(RR). This quantity can also be used to determine the number of imputations required to obtain a stable pooled estimate.(3)

Supplementary results

Figure S1: Model estimation of consent percentage for partial vaccination
By year of birth, sex, region, and calendar time (year 2021). A. B. model prediction using interaction splines for calendar time and year of birth. B. Adjusted odds ratio's for sex and region.

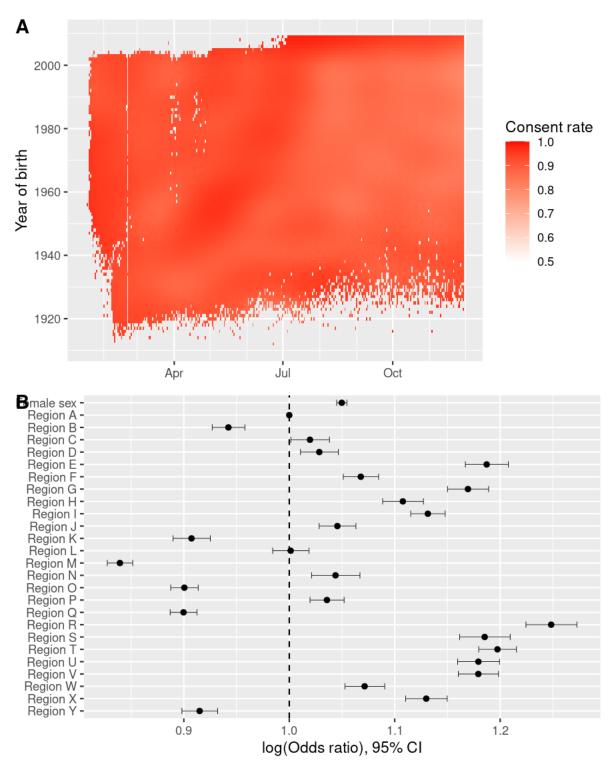
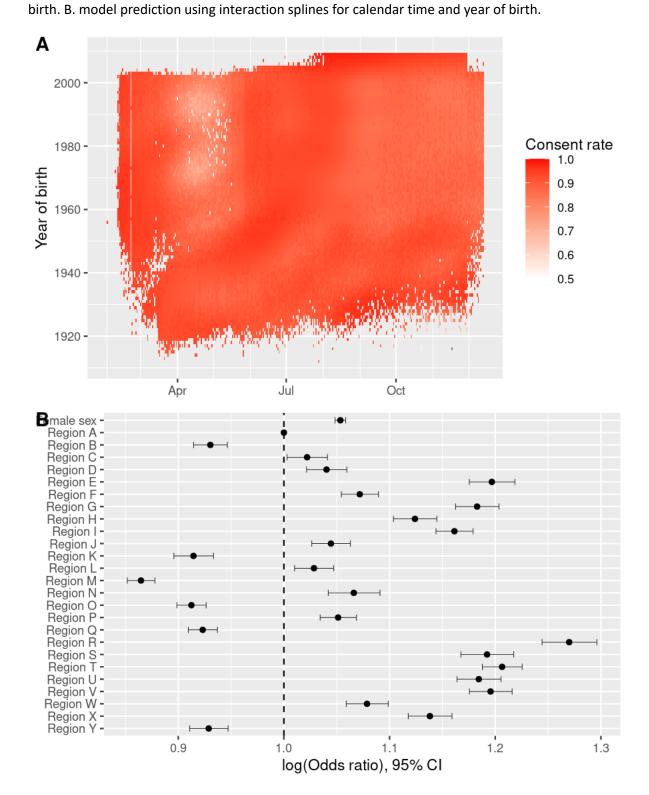



Figure S2: Model prediction of consent rate for full primary vaccination
By year of birth and calendar time (year 2021). A. crude rate aggregated by month and 10-year of

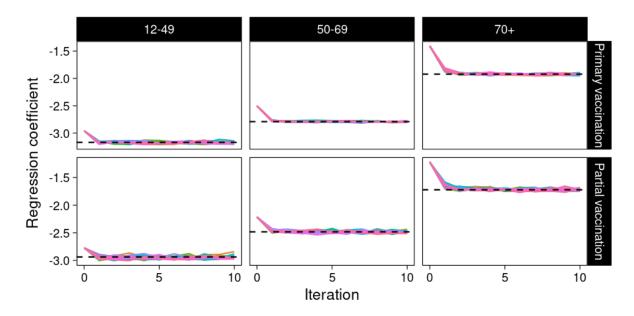
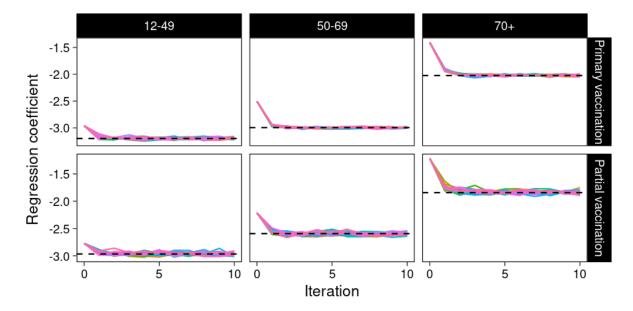
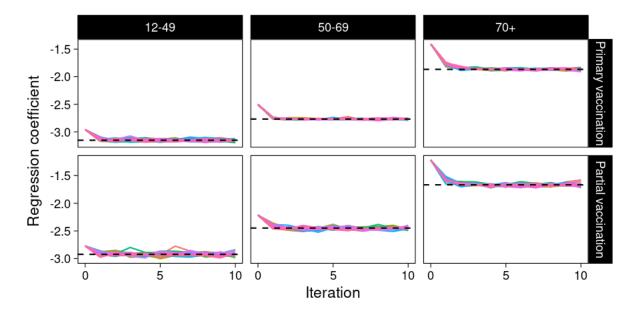


Figure S3: Convergence of models

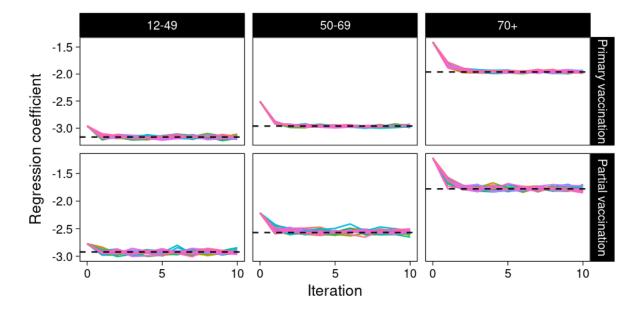
Abbreviations: RR: relative risk, ICU: intensive care unit, GGD: municipal health service.


MODEL 1

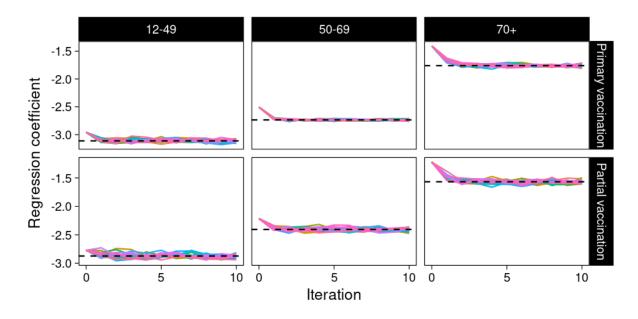
Endpoint: Hospitalization, Correction: partially, RR no consent: 0.7**


MODEL 2

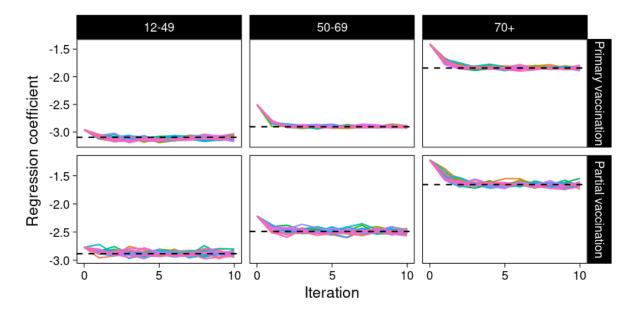
Endpoint: Hospitalization, Fully corrected model, RR no consent: 0.7**


MODEL 3

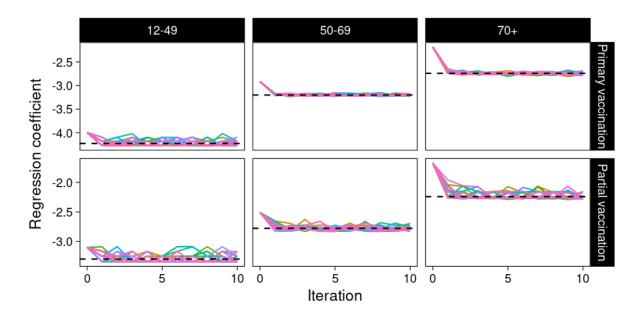
Endpoint: Hospitalization, Partially corrected model, RR no consent: 1.0**


MODEL 4

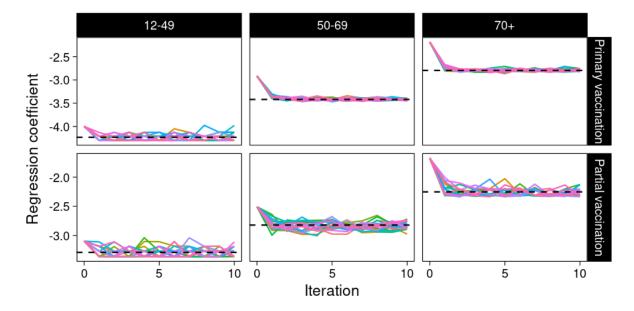
Endpoint: Hospitalization, Fully corrected model, RR no consent: 1.0**


MODEL 5

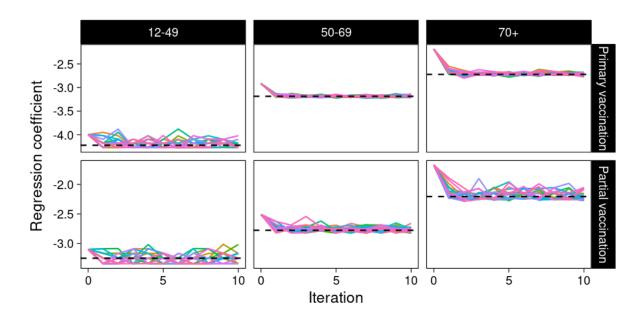
Endpoint: Hospitalization, Partially corrected model, RR no consent: 1.5**


MODEL 6

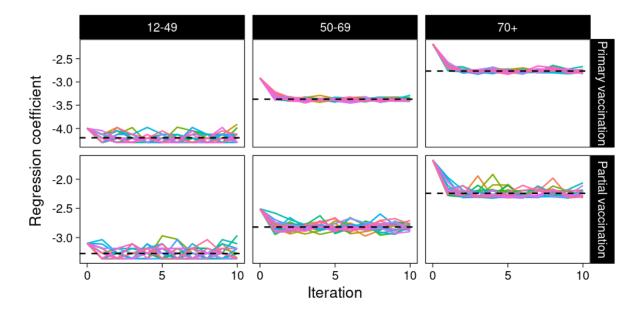
Endpoint: Hospitalization, Fully corrected model, RR no consent: 1.5**


MODEL 7

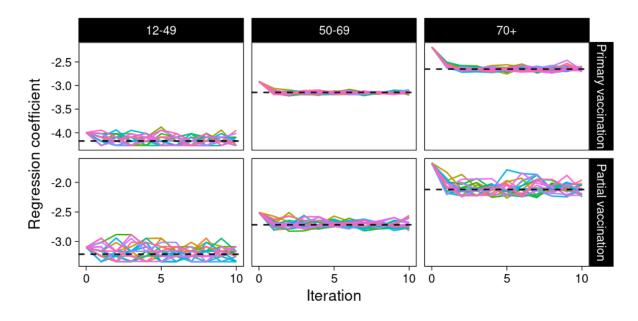
Endpoint: ICU admission, Partially corrected model, RR no consent: 0.7**


MODEL 8

Endpoint: ICU admission, Fully corrected model, RR no consent: 0.7**


MODEL 9

Endpoint: ICU admission, Partially corrected model, RR no consent: 1.0**


MODEL 10

Endpoint: ICU admission, Fully corrected model, RR no consent: 1.0**

MODEL 11

Endpoint: ICU admission, Partially corrected model, RR no consent: 1.5**

MODEL 12

Endpoint: ICU admission, Fully corrected model, RR no consent: 1.5**

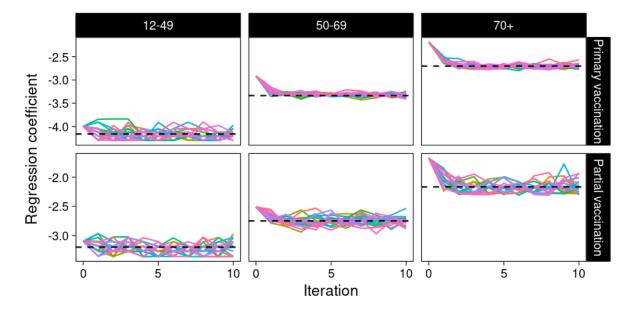
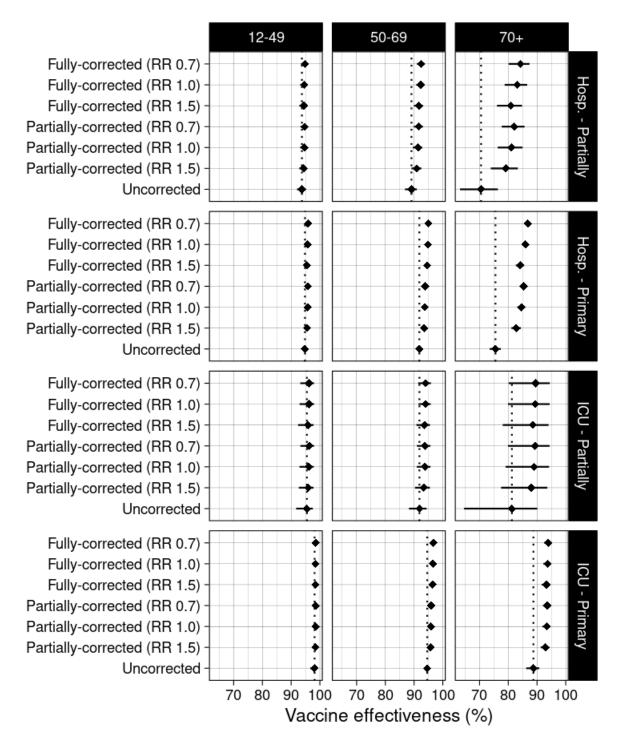



Figure S4: Uncorrected and corrected VE (A) and RR (B) estimates under different assumed relative risks of endpoint when not providing consent

Abbreviations: RR: relative risk of the outcome for the non-consenting vaccinated individuals compared to the consenting vaccinated individuals; VE: vaccine effectiveness; Hosp: hospital; ICU: intensive care unit.

A.

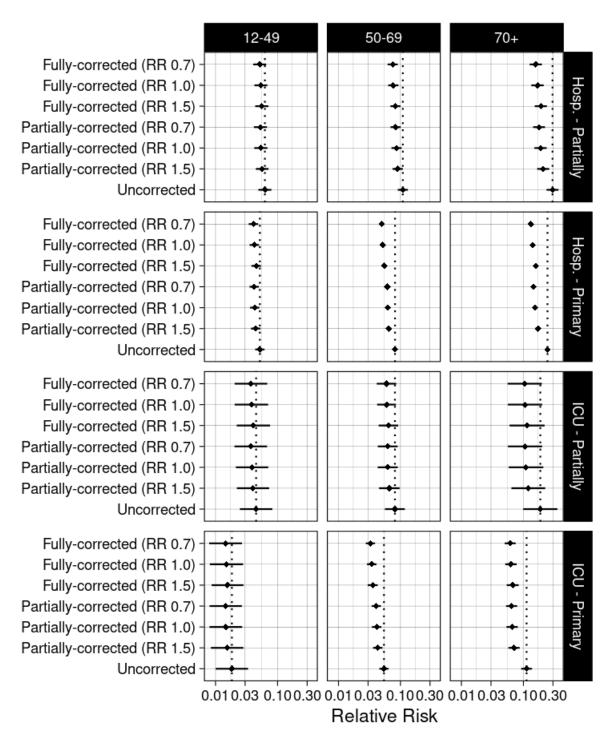


Table S1: Uncorrected and corrected VE estimates assuming lower or higher risk of endpoint when not providing consent

Vaccination status	Person years	Events	VE	VE bias	RR	RR bias
•	12-49 years U	ncorrected				
Unvaccinate d	1,165,490	1,989	-	-	-	-
Partially vaccinated	511,966	71	93.8% (92.1; 95.1)	-	0.062 (0.049- 0.079)	-
Primary vaccinated	1,176,241	143	94.8% (93.8; 95.6)	-	0.052 (0.044- 0.062)	-
Hospitalization	12-49 years Pa	artially-corre	cted (RR 1.5)			
Unvaccinate d	1,039,598	1,964	-	-	-	-
Partially vaccinated	553,464	80	94.3% (92.8; 95.5)	-0.6%	0.057 (0.045- 0.072)	1.11
Primary vaccinated	1,260,635	158	95.6% (94.7; 96.3)	-0.7%	0.044 (0.037- 0.053)	1.17
Hospitalization	12-49 years Pa	artially-corre	cted (RR 1.0)			
Unvaccinate d	1,039,598	1,973	-	-	-	-
Partially vaccinated	553,464	76	94.6% (93.1; 95.8)	-0.9%	0.054 (0.042- 0.069)	1.16
Primary vaccinated	1,260,635	152	95.7% (94.9; 96.4)	-0.9%	0.043 (0.036- 0.051)	1.21
Hospitalization	12-49 years Pa	artially-corre	cted (RR 0.7)			
Unvaccinate d	1,039,598	1,976	-	-	-	-
Partially vaccinated	553,464	75	94.7% (93.3; 95.8)	-1.0%	0.053 (0.042- 0.067)	1.18
Primary vaccinated	1,260,635	150	95.8% (95.0; 96.5)	-1.0%	0.042 (0.035- 0.050)	1.23
Hospitalization	12-49 years Fi	ully-correcte	d (RR 1.5)		,	
Unvaccinate d	1,028,344	1,957	-	-	-	-
Partially vaccinated	554,978	80	94.4% (92.9; 95.6)	-0.7%	0.056 (0.044- 0.071)	1.12
Primary vaccinated	1,270,376	164	95.5% (94.6; 96.2)	-0.7%	0.045 (0.038- 0.054)	1.15
Hospitalization	12-49 years Fo	ully-correcte	d (RR 1.0)			
Unvaccinate d	1,028,495	1,969	-	-	-	-

Vaccination status	Person years	Events	VE	VE bias	RR	RR bias
Partially vaccinated	554,660	78	94.6% (93.2; 95.8)	-0.9%	0.054 (0.042- 0.068)	1.16
Primary vaccinated	1,270,542	155	95.8% (95.0; 96.5)	-1.0%	0.042 (0.035- 0.050)	1.23
Hospitalization	12-49 years	Fully-correcte	d (RR 0.7)			
Unvaccinate d	1,028,402	1,977	-	-	-	-
Partially vaccinated	554,936	75	94.9% (93.4; 96.0)	-1.1%	0.051 (0.040- 0.066)	1.21
Primary vaccinated	1,270,359	150	95.9% (95.1; 96.6)	-1.1%	0.041 (0.034- 0.049)	1.27
Hospitalization	50-69 years	Uncorrected				
Unvaccinate d	279,752	1,978	-	-	-	-
Partially vaccinated	175,829	126	89.1% (86.8; 91.0)	-	0.109 (0.090- 0.132)	-
Primary vaccinated	1,208,038	806	91.8% (91.1; 92.5)	-	0.082 (0.075- 0.089)	-
Hospitalization	50-69 years	Partially-corre	cted (RR 1.5)			
Unvaccinate d	208,944	1,912	-	-	-	-
Partially vaccinated	187,771	140	91.0% (89.1; 92.6)	-1.9%	0.090 (0.074- 0.109)	1.21
Primary vaccinated	1,266,904	857	93.5% (92.9; 94.1)	-1.7%	0.065 (0.059- 0.071)	1.26
Hospitalization	50-69 years	Partially-corre	cted (RR 1.0)			
Unvaccinate d	208,944	1,934	-	-	-	-
Partially vaccinated	187,771	135	91.4% (89.6; 92.8)	-2.3%	0.086 (0.072- 0.104)	1.26
Primary vaccinated	1,266,904	839	93.7% (93.1; 94.3)	-1.9%	0.063 (0.057- 0.069)	1.30
Hospitalization	50-69 years	Partially-corre	cted (RR 0.7)		,	
Unvaccinate d	208,944	1,949	-	-	-	-
Partially vaccinated	187,771	132	91.7% (89.9; 93.1)	-2.6%	0.083 (0.069- 0.101)	1.31
Primary vaccinated	1,266,904	828	93.9% (93.3; 94.4)	-2.0%	0.061 (0.056- 0.067)	1.33
Hospitalization	50-69 years	Fully-correcte	d (RR 1.5)			

Vaccination status	Person years	Events	VE	VE bias	RR	RR bia
Unvaccinate d	178,082	1,839	-	-	-	
Partially vaccinated	190,142	155	91.7% (90.0; 93.1)	-2.6%	0.083 (0.069- 0.100)	1.3
Primary vaccinated	1,295,394	915	94.5% (94.0; 95.0)	-2.7%	0.055 (0.050- 0.060)	1.4
Hospitalization	50-69 years Fu	ılly-correcte	d (RR 1.0)			
Unvaccinate d	178,116	1,878	-	-	-	
Partially vaccinated	189,874	146	92.3% (90.8; 93.7)	-3.3%	0.077 (0.063- 0.092)	1.4
Primary vaccinated	1,295,628	885	94.8% (94.3; 95.3)	-3.0%	0.052 (0.047- 0.057)	1.5
Hospitalization	50-69 years Fu	ılly-correcte	d (RR 0.7)			
Unvaccinate d	178,138	1,899	-	-	-	
Partially vaccinated	190,059	144	92.5% (91.0; 93.8)	-3.4%	0.075 (0.062- 0.090)	1.4
Primary vaccinated	1,295,421	865	95.0% (94.5; 95.4)	-3.2%	0.050 (0.046- 0.055)	1.6
Hospitalization	70+ years Unc	orrected			,	
Unvaccinate d	123,945	1,432	-	-	-	
Partially vaccinated	27,281	86	70.5% (63.2; 76.4)	-	0.295 (0.236- 0.368)	
Primary vaccinated	764,788	2,173	75.5% (73.5; 77.4)	-	0.245 (0.226- 0.265)	
	70+ years Part	ially-correct	ed (RR 1.5)			
Unvaccinate d	71,075	1,193	-	-	-	
Partially vaccinated	28,820	93	79.1% (73.9; 83.3)	-8.6%	0.209 (0.167- 0.261)	1.4
Primary vaccinated	816,120	2,404	82.8% (81.1; 84.4)	-7.3%	0.172 (0.156- 0.189)	1.4
Hospitalization	70+ years Part	ially-correct	ed (RR 1.0)			
Unvaccinate d	71,075	1,279	-	-	-	
Partially vaccinated	28,820	91	81.1% (76.3; 85.0)	-10.6%	0.189 (0.150- 0.237)	1.9
					0.155	

Vaccination status	Person years	Events		VE bias	RR	RR bias
Hospitalization	70+ years Parti	ially-correct	ed (RR 0.7)			
Unvaccinate d	71,075	1,326	-	-	-	-
Partially vaccinated	28,820	89	82.1% (77.7; 85.7)	-11.6%	0.179 (0.143- 0.223)	1.65
Primary vaccinated	816,120	2,275	85.4% (84.1; 86.6)	-9.8%	0.146 (0.134- 0.159)	1.67
Hospitalization	70+ years Fully	-corrected	(RR 1.5)			
Unvaccinate d	65,063	1,170	-	-	-	-
Partially vaccinated	29,625	97	80.9% (76.1; 84.8)	-10.4%	0.191 (0.152- 0.239)	1.54
Primary vaccinated	821,326	2,422	84.1% (82.6; 85.5)	-8.6%	0.159 (0.145- 0.174)	1.54
Hospitalization	70+ years Fully	-corrected	(RR 1.0)		,	
Unvaccinate d	65,074	1,265	-	-	-	-
Partially vaccinated	29,506	93	83.1% (78.7; 86.6)	-12.6%	0.169 (0.134- 0.213)	1.75
Primary vaccinated	821,435	2,331	85.9% (84.7; 87.1)	-10.4%	0.141 (0.129- 0.153)	1.74
Hospitalization	70+ years Fully	-corrected	(RR 0.7)			
Unvaccinate d	65,093	1,318	-	-	-	-
Partially vaccinated	29,607	91	84.2% (80.2; 87.4)	-13.7%	0.158 (0.126- 0.198)	1.86
Primary vaccinated	821,315	2,280	86.8% (85.6; 87.8)	-11.2%	0.132 (0.122- 0.144)	1.85
ICU admission	12-49 years Ur	corrected			,	
Unvaccinate d	1,165,490	400	-	-	-	-
Partially vaccinated	511,966	11	95.5% (91.8; 97.5)	-	0.045 (0.025- 0.082)	-
Primary vaccinated	1,176,241	11	98.2% (96.6; 99.0)	-	0.018 (0.010- 0.034)	-
ICU admission	12-49 years Pa	artially-corre	ected (RR 1.5)		-	
Unvaccinate d	1,039,598	397	-	-	-	-
Partially vaccinated	553,464	12	96.0% (92.7; 97.8)	-0.5%	0.040 (0.022- 0.073)	1.12

Vaccination status	Person years	Events	VE	VE bias	RR	RR bias
Primary vaccinated	1,260,635	12	98.5% (97.2; 99.2)	-0.3%	0.015 (0.008- 0.028)	1.19
ICU admission	12-49 years F	artially-corre	cted (RR 1.0)		,	
Unvaccinate d	1,039,598	398	-	-	-	
Partially vaccinated	553,464	12	96.1% (92.9; 97.9)	-0.6%	0.039 (0.021- 0.071)	1.16
Primary vaccinated	1,260,635	11	98.5% (97.3; 99.2)	-0.4%	0.015 (0.008- 0.027)	1.25
ICU admission	12-49 years F	artially-corre	cted (RR 0.7)		,	
Unvaccinate d	1,039,598	399	-	-	-	-
Partially vaccinated	553,464	11	96.3% (93.2; 98.0)	-0.8%	0.037 (0.020- 0.068)	1.22
Primary vaccinated	1,260,635	11	98.5% (97.3; 99.2)	-0.4%	0.015 (0.008- 0.027)	1.26
ICU admission	12-49 years F	ully-correcte	d (RR 1.5)		,	
Unvaccinate d	1,028,467	396	-	-	-	
Partially vaccinated	554,760	12	95.9% (92.4; 97.8)	-0.4%	0.041 (0.022- 0.076)	1.11
Primary vaccinated	1,270,470	12	98.4% (97.2; 99.1)	-0.3%	0.016 (0.009- 0.028)	1.18
ICU admission	12-49 years F	ully-correcte	d (RR 1.0)		,	
Unvaccinate d	1,028,519	397	-	-	-	
Partially vaccinated	554,615	12	96.2% (93.0; 98.0)	-0.7%	0.038 (0.020- 0.070)	1.19
Primary vaccinated	1,270,563	12	98.5% (97.2; 99.2)	-0.3%	0.015 (0.008- 0.028)	1.22
ICU admission	12-49 years F	ully-correcte	d (RR 0.7)		,	
Unvaccinate d	1,028,468	398	-	-	-	
Partially vaccinated	554,809	11	96.3% (93.2; 98.0)	-0.8%	0.037 (0.020- 0.068)	1.21
Primary vaccinated	1,270,420	11	98.5% (97.3; 99.2)	-0.4%	0.015 (0.008- 0.027)	1.26
	50-69 years L	Incorrected			•	
Unvaccinate d	279,752	634	-	-	-	

Vaccination status	Person years	Events	VE	VE bias	RR	RR bias
Partially vaccinated	175,829	30	91.9% (88.2; 94.4)	-	0.081 (0.056- 0.118)	-
Primary vaccinated	1,208,038	170	94.6% (93.6; 95.4)	-	0.054 (0.046- 0.064)	-
ICU admission	50-69 years Pa	artially-corre	cted (RR 1.5)			
Unvaccinate d	208,944	619	-	-	-	-
Partially vaccinated	187,771	32	93.4% (90.3; 95.5)	-1.5%	0.066 (0.045- 0.097)	1.23
Primary vaccinated	1,266,904	181	95.7% (94.9; 96.4)	-1.1%	0.043 (0.036- 0.051)	1.26
CU admission	50-69 years Pa	artially-corre	cted (RR 1.0)			
Unvaccinate d	208,944	625	-	-	-	-
Partially vaccinated	187,771	31	93.8% (90.9; 95.7)	-1.9%	0.062 (0.043- 0.091)	1.31
Primary vaccinated	1,266,904	176	95.9% (95.1; 96.5)	-1.3%	0.041 (0.035- 0.049)	1.31
ICU admission	50-69 years Pa	artially-corre	cted (RR 0.7)			
Unvaccinate d	208,944	627	-	-	-	-
Partially vaccinated	187,771	31	93.8% (91.0; 95.7)	-1.9%	0.062 (0.043- 0.090)	1.31
Primary vaccinated	1,266,904	174	95.9% (95.2; 96.6)	-1.3%	0.041 (0.034- 0.048)	1.33
	50-69 years F	ully-correcte	d (RR 1.5)			
Unvaccinate d	178,176	599	-	-	-	-
Partially vaccinated	189,906	39	93.6% (90.8; 95.5)	-1.7%	0.064 (0.045- 0.092)	1.27
Primary vaccinated	1,295,536	195	96.4% (95.7; 97.0)	-1.9%	0.036 (0.030- 0.043)	1.52
	50-69 years F	ully-correcte	d (RR 1.0)			
Unvaccinate d	178,146	605	-	-	-	-
Partially vaccinated	189,794	36	94.0% (91.5; 95.8)	-2.2%	0.060 (0.042- 0.085)	1.36
Primary vaccinated	1,295,679	191	96.6% (95.9; 97.1)	-2.0%	0.034 (0.029- 0.041)	1.58
ICU admission	50-69 years F	ully-correcte	d (RR 0.7)		•	

Vaccination status	Person years	Events	VE	VE bias	RR	RR bia
Unvaccinate d	178,237	612	-	-	-	
Partially vaccinated	189,930	37	94.0% (91.4; 95.9)	-2.2%	0.060 (0.041- 0.086)	1.3
Primary vaccinated	1,295,451	184	96.7% (96.1; 97.2)	-2.1%	0.033 (0.028- 0.039)	1.6
ICU admission	70+ years Unc	orrected				
Unvaccinate d	123,945	244	-	-	-	
Partially vaccinated	27,281	10	81.3% (64.6; 90.1)	-	0.187 (0.099- 0.354)	
Primary vaccinated	764,788	182	88.7% (86.2; 90.8)	-	0.113 (0.092- 0.138)	
ICU admission	70+ years Part	ially-correct	ed (RR 1.5)		,	
Unvaccinate d	71,075	226	-	-	-	
Partially vaccinated	28,820	11	88.0% (77.5; 93.6)	-6.7%	0.120 (0.064- 0.225)	1.5
Primary vaccinated	816,120	198	92.9% (91.3; 94.3)	-4.2%	0.071 (0.057- 0.087)	1.
ICU admission	70+ years Part	ially-correct	ed (RR 1.0)		,	
Unvaccinate d	71,075	234	-	-	-	
Partially vaccinated	28,820	10	89.0% (79.1; 94.2)	-7.7%	0.110 (0.058- 0.209)	1.7
Primary vaccinated	816,120	190	93.4% (91.9; 94.7)	-4.7%	0.066 (0.053- 0.081)	1.
	70+ years Part	ially-correct	ed (RR 0.7)			
Unvaccinate d	71,075	236	-	-	-	
Partially vaccinated	28,820	10	89.4% (79.9; 94.4)	-8.1%	0.106 (0.056- 0.201)	1.
Primary vaccinated	816,120	189	93.5% (92.1; 94.7)	-4.8%	0.065 (0.053- 0.079)	1.5
	70+ years Fully	/-corrected	(RR 1.5)		•	
Unvaccinate d	65,091	226	-	-	-	
Partially vaccinated	29,539	11	88.6% (78.1; 94.0)	-7.3%	0.114 (0.060- 0.219)	1.
					0.067	

Vaccination status	Person years	Events	VE	VE bias	RR	RR bias
ICU admission	70+ years Fully	-corrected	(RR 1.0)			
Unvaccinate d	65,117	232	-	-	-	-
Partially vaccinated	29,443	10	89.4% (79.9; 94.4)	-8.1%	0.106 (0.056- 0.201)	1.76
Primary vaccinated	821,454	192	93.7% (92.2; 94.9)	-5.0%	0.063 (0.051- 0.078)	1.79
ICU admission	70+ years Fully	-corrected	(RR 0.7)			
Unvaccinate d	65,102	235	-	-	-	-
Partially vaccinated	29,546	10	89.5% (80.2; 94.4)	-8.2%	0.105 (0.056- 0.198)	1.78
Primary vaccinated	821,368	189	93.9% (92.5; 95.0)	-5.1%	0.061 (0.050- 0.075)	1.84

Abbreviations: VE: vaccine effectiveness, RR: relative risk of the outcome for the non-consenting vaccinated individuals compared to the consenting vaccinated individuals.

Table S2: Uncorrected and corrected regression coefficients, standard errors and fraction of missing information

For models assuming incidence of the endpoint independent of providing consent (RR 1.0).

Partially vaccinated **Primary vaccinated** Model Coefficient SE Coefficient SE y_{mis}1 **y**mis¹ Hospitalization | 12-49 years Uncorrected -2.773 0.122 -2.960 0.088 Partially-0.10 (0.06-0.05 (0.03--2.9230.125 -3.1520.088 corrected 0.17) 0.09)0.09 (0.05-0.08 (0.04-Fully--2.922 0.122 -3.1650.089 corrected 0.15) 0.13) Hospitalization | 50-69 years Uncorrected -2.216 0.096 -2.5060.046 Partially-0.08 (0.04-0.05 (0.03-0.096 0.047 -2.449 -2.768 corrected 0.13) 0.09) Fully-0.14 (0.08-0.11 (0.06--2.570 0.096 -2.962 0.048 corrected 0.23) 0.19) Hospitalization | 70+ years Uncorrected -1.408 0.041 -1.2220.113 Partially-0.10 (0.05-0.17 (0.10-0.116 0.045 -1.667 -1.867corrected 0.17) 0.27) Fully-0.14 (0.08-0.16 (0.09-0.117 0.043 -1.779 -1.961corrected 0.23) 0.26) ICU admission | 12-49 years Uncorrected -3.098 0.308 -3.998 0.307 Partially-0.08 (0.04-0.05 (0.03-0.307 -4.223 0.309 -3.249corrected 0.13) 0.10)Fully-0.13 (0.07-0.13 (0.07-0.317 0.315 -3.274 -4.199 corrected 0.21)0.21)ICU admission | 50-69 years -2.509 Uncorrected 0.189 -2.9160.087 Partially-0.06 (0.03-0.07 (0.04-0.191 0.089 -2.776 -3.186 corrected 0.10) 0.12)Fully-0.07 (0.04-0.11 (0.06-0.089 -2.8200.178 -3.371corrected 0.13) 0.18) ICU admission | 70+ years Uncorrected -1.6740.324 -2.1840.103 Partially-0.06 (0.03-0.09 (0.05--2.2050.328 -2.7220.107 corrected 0.10) 0.16) Fully-0.05 (0.03-0.10 (0.05--2.2420.325 -2.7660.108 corrected 0.09) 0.16)

¹y_{mis} is the fraction of information that is missing about a model parameter. Numbers between brackets represent the 95% confidence interval. Statistical efficiency of the imputation model, compared to having consent in 100% of vaccinated individuals, is given as (1 - y_{mis}) * 100%. Abbreviations: RR: relative risk; SE: standard error.

References

- 1. Shao W, Chen X, Zheng C, Liu H, Wang G, Zhang B, et al. Effectiveness of COVID-19 vaccines against SARS-CoV-2 variants of concern in real-world: a literature review and meta-analysis. Emerg Microbes Infect. 2022;11(1):2383-92.
- 2. Rubin DB. Multiple Imputation for Nonresponse in Surveys. New York: Wiley; 1987.
- 3. von Hippel PT. How Many Imputations Do You Need? A Two-stage Calculation Using a Quadratic Rule. Sociological Methods & Research. 2020;49(3):699-718.