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ABSTRACT 

Background 

Deep learning models may combat widening racial disparities in heart failure outcomes through 

early identification of individuals at high risk. However, demographic biases in the performance 

of these models have not been well studied.   

Methods 

This retrospective analysis used 12-lead ECGs taken between 2008 - 2018 from 290,252 patients 

referred for standard clinical indications to Stanford Hospital. The primary model was a 

convolutional neural network model trained to predict incident heart failure within 5 years. 

Biases were evaluated on the testing set (160,312 ECGs) using area under the receiver operating 

curve (AUC), stratified across the protected attributes of race, ethnicity, age, and sex.  

Results 

50,956 incident cases of heart failure were observed within 5 years of ECG collection. The 

performance of the primary model declined with age. There were no significant differences 

observed between racial groups overall. However, the primary model performed significantly 

worse in Black patients aged 0 - 40 compared to all other racial groups in this age group, with 

differences most pronounced among young Black women. Disparities in model performance did 

not improve with integration of race, ethnicity, gender, and/or age into model architecture, by 

training separate models for each racial group, nor by providing the model with a dataset of 

equal racial representation. Using probability thresholds individualized for race, age, and gender 

offered substantial improvements in F1-scores.  

Conclusion 
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The biases found in this study warrant caution against perpetuating disparities through the 

development of machine learning tools for the prognosis and management of heart failure. 

Customizing the application of these models by using probability thresholds individualized by 

race/ethnicity, age, and sex may offer an avenue to mitigate existing algorithmic disparities. 
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Introduction 

Heart failure (HF) remains one of the leading causes of death in the US, currently 

affecting 6.2 million adults1. The burden of the disease varies greatly by age, race, and gender2. 

Despite advances in medical care that have allowed incidence to stabilize or decline3, disparities 

in outcomes persist; in fact, the gap in age-adjusted death rates between Black patients and White 

patients has widened from 1999-2017, especially among younger patients4. HF may be 

underdiagnosed at higher rates in Black patients and women in the outpatient setting5. Earlier 

detection and closer monitoring of high-risk individuals may aid in reducing occurrence and 

improving prognosis of the disease to ultimately combat these disparities.  

Several studies have used machine learning algorithms to identify cardiovascular 

conditions from electrocardiograms (ECGs)6–8. Deep neural networks can outperform 

cardiologists in recognizing several abnormalities from 12-lead ECG recordings, achieving F1-

scores above 80% and specificity above 99%9. They can also achieve superior performance when 

compared to commercial rule-based methods, such as MUSE10. The application of artificial 

intelligence to ECG data has additionally been used to identify conditions that are not typically 

detected by the human eye. Deep learning models have been successfully developed to screen for 

asymptomatic left ventricular dysfunction (area under the receiver operator curve (AUC) of 

0.93)11, atrial fibrillation (AUC of 0.87)12, aortic stenosis (AUC of 0.884)13 and anemia (AUC of 

0.923)14, illustrating the broad potential of this non-invasive tool.  

However, the performance and applicability of these models is highly contingent on the 

quality of the training data used, as well as the populations from which they are derived, and 

therefore may be prone to perpetuating implicit biases15. Several instances of this have been 

noted in the medical field: higher rates of underdiagnosis in chest radiographs among 



 

 

4 

intersectional underserved populations16, significantly worse AUC values reported for 

dermatology AI algorithms when tested on diverse datasets17, lower risk scores for Black patients 

equally as ill as White patients18, and a 50% reduction in diagnostic accuracy of skin lesions 

among darker-skinned patients19. On the other hand, there have been cases of machine learning 

algorithms producing less biased results in comparison to other scoring methods20. Nonetheless, 

the presence of such biases remains largely understudied, particularly in the realm of machine 

learning applications for cardiovascular data. 

In the case of ECG data specifically, disparities may be exacerbated by baseline 

differences due to age, race, and sex.21,22 Several studies have particularly noted benign 

variations in ECG patterns among Black patients: ST segment flattening in young Black 

women23, greater ST-elevation thresholds in Black patients than White patients24, and biphasic 

T-waves in Black women25. The differences in ECG characteristics may also carry prognostic 

significance, showing inconsistent association with mortality, which holds implications for race-

specific reference ranges and cardiovascular risk.26 Few studies have evaluated the disparities 

present in machine learning models applied to ECG data. Noseworthy et al. noted that in spite of 

racial differences in ECG data, a convolutional neural network trained on a homogenous 

population generalizes well to detecting low ejection fractions for several racial subgroups27. 

However, the effects of the intersectionality of age, sex, and race/ethnicity on model 

performance have not been well-studied.  

This work aims to holistically investigate the existence of algorithmic biases as they 

pertain to age, race, ethnicity, and sex in a deep learning model trained to predict heart failure 

from ECG data and further explore how various modifications to the training and application of 

the model affect its performance. 
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Methods 

Study Population and Data Sources 

The 12-lead ECGs used in this retrospective analysis were derived from a total of 

290,252 patients referred for standard clinical indications to Stanford University Medical Center. 

A total of 954,817 ECGs taken between March 2008 and May 2018 were extracted from the 

Phillips TraceMaster system.  All ECGs were saved as 10 second signals from all 12 leads of the 

ECG, sampled at 500Hz. Band pass and wandering baseline filters were applied to the signals, 

normalized on a per-lead basis, and down sampled to 250Hz. During model evaluation, only the 

first ECG from each patient was considered.  

Race, ethnicity, and sex were derived from self-report by the patients at the time of 

hospital enrollment.  Follow-up heart failure from March of 2008 to February of 2022 was 

queried from STARR-OMOP28, a common data model for accessing electronic health records. 

Our primary outcome of interest was incident heart failure, defined as a first instance of heart 

failure within five years of the ECG. Heart failure was defined following prior work to include 

SNOMED code 84114007 (heart failure) and all descendants, excluding 82523003 (congestive 

rheumatic heart failure)29. Patients with prior heart failure were excluded. During training and 

testing, positive cases were defined as patients who developed heart failure within five years of 

the ECG; negative cases were defined as patients with no heart failure within five years of ECG, 

given at least five years of follow-up evidenced by measurement, admission, or mortality. 

Model development and training 

A convolutional neural net was trained to predict occurrence of heart failure within 5 

years of the ECG recording. Model development was performed using Python 3.9 and PyTorch 

1.11, and models were trained on single Nvidia Titan Xp GPUs using Stanford’s Sherlock 
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computing cluster. Hyperparameters were tuned by learning from the training set (88,084 ECGs) 

and evaluating on the validation set (28,882 ECGs). The parameters were set using a batch size 

of 128, a weight decay hyperparameter of 10-4, and the ADAM optimizer. The learning rate was 

initialized to 10-3 and reduced by a factor of 10 each time the validation loss plateaued for more 

than five epochs, limited at a lower bound of 10-6. After establishing hyperparameters, four more 

models were trained using cross-validation; the dataset was partitioned into five different subsets 

such that one of the five would be excluded from training and used as validation in each model. 

The outputs of these five models were averaged to generate predictions on the testing data 

(160,312 ECGs), which was then used for the analyses below.  

Statistical Analysis 

A fair model would be expected to have equal predictive capacity across demographic 

divisions; the existence of group-based disparities in model performance constitutes bias. Age, 

race, ethnicity, and sex were chosen as the protected attributes across which to evaluate 

intersectional biases that may be present in model performance. Analyses were focused on the 

four largest racial and ethnic groups: Non-Hispanic White, Hispanic, Black, and Asian patients. 

Bias was defined as significant differences in area under the receiver operating curve (AUC) 

across demographic subgroups. Age was discretized into four groups of roughly equal 

proportions: 0-40 years, 40-60 years, 60-80 years, and >80 (80+) years. AUC was computed in a 

stratified manner for each demographic division. The receiver operating characteristic curves, 

AUC values and 95% confidence intervals were computed using the pROC R package30. Unless 

otherwise noted, AUC values were computed at a five-year time horizon, comparing all 

examples with an event of incident heart failure within five years against all examples with 

follow-up data after five years. 
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To assess differences in overdiagnosis versus underdiagnosis, calibration curves were 

graphed for each demographic subgroup using the Python Scikit-learn package31 as follows: the 

predicted probabilities were binned and plotted against the proportion of individuals in that bin 

that were observed to develop heart failure. The ideal model would show a 1:1 correlation (i.e., 

among individuals with predicted probabilities of 10%, 10% would be positive for observed 

occurrence of heart failure); a slope of less than one indicates overdiagnosis and a slope of 

greater than one indicates underdiagnosis. 

The optimal threshold used in this model was based on F1-score using data from the 

entire population; precision, recall, and negative predictive value were computed within 

subgroups of race and gender. Moreover, the distribution of positive and negative ground truth 

labels for each subgroup was plotted against the probabilities assigned to the cases by the model. 

Reducing Model Biases 

Three primary avenues in the design and application of the algorithm were investigated to 

reduce model biases: optimizing training data, modifying the architecture of the model, or 

adjusting application of the model. 

In optimizing training data, the first approach involved training a separate model for each 

racial subgroup and each age subgroup. Four individual models were trained and tested on 

datasets consisting solely of Non-Hispanic White patients, Black patients, Asian patients, and 

Hispanic patients (e.g., the AUC value reported for Asian patients reflects performance of a 

model trained only on ECGs from Asian patients). Similarly, four individual models were trained 

and tested on datasets consisting solely of patients aged 0 - 40, 40 - 60, 60 - 80, and > 80. The 

second approach entailed providing the model with a dataset that has equal representation from 

each racial subgroup. Stratified sampling was applied to the full set of ECGs to take the same 
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number of patients from each of the predominant four racial groups: using the size of the 

smallest group (Black patients) as the sampling quantity, this produced a test set of 27,176 

ECGs.  

In modifying the architecture of the model, the variables of race/ethnicity, age, and 

gender were incorporated through early and late fusion. In early fusion, the model is passed 

demographic data as an additional channel of input data. For example, a model trained on ECG 

and gender would be passed 13 channels of data, where the first 12 correspond to the 12-lead 

ECG and the 13th is 0 where the patient is male and 1 if the patient is female. In late fusion, the 

ECG is first encoded as a low-dimensional latent vector to which demographic data is appended. 

This representation is then fed through fully connected layers to make final predictions. AUC 

values were compared across the demographic subgroups to validate the effectiveness of these 

approaches in reducing model bias. 

In adjusting the application of the model, the probability threshold for classification of a 

case as a positive label was optimized separately for each demographic subgroup based on F1-

score. For each demographic subgroup, the differences were computed between metrics 

(precision, recall, negative predictive value) that resulted from using the threshold value 

individualized for that group versus the overall optimal threshold value. 

Results 

Study Population 

There were 290,252 patient ECGs derived from unique patients who were followed for an 

average of 6.8 years.  The baseline characteristics stratified by incident heart failure are 

described in Table 1. The patients were on average 59.3 years old and comprised 49.7% women.  

The racial and ethnic composition consisted of Non-Hispanic White (56.5%), Asian (14.2%), 
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Black (4.0%), Hispanic (12.3%), Native Hawaiian/Pacific Islander (1.2%), and American Indian 

or Alaskan Native (0.2%).  

Incidence of Heart Failure 

There were 50,956 incident cases of heart failure within 5 years of ECG collection.  The 

fraction of patients who developed heart failure within 5 years increased from 8.7% in the 

youngest age group of 0-40 year-olds to 35.6% in those over 80 years of age. The fraction of 

women (15.7%) developing heart failure within 5 years was lower than that of men (19.4%). The 

incidence of 5-year heart failure was higher among Black patients (23.3%) than White patients 

(18.3%), Hispanic patients (16.8%), or Asian patients (17.5%) (Table 1). Breakdowns of 

incidence rates by race/ethnicity, age, and gender can be found in Supplementary Table 1.  

Comparisons of Model Performance 

The performance of the primary model declined significantly with age. The model 

performed significantly better in those 0 - 40 years old (AUC 0.80 [0.79 - 0.81]) compared to 

those who were >80 years old (AUC 0.66 [0.65 - 0.66]) (Figure 1a). The model performed 

slightly worse in men (AUC 0.77 [0.77 - 0.77]) compared to women (AUC 0.78 [0.78 - 0.79]) 

(Figure 1b). There were no significant differences observed in model performance between racial 

groups (Hispanic patients AUC 0.79 [0.79 - 0.80], Asian patients 0.78 [0.77 - 0.79], Non-

Hispanic White patients 0.77 [0.77 - 0.78], Black patients 0.78 [0.77 - 0.79]) (Figure 1c).  

However, the trends in race- and gender-based disparities differed when broken down by 

age group. The primary model performed significantly worse in Black patients aged 0 - 40 years 

old (AUC 0.69 [95% CI 0.64 - 0.75]) compared to all other racial groups in the same age group 

(Non-Hispanic White AUC 0.80 [0.78 - 0.81]; Hispanic AUC 0.81 [0.79 - 0.83]; and Asian AUC 

0.82 [0.79 - 0.85]) (Figure 2). The racial differences in AUC were much less pronounced among 
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men, whereas the AUC for Black women (AUC 0.69 [0.62 - 0.77]) was substantially lower than 

women of all other racial groups aged 0 - 40 years (Supplementary Figure 1). Gender-based 

differences varied by age group (Supplementary Figure 2).  

The distributions of predicted probabilities for positive and negative labels vary between 

race and age subgroups (Supplementary Figure 3). The overlap of predicted model probabilities 

between healthy patients and those who developed heart failure increased substantially with age 

across all racial groups. Among Black patients aged 0 - 40 years, a lower predicted probability is 

more likely to correlate with incident heart failure compared to other race and gender subgroups.  

The calibration curves indicate that the model is best calibrated for Asian and Non-

Hispanic White patients, as observed by the linear relationship between the predicted and 

observed probabilities. The observed fraction of cases with heart failure exceeds the probability 

predicted by the model among Black patients, indicating greater underdiagnosis in comparison to 

other racial groups, especially among Black women (Figure 3).  

Figure 4 illustrates cases reflective of trends observed in model performance: an ECG 

from a Non-Hispanic White man who was assigned a high predicted probability and developed 

heart failure (true positive); an ECG from a Non-Hispanic White woman who was assigned a 

low predicted probability and did not develop heart failure (true negative); an ECG from a Black 

woman who was assigned a low predicted probability but developed heart failure (false 

negative); an ECG from an Asian man who was assigned a high predicted probability but did not 

develop heart failure (false positive); an ECG from a young Black woman with T-wave inversion 

who was assigned a high predicted probability but did not develop heart failure; and an ECG 

from a patient over 80 years old – showing typically low voltages and flat T-waves – who was 

assigned a high predicted probability but did not develop heart failure. 
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Incorporating Race and Ethnicity in Model Building 

The model was provided with different subsets of training data to determine if the 

disparities may have resulted from differences in racial and ethnic group sample sizes. Using a 

dataset with equal racial representation did not eliminate disparities between Black patients and 

patients of other racial groups in the 0 - 40 age group (Supplementary Figure 4). The AUC 

values did not improve from the primary model. Similarly, there was no improvement in 

performance amongst the different race and ethnic subgroups when compared using models that 

were trained on the same race and ethnicity as the test set (Supplementary Figure 5). Moreover, 

there was no improvement in age-related disparities when the models were trained and tested on 

data from separate age groups (Supplementary Figure 6). 

The incorporation of race/ethnicity, age, gender, or the combination of those three 

demographic variables into training did not significantly improve performance in any subgroup 

of race and age. Nonetheless, there was a reduction in racial disparities among young patients 

from the combined effect of improving performance for Black patients and diminishing 

performance for other racial groups (Figure 5).  

When factoring for F1-score, the optimal model probability threshold varied between 

subgroups of race/ethnicity, age, and gender (Supplementary Figure 7). Black men and women in 

the 0 - 40 and 40 - 60 year age groups had a lower optimal probability score threshold than all 

other groups. The optimal probability threshold for the entire population was 0.20; the highest 

individualized optimal threshold was 0.30 for Asian men aged 0 - 40 years and the lowest was 

0.10 for Black men aged >80 years. All racial and gender groups aged 0 - 40 years showed 

increases in F1-scores when using individualized thresholds (Figure 6). Black women in this age 

group showed the greatest improvement using an individualized threshold of 0.15 with an 11%-
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point increase in F1-score – a 3% increase in PPV and a 21% increase in recall. Black men aged 

>80 years showed a 10% increase in F1-score using an individualized threshold of 0.10 – a 1%-

point decrease in PPV and a 27%-point increase in recall (Supplementary Table 2). 

Discussion 

The utility of deep learning models for EKG data arises from a reduction in the demand 

for cardiologist labor, comparable or increased accuracy of the automated output, and the ability 

to provide insights above and beyond those typically detected by the human eye. They provide 

clinicians with a powerful tool in advising treatment and predicting prognosis.  

In this study, we assessed the algorithmic biases present in a model designed to detect 5-

year occurrence of heart failure. We used a range of approaches previously proposed to assess 

algorithmic equity: predictive parity, predictive equality (false positive error rate balance), equal 

opportunity (false negative error rate balance), equalized odds, conditional use accuracy quality, 

and Well-calibration32. Some of the proposed standards are mathematically incompatible (i.e., 

fairness in one metric may preclude fairness in another)33, underscoring the need for a holistic 

evaluation and consideration of factors that influence utility of the model’s application. 

The differences in AUC across demographic subgroups confirms the hypothesis that 

disparities exist in model performance, and further indicates that these disparities reflect the 

intersectionality of race/ethnicity, gender, and age in cardiovascular disease. Using the metric of 

AUC, we found that the model performed slightly better for women than men, and significantly 

worse among the older population and the Black population aged 0 - 40 than all other races. The 

small observed difference between men and women is notable given that there was a higher 

percentage of positive labels among men and consequently, less class imbalance in the data, 

which would be expected to enhance model performance34.  



 

 

13 

Upon further analyzing subgroups of race and gender, we found that the disparity 

observed among young Black patients stems primarily from the model’s diminished performance 

among Black women in comparison to women of other racial groups aged 0 - 40; significant 

differences do not exist between races among male patients or between Black men and Black 

women aged 0 - 40. There have been several cases of ECG patterns observed among healthy 

Black women that would typically be considered malignant in the White population25. This may 

be a contributing factor given the training data was predominantly comprised of White patients.  

We found that model performance was worse in older patients compared to younger 

patients. Given that the composition of the training data was biased toward older patients and 

that older patients had a larger fraction developing heart failure, the most likely explanation for 

this trend is that there were more obvious ECG differences between healthy and diseased patients 

in the younger age groups.   

Given the notable reduction in model performance pertaining to race and gender, we 

investigated multiple avenues of modifying the training and application of the model to improve 

the existing disparities. First and foremost, we acknowledge the widespread debate surrounding 

the use of race as a variable in algorithms for medical decision making.35–37 One study noted that 

race-specific models in the prediction of heart failure risk demonstrated superior performance to 

non-race-specific and traditional risk models.38 In this study, we do not seek to draw conclusions 

on whether race should be an input into prognosis of cardiovascular disease, but rather to 

investigate this as a method of improving predictions for minority groups. We did not find that 

the inclusion of race, gender, or age as variables in model training improved overall performance 

of the model. We did observe some reduction in racial disparities among the 0-40 age group, but 

this was due to the combined effects of improved performance in Black patients and diminished 
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performance in the other racial groups. Models trained and tested on a dataset with equal racial 

representation or on datasets with individual race and age groups did not eliminate disparities in 

performance.  However, it is difficult to discern the effects of the separation by race or age and 

stratified sampling from the decreased quantity of training data.  Nevertheless, we believe that 

these findings warrant caution in using ML modeling as a tool for ECG interpretation and heart 

failure prognosis in older patients or in young, Black patients. 

While AUC was a useful metric for holistically assessing model performance, we 

considered F1-score to evaluate the utility of the model in cases where a single binary cutoff is 

chosen for classification. The variance in thresholds at which F1-score peaks for different 

demographic subgroups suggests that individualized applications of the model may be optimal. 

The range in optimal threshold cutoffs varied from 0.10 in Black and Hispanic men aged >80 to 

0.30 in Asian men aged 0-40. These threshold choices are supported by the distributions of 

positive case labels: in Black and Hispanic patients aged >80, positive cases follow a similar 

distribution to negative cases, so a lower threshold is necessary to capture more of those 

developing heart failure, whereas in young Asian men, the distribution of positive case labels is 

skewed more strongly toward higher probabilities. Moreover, the calibration curves showed 

overdiagnosis being most prominent among Black and Hispanic men, further concurring with a 

higher optimal threshold for these subgroups. In this study, we used F1-Score as the criteria for 

optimization, which gives equal weight to precision and recall. In doing so, we found a 21.0% 

increase in recall (the percentage of heart failure cases identified by the algorithm) for Black 

women. When applying such a model to the healthcare setting, we recognize that there may be 

greater value in recall than precision and recommend that the user assign an appropriate utility 
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function for optimization. Thus, calibrating the algorithm for race, age, and gender after training 

may offer a promising avenue to reduce the disparities otherwise present in model performance. 

Limitations 

The primary limitations of the study lie around the parameters of the outcome and cohort 

used to develop the model. We only considered patients with at least five years of follow-up data 

within the Stanford health system from the time of ECG collection. The exclusion of cases due to 

lack of follow-up may be biased by demographic group. However, one might expect that limiting 

the cohort to patients who sought longitudinal care within the Stanford system would create 

greater homogeneity in the data, thus rendering the findings of disparity in model performance 

even more striking. Furthermore, we assumed that any misclassification of cases would be non-

differential based on demographic status. In the case that the misclassification is biased, we 

would expect higher rates of underdiagnosis for Black patients and women5, which only 

amplifies the finding of model underdiagnosis observed particularly for that group. Additionally, 

racial groups with limited sample sizes (Native Hawaiian/Pacific Islander and American 

Indian/Alaskan Native patients) were not included in the analyses so the results may not 

generalize to these populations.  

Conclusion 

We analyzed demographic disparities on the basis of race, ethnicity, age, and gender 

present in a machine learning model trained to predict occurrence of 5-year heart failure from 

ECG data and found that performance suffered significantly for young Black women. We 

explored the mechanisms underlying these disparities through statistical covariates, calibration 

curves, and distributions of predicted probabilities. We investigated methods of improving these 

disparities – manipulation of the training data, modifications to model architecture, and 
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optimization of threshold choice. This study serves to highlight the need to consider differential 

performance of machine learning models among demographic subgroups, and offers a 

framework for understanding, investigating, and improving the disparities that may otherwise be 

perpetuated by algorithms used for medical decision making.  
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Tables 

Table 1. Baseline characteristics (Hypertension defined as diastolic >80 or systolic >130; 

hyperlipidemia defined as LDL > 160) 

Demographic  Subgroup All  

(% of Total) 

No Heart Failure 

(% of Subgroup) 

Heart Failure  

(% of Subgroup) 

Age 0 - 40 42433 (14.6%) 38733 (91.3%) 3700 (8.7%) 

40 - 60 95456 (32.9%) 83924 (87.9%) 11532 (12.1%) 

60 - 80 119537 (41.2%) 95479 (79.9%) 24058 (20.1%) 

≥ 80 32808 (11.3%) 21143 (64.4%) 11665 (35.6%) 

Race Asian 

  

41073 (14.2%) 33890 (82.5%) 7183 (17.5%) 

Hispanic 

  

35806 (12.3%) 29808 (83.2%) 5998 (16.8%) 

Non-Hispanic 

White 

164081 (56.5%) 134097 (81.7%) 29984 (18.3%) 

Black or African 

American 

11471 (4.0%) 8797 (76.7%) 2674 (23.3%) 

Native Hawaiian/ 

Pacific Islander 

3567 (1.2%) 2655 (74.4%) 912 (25.6%) 

American Indian/ 

Alaskan Native 

578 (0.2%) 503 (87.0%) 75 (13.0%) 

Gender Male 145892 (50.3%) 117611 (80.6%) 28281 (19.4%) 

Female 144354 (49.7%) 121679 (84.3%) 22675 (15.7%) 



 

 

23 

BMI < 18.5 4852 (1.7%) 3923 (80.9%) 929 (19.1%) 

18.5 - 24.9 59042 (20.3%) 47956 (81.2%) 11086 (18.8%) 

25.0 - 29.9 60629 (20.9%) 48180 (79.5%) 12449 (20.5%) 

≥ 30.0 51481 (17.7%) 39501 (76.7%) 11980 (23.3%) 

Hypertension Positive Hx 96485 (33.4%) 77484 (80.0%) 19361 (20.0%) 

Diabetes Positive Hx 39018 (13.4%) 27110 (69.5%) 11908 (30.5%) 

CAD or MI Positive Hx 38608 (13.3%) 24913 (64.5%) 13695 (35.5%) 

Stroke Positive Hx 13083 (4.5%) 9943 (76.0%) 3140 (24.0%) 

Hyperlipidemia  Positive Hx 1698 (0.6%) 1449 (85.3%) 249 (14.7%) 

Smoking Positive Hx 2012 (0.7%) 1573 (78.2%) 439 (21.8%) 
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Figure 1. Receiver operator characteristic (ROC) curves and area under the curve (AUC) 

stratified by race, age, and gender 
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Figure 2. Receiver operator characteristic (ROC) curves and area under the curve (AUC) 

stratified by race across age groups 
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Figure 3. Calibration curves by race and gender 
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Figure 4. Sample ECGs showing a) Non-Hispanic White man with high predicted probability 

who developed HF, b) Non-Hispanic White woman with low predicted probability who did not 

develop HF, c) Asian man with high predicted probability who did not develop HF, d) Non-

Hispanic White woman aged >80 years with high predicted probability who did not develop HF, 

e) Black woman aged 0-40 with low predicted probability who developed HF, and f) Black 

woman aged 0-40 with high predicted probability who did not develop HF 
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Figure 5. AUC values by race and age groups with integration of age, race, and gender variables 

at earlier and later points in model architecture 

 

 

 

 

 

  

  

  

 



 

 

29 

Figure 6. Changes in F1-Score when using probability thresholds individualized for race, age, 

and gender subgroups 
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Supplemental Materials 

Supplementary Table 1. Demographics of heart failure cases by race, gender, and age 

Race Age Gender Total HF Cases Percent w/ HF 

Asian 0 - 40 Men 1335 104 7.8 

Women 1683 133 7.9 

40 - 60 Men 3503 437 12.5 

Women 3541 303 8.6 

60 - 80 Men 4575 888 19.4 

Women 5045 894 17.7 

>80 Men 1225 418 34.1 

Women 1555 498 32.0 

Black 0 - 40 Men 519 66 12.7 

Women 713 61 8.6 

40 - 60 Men 1329 321 24.2 

Women 1312 263 20.0 

60 - 80 Men 975 312 32.0 

Women 973 282 29.0 

>80 Men 96 48 50.0 

Women 220 93 42.3 

Hispanic 0 - 40 Men 2400 248 10.3 

Women 3539 256 7.2 

40 - 60 Men 3327 680 20.4 
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Women 3636 412 11.3 

60 - 80 Men 2716 682 25.1 

Women 3124 619 19.8 

>80 Men 421 197 46.8 

Women 711 275 38.7 

Non-Hispanic 

White 

0 - 40 Men 4346 472 10.9 

Women 5749 405 7.0 

40 - 60 Men 15315 1875 12.2 

Women 13414 1069 8.0 

60 - 80 Men 22822 4940 21.6 

Women 17656 3113 17.6 

>80 Men 5233 2098 40.1 

Women 6117 2214 36.2 
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Supplementary Table 2. Changes in positive predictive value (PPV), negative predictive value 

(NPV), and recall using thresholds for binary cutoff optimized via individual F1-score vs overall 

optimal threshold (0.20) 

Race Gender Age Threshold F1-Score 

Change 

NPV 

Change 

PPV 

Change 

Recall 

Change 

Asian Men 0 - 40 0.30 0.06 0.00 0.13 -0.07 

40 - 60 0.25 0.01 -0.01 0.07 -0.08 

60 - 80 0.20 0.00 0.00 0.00 0.00 

>80 0.20 0.00 0.00 0.00 0.00 

Women 0 - 40 0.25 0.03 0.00 0.08 -0.07 

40 - 60 0.20 0.00 0.00 0.00 0.00 

60 - 80 0.20 0.00 0.00 0.00 0.00 

>80 0.15 0.00 0.06 -0.04 0.15 

Black Men 0 - 40 0.15 0.02 0.01 -0.08 0.14 

40 - 60 0.15 0.03 0.04 -0.05 0.18 

60 - 80 0.20 0.00 0.00 0.00 0.00 

>80 0.10 0.08 0.20 -0.01 0.27 

Women 0 - 40 0.15 0.11 0.02 0.03 0.21 

40 - 60 0.15 0.05 0.03 -0.06 0.20 

60 - 80 0.20 0.00 0.00 0.00 0.00 

>80 0.20 0.00 0.00 0.00 0.00 

Hispanic Men 0 - 40 0.15 0.01 0.01 -0.04 0.13 

40 - 60 0.15 0.02 0.03 -0.04 0.16 
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60 - 80 0.20 0.00 0.00 0.00 0.00 

>80 0.10 0.00 0.11 -0.06 0.16 

Women 0 - 40 0.25 0.02 0.00 0.09 -0.08 

40 - 60 0.25 0.01 -0.01 0.10 -0.11 

60 - 80 0.25 0.01 -0.01 0.06 -0.10 

>80 0.15 0.00 0.04 -0.05 0.13 

Non-Hispanic 

White 

Men 0 - 40 0.15 0.00 0.01 -0.04 0.10 

40 - 60 0.25 0.01 -0.01 0.06 -0.11 

60 - 80 0.25 0.00 -0.02 0.04 -0.11 

>80 0.20 0.00 0.00 0.00 0.00 

Women 0 - 40 0.15 0.01 0.01 -0.04 0.16 

40 - 60 0.20 0.00 0.00 0.00 0.00 

60 - 80 0.25 0.00 -0.01 0.05 -0.12 

>80 0.15 0.00 0.04 -0.03 0.11 
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Supplementary Figure 1. Age-related AUC trends stratified by race and gender 
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Supplementary Figure 2. AUC curves stratified by gender across age groups 
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Supplementary Figure 3. Probability distributions of cases with and without incident heart failure 

by race and gender 
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Supplementary Figure 4. ROC curves stratified by race and age from a model trained on a 

dataset with equal racial representation. 
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Supplementary Figure 5. ROC curves stratified by race and age from models trained separately 

for each racial group. 
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Supplementary Figure 6. ROC curves from models trained and tested separately by age group 
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Supplementary Figure 7. Optimizing threshold for F1-score by subgroups of race, age, and 

gender 

 

 

 

 

 

 

 

 

 

 


