Defining the Subtypes of Long COVID and Risk Factors for Prolonged Disease

2 3	Skyler Resendez, PhD ^{1,2} , Steven H. Brown, MD ^{3,4} , H. Sebastian Ruiz ¹ , Prahalad Rangan, PhD ^{1,2} , Jonathan R. Nebeker, MD ^{3,5} , Diane Montella, MD ³ , Peter L. Elkin, MD ^{1,2,6,7}
4	1 Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical
5	Sciences University at Buffalo
6	2 Department of Veterans Affairs VA Western New York Healthcare System and VA Research Service
7	2. Department of Veterans Affairs
γ Ω	4. Department of Biomedical Informatics Vanderbilt University Medical Center
٩	4. Department of Diometrical mormatics valuerbilt oniversity medical center
10	6. Department of Internal Medicine, Jacobs School of Medicine and Piemedical Sciences. University at
10	0. Department of internal medicine, Jacobs School of Medicine and Biomedical Sciences, Oniversity at
11 12	Buildio 7. Faculty of Engineering University of Southern Denmark
12	7. Faculty of Engineering, University of Southern Denmark
13	
14	
15	
16	Word Count: 3070
17	
-,	
18	
19	
20	Deter L Eller NAD NAACD FACNAL ENVANA FANALA FIALISI
20 ว1	Peter L. EIKIN, MD, MACP, FACMI, FINYAMI, FAMIA, FIAHSI SUNV Distinguished Service Professor
21 22	UP Distinguished Professor and Chair
22 72	Department of Riomedical Informatics
23 74	Professor of Internal Medicine
25	Professor of Surgery
26	Professor of Pathology and Anatomical Sciences
27	Professor of Psychiatry
28	Professor of Orthopedics
29	President, Faculty Council
30	Jacobs School of Medicine and Biomedical Sciences
31	University at Buffalo
32	State University of New York
33	http://medicine.buffalo.edu/departments/biomedical-informatics.html
34	77 Goodell Street, Buffalo, NY 14203
35	507 358-1341

36 Abstract

37

- 38 Importance: There have been over 759 million confirmed cases of COVID-19 worldwide. A significant
- 39 portion of these infections will lead to long COVID and its attendant morbidities and costs.
- 40 **Objective:** To empirically derive a long COVID case definition consisting of significantly increased signs,
- symptoms, and diagnoses to support clinical, public health, research, and policy initiatives related to thepandemic.
- 43 **Design:** Case-Crossover Population-based study.
- Setting: Veterans Affairs (VA) medical centers across the United States between January 1, 2020 and
 August 18, 2022.
- 46 **Participants:** 367,148 individuals with positive COVID-19 tests and preexisting ICD-10-CM codes
- 47 recorded in the VA electronic health record were enrolled.
- 48 **Trigger:** SARS-CoV-2 infection documented by positive laboratory test.
- 49 **Case Window**: One to seven months following positive COVID testing.
- 50 Main Outcomes and Measures: We defined signs, symptoms, and diagnoses as being associated with
- 51 long COVID if they had a novel case frequency of >= 1:1000 and they were significantly increased in our
- 52 entire cohort after a positive COVID test when compared to case frequencies before COVID testing. We
- 53 present odds ratios with confidence intervals for long COVID signs, symptoms, and diagnoses, organized
- 54 by ICD-10-CM functional groups and medical specialty. We used our definition to assess long COVID risk
- based upon a patient's demographics, Elixhauser score, vaccination status, and COVID disease severity.
- 56 **Results:** We developed a long COVID definition consisting of 323 ICD-10-CM diagnosis codes grouped
- 57 into 143 ICD-10-CM functional groups that were significantly increased in our 367,148 patient post-
- 58 COVID population. We define seventeen medical-specialty long COVID subtypes such as cardiology long
- 59 COVID. COVID-19 positive patients developed signs, symptoms, or diagnoses included in our long COVID
- 60 definition at a proportion of at least 59.7% (based on all COVID positive patients). Patients with more
- 61 severe cases of COVID-19 and multiple comorbidities were more likely to develop long COVID.
- 62 **Conclusions and Relevance:** An actionable, empirical definition for long COVID can help clinicians screen
- 63 for and diagnose long COVID, allowing identified patients to be admitted into appropriate monitoring
- 64 and treatment programs. An actionable long COVID definition can also support public health, research
- and policy initiatives. COVID patients with low oxygen saturation levels or multiple co-morbidities should
- 66 be preferentially watched for the development of long COVID.
- 67

68 Long COVID – Current Knowledge Base and Need

- 69 Numerous symptoms are cited as long-term sequela of COVID-19. "The symptoms may affect a number
- of organ systems, occur in diverse patterns, and frequently get worse after physical or mental activity."¹
- A 2020 study found that the most common long-term symptoms were fatigue, dyspnea, joint pain, and
- 72 chest pain.² Others reported gastrointestinal tract disorders correlated with gut microbiome shifts after
- 73 COVID-19 infection.^{3,4} Cognitive dysfunction, often referred to as brain fog, is a commonly reported
- ⁷⁴ long-term symptom. ⁵ Cognitive dysfunction is particularly concerning given evidence that COVID-19 can
- 75 alter brain structure.⁶ The most common self-reported symptoms documented via a smartphone app
- 76 were fatigue, headache, dyspnea, and anosmia.^{7,8}
- 77 Concerningly high long COVID frequencies have been reported. A cohort study from the Netherlands
- 78 found that approximately one in eight COVID-19 patients developed long-term somatic symptoms.⁹
- 79 Another study showed that approximately thirty percent of their cohort reported persistent symptoms,
- 80 with many experiencing worse health-related quality of life (HRQoL) compared with baseline and
- 81 negative impacts on at least one activity of daily living.¹⁰
- 82 Long COVID's impacts extend beyond individual morbidity to include healthcare system and economic
- 83 consequences. Cutler et. al. noted long COVID resulting in reduced workforce participation (e.g., 44%
- 84 out of the work force), direct earning losses and worker shortages in service jobs. ¹¹ A recent analysis of
- 85 New York State disability claims trends described in the New York Times found that "71 percent of
- 86 claimants with long COVID needed continuing medical treatment or were unable to work for six months
- 87 or more" and opined that long COVID has exacerbated the current US labor shortage.^{12,13}
- 88 The widespread occurrence of lingering ailments and their impacts on individuals and society make clear
- the need for a long COVID definition. U.S. public health officials note that we must balance our need for
- an accurate long COVID definition that includes all afflicted individuals with against our need for interim
- 91 long COVID definitions to expedite immediate action and mobilization.¹⁴ In particular, a working
- 92 definition of long COVID based on routinely collected coded data could support the identification of at
- 93 risk or undiagnosed patients for monitoring, referral, or therapeutic interventions. In the current study
- 94 we empirically derive an actionable broad-based long COVID definition to support current clinical, public
- 95 health, research and policy initiatives related to the pandemic.
- 96

97 Methods

98 Overview

- 99 We enrolled Veterans who had laboratory confirmed positive COVID 19 tests. We examined Veterans'
- 100 electronic health records for novel International Classification of Diseases, 10th Revision, Clinical
- 101 Modification (ICD-10-CM) codes between one and seven months after a positive COVID-19 test. We
- 102 grouped codes with a novel frequency of 1/1000 or greater by diagnosis type creating ICD-10-CM
- 103 functional groups and performed Chi-square testing with Bonferroni correction to compare diagnosis
- 104 frequencies before and after a positive COVID test. We defined ICD-10-CM functional groups that
- significantly increased in frequency as "upregulated" (see Figure 1). We then manually aggregated
- 106 upregulated ICD-10-CM functional groups into medical specialties to organize our empiric definition of
- 107 long COVID.

108

109

Figure 1. Workflow and data curation in the sequence utilized to generate our long COVID definition. T₀:
 Date of positive COVID-19 test. M: Months.

112 Population Definition and Data Extraction

113 We enrolled patients with laboratory confirmed positive COVID-19 studies and followed them for

thirteen months (Six months before the COVID 19 test result and seven months after COVID) to create a

long COVID definition. We utilized the electronic health records (EHR) of all patients that tested positive

116 for COVID-19 at Veterans Affairs (VA) medical facilities nationally between January 1, 2020 and August

117 18, 2022. 2,377,720 patients were tested for COVID-19 during this time period.

118 We applied structured query language (SQL) queries to VA Informatics and Computing Infrastructure

119 (VINCI), Corporate Data Warehouse (CDW) data tables¹⁵ to generate two diagnosis files for analysis. The

- 120 first file ("before") contains a row of retrospectively collected information for each patient and each
- 121 ICD-10-CM diagnosis assigned to them in the six-month control window prior to their COVID-19 test. The
- row includes the ICD-10-CM code and its description, a unique patient identifier, the COVID-19 test date,
- and the calculated number of months between ICD-10-CM code entry and COVID-19 testing. This

124 "before" file contained 14,980,288 observations across 426,970 patients.

125 We followed the patients for seven months. The second file ("after") was created seven months after

126 the last patient was enrolled. The after file contained ICD-10-CM codes assigned during the seven

127 months following COVID-19 testing and similar related information as the "before" file. This "after" file

- 128 contained 15,493,587 observations across 389,677 patients.
- 129 We limited analysis to the 367,148 patients that appeared in both the "before" and "after" files to
- ensure that we had a diagnostic history for each patient and eliminated acute findings by removing all
- 131 ICD-10-CM codes documented less than a month after the positive COVID test (Figure 1). We used the
- date of the first positive COVID test for patients with multiple positive tests. Multiple repeating ICD-10-
- 133 CM codes for a single patient were counted once. We wrote R and python programs to remove all data
- 134 concerning patients who tested negative for COVID-19, ICD-10-CM codes that were documented less
- than a month after the positive COVID-19 test, and patients who were not present in both the "before"
- and "after" files. The methodology used to generate the patient cohort is depicted in Figure 2.
- 137

138

139 Figure 2. Recruitment Flowchart for the Study

140 We collected additional data to examine the association of demographics, comorbidities, vaccination

status, and COVID-19 case severity with the incidence of long COVID. Demographic data collected

142 included age, sex, race, and ethnicity. Comorbidities were evaluated using 2-year Elixhauser Comorbidity

143 Indices Scores. Vaccinated patients were defined as having at least one COVID-19 vaccine dose recorded

at least two weeks and no more than nine months before their positive COVID-19 test. We defined two

- classes of severe COVID-19 based on minimum recorded oxygen saturation. The first class, severe
- 146 COVID-19, was defined by a minimum oxygen saturation of <94%.¹⁶ The second class, severe COVID-19
- 147 with severe desaturation, was defined by a minimum oxygen saturation of < 88%.¹⁷
- 148

149 Data Analysis

- 150 We chose six month "before" and "after" COVID test control and case windows to allow patients to
- 151 serve as their own controls. The six month "after" case window began one month after the positive
- 152 COVID test. We defined "novel" ICD-10-CM codes as those that appeared in a patient's "after" file but
- not in the "before" file. We calculated the frequency of each novel ICD-10-CM code as the percentage of
- the study cohort assigned the code. We excluded novel codes with a frequency of < 1:1000 from further
- analysis. We defined codes as upregulated when the frequency of that code in the after file was
- significantly increased as compared to the frequency in the before file, if it had a Chi-Square with a
- 157 Bonferroni corrected p-value<0.00006. All resulting codes were grouped for additional analysis and
- 158 organization (see ICD-10-CM Functional and Medical Specialty Groupings subsection of Methods).
- 159 We also defined ICD-10-CM functional groups as "upregulated" if they were statistically more frequent
- post COVID by Chi Square analysis with Bonferroni correction with a p<0.00006. We limited the long
- 161 COVID ICD-10-CM code functional groups to those that were significantly increased in frequency. We
- used "before" and "after" frequencies to calculate odds ratios and confidence intervals for each novel
- 163 ICD-10-CM functional group. We calculated odds ratios from frequency data.
- 164 We analyzed potential risk factors including vaccination status and COVID-19 severity for long COVID by
- 165 creating 2x2 tables and applying Pearson Chi-Square testing. We applied a similar approach to the
- analysis of demographic factors. We used R version 4.1.2 and R-Studio to perform the statistical analysis.
- 167

168 ICD-10-CM Functional and Medical Specialty Groupings

- 169 We grouped ICD10 CM codes in three steps. We first combined ICD-10-CM codes that had the same
- initial three characters. We then grouped ICD-10-CM codes with different initial characters if the
- diagnoses were functionally similar to create our ICD-10-CM functional groups. For example, we
- grouped I47.1 (supraventricular tachycardia), I47.2 (ventricular tachycardia), and R00.0 (tachycardia,
- unspecified) together as tachycardia. Finally, we manually curated each of these ICD-10-CM functional
- 174 groups into medical specialties for organizational purposes.

175 Long COVID Definition

- 176 We included in our long COVID definition each ICD-10-CM code with an incidence over six months (T₀ +
- 177 1M T₀+7M)> 1:1000 and a significant overall frequency increase. Long COVID patients were defined as
- 178 having any of the 323 upregulated ICD-10-CM codes between two and seven months after their positive
- 179 COVID-19 diagnosis, but not in their pre-COVID diagnoses.

180 Risk Factors for Long COVID

- 181 The multivariate regression models were done for each risk factor one including Age, Gender, Race,
- 182 Ethnicity, 2-year Elixhauser score, a second with Age, Gender, Race, Ethnicity, 2-year Elixhauser score,
- 183 O2Sat <94%, and a third with Age, Gender, Race, Ethnicity, 2-year Elixhauser score, COVID Vaccination
- 184 status. We present the univariate rates as well as the results of the regression analysis using R4.1.2 and
- 185 R Studio.
- 186 Results

187 Long COVID Definition

- 188 We extracted ICD-10-CM diagnosis codes assigned to 367,148 patients who underwent a positive COVID
- test at VA. Patients with one or more novel COVID related diagnoses numbered 268,320. The remaining
- 190 98,828 patients had no novel long COVID ICD-10-CM diagnoses in their post-COVID period when
- 191 compared to their pre-COVID period. Table 1 contains the demographic characteristics of the study
- 192 cohort. Males were significantly older than the females on average, 60.29 (95% CI: 95% CI: 60.24 –
- 193 60.35) versus 47.85 (95% CI: 47.73 47.97), respectively.

	Non-Long COVID	Long COVID		
	Patients (98,828)	Patient (268,320)	Pvalue	
Age (Mean/Conf. int.)	52.14 (52.03 –	60.85 (60.79 –		
Age (Mean/Com. mt.)	52.24) 60.91)		-	
Elixhauser Score (Mean/Conf. int.)	3.03 (2.99 – 3.07)	7.05 (7.01 – 7.09)	-	
Sex				
Male	75,418 (76.31%)	234,720 (87.48%)	< 0.00001	
Female	16,854 (17.05%)	31,651 (11.80%)	< 0.00001	
Not Listed	6,556 (6.63%)	1,949 (0.73%)	< 0.00001	
Ethnicity				
Hispanic or Latino	10,147 (10.27%)	26,171 (9.75%)	< 0.00001	
Not Hispanic or Latino	71,595 (72.44%)	227,404 (84.75%)	< 0.00001	
Not Listed	17,086 (17.29%)	14,745 (5.50%)	< 0.00001	
Race				
American Indian or Alaska Native	743 (0.75%)	2,243 (0.84%)	0.01182	
Asian	1,420 (1.44%)	2,973 (1.11%)	< 0.00001	
Black or African American	20,779 (21.03%)	65,218 (24.31%)	< 0.00001	
Native Hawaiian/Other Pacific Islander	905 (0.92%)	2,522 (0.94%)	0.49900	
White	55 <i>,</i> 359 (56.02%)	173,169 (64.54%)	< 0.00001	
Not Listed	19,622 (19.85%)	22,195 (8.27%)	< 0.00001	

194

- **Table 1.** Demographic data and two-year Elixhauser scores for long COVID patients and non-long COVIDpatients
- 197 We developed a definition of long COVID consisting of 323 ICD-10-CM diagnosis codes grouped into 143
- 198 ICD-10-CM functional groups that were significantly increased in our 367,148 patient post-COVID
- 199 population. We define seventeen medical specialty long COVID subtypes including cardiology long
- 200 COVID, neurology long COVID, and pulmonary long COVID. Table 2 shows the ICD-10-CM functional
- 201 groups and medical specialties. Within each field, the ICD-10-CM code groups are sorted in descending
- 202 order by their Odds Ratios.

Functional Group	Medical			
Description	Specialty	ICD-10-CM Codes	Novel Count	Odds Ratio
Hypotension	Cardiology	195.1, 195.89, 195.9	7865	1.271538

Heart Failure Diastolic				
Dysfunction	Cardiology	111.0	4594	1.26876
		147.1, 148.0, 148.19,		
		148.20, 148.21, 148.3,		
		148.91, 148.92, 149.3,		
Cardiac Arrhythmia	Cardiology	R00.0, R00.2	35648	1.223517
		121.A1, 124.8, 125.10,		
		125.2, 125.5, 142.8,		
		142.9, 150.20, 150.22,		
		150.33, 150.42, 150.9		
Cardiovascular Disease	Cardiology	171.40	45157	1.206416
Valve				
Stenosis/Insufficiency	Cardiology	127.82, 134.0, 135.0	3916	1.171221
Peripheral Vascular Disease	Cardiology	173.9	4862	1.105507
Hyperlipidemia	Cardiology	E78.2, E78.5	54913	1.070793
Hypertension	Cardiology	110	39677	1.046517
Gingival Recession	Dentistry	K06.010, K06.020	2497	1.256852
		K03.0, K05.00, K05.10,		
		K05.321, K05.322,		
Gingivitis	Dentistry	K06.1	7818	1.235098
Dorstol Corrigo	Dontistry	K02.3, K02.51, K02.52,	10007	1 1 5 4 1 2 0
Dental Carles	Dentistry	KUZ.0Z, KUZ.7	19887	1.154138
Pressue ulcer	Dermatology	189 159	1639	2 3395
Nonscarring Hair Loss	Dermatology	165.9	441	1 853409
Melanocytic Nevi	Dermatology	D22.9	1886	1.195428
Nail Dystrophy	Dermatology	160.3	5209	1.152928
Xerosis Cutis	Dermatology	185.3	4048	1.133044
Fatigue	Endocrinology	G93.3	542	10,18039
	Lindooliniology	E43. E44.0. E46. E63.9.	5.2	10110000
Malnutrition	Endocrinology	R63.8, R64	6372	1.856287
Adult Failure to Thrive	Endocrinology	R62.7	1827	1.578271
Phosphorus Metabolism				
Disorder	Endocrinology	E83.39	1306	1.297077
Abnormal Weight Loss	Endocrinology	R63.4	4439	1.16755
Osteoporosis	Endocrinology	M81.0	1442	1.120668
Prediabetes	Endocrinology	R73.03	6402	1.105807
		E11.22, E11.3291,		
		E11.36, E11.40,		
		E11.42, E11.51,		
Tuno 2 Dichatos Malliture	Endoorinals	E11.649, E11.65,		1 104200
Type 2 Diabetes Mellitus	Endocrinology	E11.9	49454	1.104288
Hypothyroidism Obasitu	Endocrinology	EU3.9	/059	1.050629
UDESITY	Endocrinology	E00.9	19041	1.038481
lieus	Gastroenterology	К56./	693	1.585583

Enterocolitis	Gastroenterology	A04.72	760	1.568205
Elevation of Liver				
Transaminase Levels	Gastroenterology	R74.01	2117	1.515881
Polyp of Stomach and				
Duodenum	Gastroenterology	K31.7	718	1.339522
Ascites	Gastroenterology	R18.8	795	1.332139
		K08.499, K20.80,		
Esophagitis	Gastroenterology	K20.90, K22.89	3013	1.317627
Portal Hypertension	Gastroenterology	K76.6	671	1.291358
		R13.10, R13.11,		
Dysphagia	Gastroenterology	R13.12, R13.13	13011	1.274248
		К59.00, К59.03,		
Constipation	Gastroenterology	K59.09	13376	1.224596
Diseases of Stomach and				
Duodenum	Gastroenterology	K31.89	1394	1.193473
Gastritis	Gastroenterology	K29.50, K29.70	2963	1.191019
Gastrointestinal				
Hemorrhage	Gastroenterology	K92.2	2320	1.186902
Diverticulosis	Gastroenterology	K57.30	5522	1.168767
Melena	Gastroenterology	K92.1	2334	1.143609
Cirrhosis of Liver	Gastroenterology	K74.60	1683	1.13734
Gastro-Esophageal Reflux				
Disease	Gastroenterology	K21.00, K21.9	31020	1.086091
Fatty Liver	Gastroenterology	K76.0	4912	1.081379
,		Z59.00, Z59.01,		
		Z59.02, Z59.811,		
	General Internal	Z59.812, Z59.819,		
Homelessness	Medicine	Z59.89	11511	1.456793
	General Internal			
Vitamin Deficiency	Medicine	E53.8, E55.9	21619	1.105953
Pulmonary Embolism				
without Acute Cor				
Pulmonale	Hematology	126.99	2670	1.804971
MGUS	Hematology	E88.09, R77.8	1273	1.542297
Acute Embolism and		182.401, 182.402,		
Thrombosis	Hematology	182.409, 182.890	2510	1.42562
Pancytopenia	Hematology	D61.818	939	1.291209
Thrombocytopenia	Hematology	D69.59, D69.6	3876	1.260737
Abnormal Coagulation				
Profile	Hematology	R79.1	826	1.250246
		D50.0, D50.9, D53.9,		
		D62, D63.0, D63.1,		
Anemia	Hematology	D63.8, D64.89, D64.9	30750	1.242379
Abnormal White Blood Cell				
Count	Hematology	D72.829	3528	1.167524

	Infectious			
Infectious Sequelae	Diseases	B94.8	606	23.42175
	Infectious			
Viral Pneumonia	Diseases	J12.89	1604	2.478623
	Infectious			
Influenza	Diseases	J09.X2	547	2.193782
	Infectious			
Thrush	Diseases	B37.0	537	1.844434
	Infectious	A41.89, A41.9, R65.20,		
Sepsis	Diseases	R65.21	6816	1.608247
	Infectious			
Pseudomonas	Diseases	B96.5	682	1.595698
	Infectious			
Enterococcus	Diseases	B95.2	884	1.594505
	Infectious			
Bacterial Pneumonia	Diseases	J15.9	2862	1.54475
NADGA	Infectious	BOE CO. 700.000	1210	1 1001.00
MRSA	Diseases	B95.62, 222.322	1316	1.488166
Destavorsia	Infectious	070.01	2120	1 277602
Bacteremia	Diseases	R78.81	2139	1.377602
Klobsielle	Diseases	DOC 1	220	1 276462
Kiedsiella	Diseases	B90.1	/28	1.370403
MESA	Diseases		1015	1 241265
IVISSA	Infectious	D95.01, D95.7	1013	1.541205
Proteus	Diseases	B96 4	511	1 336283
	Infectious	050.4	511	1.550205
F. Coli	Diseases	B96.20	1077	1,319389
	Infectious		2077	1.010000
Osteomyelitis	Diseases	M86.9	1121	1.224393
	Infectious			
Urinary Tract Infection	Diseases	N39.0. T83.511A	8553	1.161612
Drug Toxicity	Nephrology	T38.0X5A. T45.1X5A	1073	1.686641
Dehydration	Nephrology	F86.1	959	1.293327
Acute Kidney Failure	Nenhrology	N170 N178 N179	11392	1 290399
	Nephrology	F83 42 F83 52 F87 0	11552	1.250555
Disorders of Fluid		F87.1, F87.2, F87.20		
Electrolyte and Acid-Base		F87 3 F87 4 F87 5		
Balance	Nenhrology	F87 6 F87 70 F87 8	25885	1 276923
	Rephrology	112.0.112.9.113.0	23003	1.270525
		113.2. N18.2. N18.30.		
		N18 31, N18 32		
		N18.4, N18.6, N18.9		
Chronic Kidney Disease	Nephrology	N28.89, Z99.2	35590	1.258035
Edema	Nephrology	R60.0. R60.9	11683	1.116561
		G92 8 G93 40	11005	1.110301
Encephalopathy	Neurology	G93 41, G93 49	4476	1,705173
Linepiniopanty		000.11, 000.40		1., 001,0

Delirium	Neurology	E05	1414	1 639297
Lower Back Pain	Neurology	M54.50	24694	1.578581
Muscle Weakness	Neurology	M62 81	9362	1 277051
Need for Assistance with	i i cu ci	11102.01	5502	1.277031
Personal Care	Neurology	Z74.1	3287	1.276263
Weakness	Neurology	R53.1. R54	15912	1,258534
	itearology	R41.0. R41.81. R41.82.	10011	11200001
		R41.841. R41.89.		
Cognitive Impairment	Neurology	R41.9	10045	1.241561
Wheelchair	Neurology	Z99.3	654	1.234073
Seizure Disorder	Neurology	G40.909	1155	1.205124
		F01.50, F02.80,		
Dementia	Neurology	F03.90, G30.9, G31.84	10406	1.204819
Falls	Neurology	R29.6	1879	1.199129
		R26.2, R26.89, R26.9,		
Difficulty in Walking	Neurology	Z74.09	22449	1.171356
Falling	Neurology	Z91.81	3164	1.157633
Tinnitus	Neurology	H93.13	8889	1.135359
Cerebrovascular Disease	Neurology	163.9, 169.351, 169.354	4200	1.119552
		G62.9, G89.18,		
Neuropathy	Neurology	G89.29, G89.3, G89.4	23681	1.118604
Cervicalgia	Neurology	M54.2	13691	1.052616
Malignant Neoplasm of				
Liver	Oncology	C78.7	420	1.704389
Malignant Neoplasm of				
Lung	Oncology	C34.90	657	1.350535
Malignant Neoplasm of				
Bone	Oncology	C79.51	622	1.314306
Solitary Pulmonary Nodule	Oncology	R91.1	5557	1.116382
Conjunctivitis	Ophthalmology	H10.45	2645	1.180325
Retinopathy	Ophthalmology	H35.372, H35.373	2413	1.173309
Dry Eye Syndrome	Ophthalmology	H04.123	19581	1.164934
Presbyopia	Ophthalmology	H52.4	36752	1.154351
Муоріа	Ophthalmology	H52.13	8012	1.151422
Vitreous Degeneration	Ophthalmology	H43.813	3085	1.142235
Astigmatism	Ophthalmology	H52.203, H52.223	13737	1.140477
Unspecified Disorder of				
Refraction	Ophthalmology	H52.7	7093	1.126198
Open Angle with				
Borderline Findings	Ophthalmology	H40.013	6278	1.121644
		H25.012, H25.11,		
		H25.12, H25.13,		
		H25.811, H25.812,		
Cataracts	Ophthalmology	H25.813, H26.9	42904	1.119152
Hypermetropia	Ophthalmology	H52.03	7317	1.110326

Epistaxis	Otolaryngology	R04.0	1342	1.235389
Dysphonia	Otolaryngology	R49.0	1368	1.182724
Impacted Cerumen	Otolaryngology	H61.23	3780	1.121918
Sensorineural Hearing Loss	Otolaryngology	H90.3. H90.A22	17093	1.1138
	Psychiatry /			
Restlessness and Agitation	Psychology	R45.1	893	1.279866
	Psychiatry /	F09, F32.A, F41.1,		
Mental Disorder	Psychology	F41.9, F43.12	48256	1.135075
	Psychiatry /			
Malaise	Psychology	R53.81	2251	1.132321
Problems Related to	Psychiatry /			
Psychosocial Circumstances	Psychology	Z65.8, Z65.9	23892	1.102123
Acute Respiratory Distress				
Syndrome	Pulmonary	J80	688	5.299347
Dependence on Ventilator	Pulmonary	Z99.11	427	3.146519
Chronic Cough	Pulmonary	R05.3	2113	2.026076
		J96.00, J96.01, J96.02,		
		J96.10, J96.11, J96.20,		
		J96.21, J96.22, J96.90,		
Respiratory Failure	Pulmonary	J96.91	14882	1.997749
Dependence on		D00 00 700 04	7700	4 745070
Supplemental Oxygen	Pulmonary	R09.02, 299.81	7792	1./152/9
Interstitial Pulmonary	Dulasanan	104.0	COF	1 526222
Disease	Pulmonary	J84.9	685	1.536233
	Pulmonary	J84.10	1232	1.527598
	Pulmonary	J90, J91.8	2990	1.4413
Abnormalities of Breathing	Pulmonary	R06.89	1107	1.338466
Draumania	Dulmannan	J16.8, J17, J18.8,	0101	1 215 200
A suite Dulue en ema Ederes	Pulmonary	J18.9, J69.0	8181	1.315208
Acute Pulmonary Edema	Pulmonary	J81.0	1702	1.295683
Pulmonary Hypertension	Pulmonary	127.20	1782	1.282603
Respiratory Disorders	Pulmonary	198.4, 198.8, 198.9	3/11	1.281901
Emphysema	Pulmonary	J43.9	1700	1.229811
Ducanaa	Dulmonoru	RU6.00, RU6.02,	27026	1 206525
At a la sta sia	Pulmonary	RUD.U3, RUD.U9	27920	1.206525
Atelectasis	Pulmonary	J98.11	1766	1.206262
Diaphragmatic Hernia	Pulmonary	K44.9	2952	1.169074
Chronic Obstructive	Dulmannan		12620	1 121720
Acthmo	Pulmonary	144.0, 144.9	12039	1.131/30
Asthma	Pulmonary	J45.909	4126	1.093696
Sleep Disorders	Pulmonary	G47.00, G47.33	41147	1.090759
Osteoarthritis	Rheumatology	M17.0	4546	1.090886
Gout	Rheumatology	M10.9	5997	1.057874
Uropathy	Urology	N13.9	597	1.256139
Retention of Urine	Urology	R33.8, R33.9	6269	1.251816

Obstructive and Reflux				
Uropathy	Urology	N13.8	1385	1.204741
Urinary Incontinence	Urology	N31.9, R32	3843	1.153016
Benign Prostatic				
Hyperplasia	Urology	N40.0, N40.1	24210	1.128437
Frequency of Micturition	Urology	R35.0	3032	1.106673

203

204

Table 2. Long COVID definition results by ICD-10-CM Functional group description and medical specialty.

Figures 3 and 4 show the signs, symptoms, and diagnoses with significantly increased relative risks in the

207 post-COVID period with their respective confidence intervals sorted by medical specialty.

208

Figure 4. Odds ratios > 3 for long COVID ICD-10-CM functional groups by medical specialty subtype.

212

210

- 213 Figure 5. Case counts by medical specialty
- 214 Case counts were greatest for the specialties of Cardiology (196,6320, Neurology (159,358),
- 215 Ophthalmology (149,817) and Pulmonary (138,470). The lowest case counts were for Oncology (7,256),
- 216 Rheumatology (10,543) and Dermatology (13,233).

- 217 COVID-19 test positive patients were assigned novel signs, symptoms, or diagnoses included in our
- 218 definition of long COVID at a rate of between 59.7% (percentage based on COVID positive patients
- tested at the VA) and 76.6% (percentage based on all COVID positive patients with diagnostic history
- and follow up diagnoses one to seven months after test).
- 221 Most long COVID patients were documented with at least one ICD-10-CM code found in our long COVID
- definition within three months of their positive COVID-19 test. The percentage of patients documented
- 223 with their first long COVID ICD-10-CM code decreases with each subsequent month (See Figure 6).

224

Figure 6. Percentage of prospective post COVID-19 diagnosis (Months 1-7) that each long COVID patient

had their first long COVID ICD-10-CM code documented. Month 0-1 ICD-10-CM codes were not includedas they included acute symptoms.

228

229 Risk Factors for Long COVID

- 230 We presented in Table 1 a comparison of demographic characteristics and Elixhauser comorbidity scores
- of long COVID patients and non-long COVID patients. The long COVID cohort was older with more
- comorbidities. The long COVID cohort also had higher percentages of White and Black individuals and
- 233 non-Hispanic and non-Latino ethnicities. Patients with a 2-year Elixhauser score of greater than 21 had a
- much higher proportion developing long COVID (p < 0.001, Pearson Chi-Square) (See Table 3).

2 Year Elixhauser	No Long COVID	Long COVID	Percent Long COVID (95%
Score	Count	Count	CI)
0-21	96,055	242,108	71.60% (71.44% - 71.75%)
22-42	2,454	22,716	90.25% (89.88% - 90.61%)
43-63	308	3,317	91.50% (90.55% - 92.36%)
64-84	11	179	94.21% (89.93% - 96.77%)

- Table 3. Proportion of patients that developed long COVID comparing different 2-year Elixhauser scoreranges.
- 237 Our data did not indicate that vaccination was protective against the development of long COVID.
- However, vaccination resulted in significantly lower rates of novel ARDS in the post-covid period (13.2%
- 239 CI: 10.4%-16.9%) as compared with the unvaccinated population (19.6% CI: 18.1% 21.2), p<0.001.
- 240 Patients with minimum O2 saturations constituting severe COVID and severe COVID with severe
- desaturation were significantly more likely to develop long COVID (both had p-values<0.001, Pearson
 Chi-Square) (See Table 4).

	No Long	Long COVID	Percent Long COVID
Severe COVID	COVID Count	Count	(95% CI)
Low O2 (NIH Definition*)	3,903	29,411	88.28 % (87.93% - 88.63%)
No Low O2 (NIH Definition*)	94,925	238,909	71.57% (71.41% - 71.72%)
Low O2 (Severe Desaturation**)	637	5,566	89.73% (88.95% - 90.46%)
No Low O2 (Severe			
Desaturation**)	98,191	262,754	72.80% (72.65% - 72.94%)
* Min(O2 Sat) < 94% ** Min(O2 Sat) < 88%			

243 **Table 4.** Low oxygen saturations and the proportion of patients that developed long COVID.

- The multivariate regression models all confirmed that COVID patients during the Omicron variant
- predominant period were at slightly higher risk of developing Long COVID at p-value < 0.001.

246 Discussion

247 Numerous reports document specialty-specific signs, symptoms and diagnoses correlated with long

248 COVID. We present a novel analysis based on a large national data set and the full multispecialty

249 breadth of ICD-10-CM diagnosis codes to create an overall holistic long COVID definition that confirms

- 250 and extends previous reports.
- 251 We allowed patients to be their own controls and used the entire cohort before and after COVID-19
- 252 infection to determine the relative risk of signs, symptoms, and disorders. This ensured that the signal
- 253 was both novel and upregulated. We found COVID-19 positive patients developed signs, symptoms, or
- diagnoses included in our long COVID definition at a proportion of between 59.7% (percentage based on
- 255 COVID positive patients tested at the VA) and 76.6% (percentage based on all COVID positive patients
- with diagnostic history and follow up diagnoses one to seven months after test). More than three-
- 257 fourths of long COVID patients met our long COVID definition within four months of their positive
- 258 COVID-19 test.
- 259 We found long COVID frequency differences based on race and ethnicity. These differences may be
- related to socioeconomic status, which is directly correlated with the presence of comorbidities.^{18–20} The
- long COVID cohort was eight years older with more comorbidities (two-year Elixhauser score 7.97 in the
- long Covid patients vs 4.21 in the non-long Covid patients). In our cohort, the males were significantly
- 263 older than the females on average, 60.29 (95% CI: 95% CI: 60.24 60.35) versus 47.85 (95% CI: 47.73 –
- 47.97), respectively. We found that long COVID frequency was increased in female patients, the more
- 265 severely ill, and patients who had a more severe bout of COVID as judged by their minimum oxygen
- 266 saturation.

- 267 We found 143 upregulated diagnostic groups, with odds ratios as high as 23. We also found seventeen
- 268 upregulated medical specialty groupings containing between three and twenty-one signs, symptoms, or
- 269 diagnoses. This provides strong evidence for a broad definition of long COVID.
- 270 Carfi et al. found that most common long-term symptoms were fatigue, dyspnea, joint pain, and chest
- 271 pain.² Each except joint pain is represented in our long COVID definition. However, joint pain may be
- related to findings in our definition such as difficulty walking and an overall decrease in mobility. COVID-
- 19 is known to cause lung abnormalities, especially in cases with pneumonia.²¹ We found that the
- 274 likelihood of developing pneumonia after COVID-19 infection is significantly upregulated, potentially
- 275 interconnected with the numerous findings in our Pulmonary long COVID definition. Autopsy evaluation
- of COVID-19 victims' lung tissue demonstrated diffuse alveolar damage with perivascular T-cell
- 277 infiltration and severe endothelial injury.²² Long COVID patients have been found to have abnormal
- ¹²⁹Xe MRI gas exchange and CT vascular density measurements, which we postulate could be related to
- the pulmonary fibrosis (J84.10) or emphysema (J43.9) diagnoses identified in our definition.²³
- 280 Our definition shows that the long-term effects of COVID-19 are associated with damage to numerous
- 281 body systems including the kidneys, heart, eyes, and nervous system. Our results are corroborated by
- other studies. Cognitive dysfunction (brain fog) is often associated with long COVID and can be difficult
- to diagnose and treat.⁵ COVID-19 infection is far more likely to cause cardiac complications than
- vaccination.²⁴ The gastrointestinal codes we observed reflect previous literature²⁵ and may relate to
- reported alterations to the gastrointestinal tract after COVID-19.^{3,4} Finally, previous studies have noted
- that COVID can alter ocular physiology, supporting our ophthalmology related findings.²⁶
- 287 Patients with more severe cases of COVID 19, as manifest by low oxygen saturations, should be watched
- carefully for the development of long COVID as they were significantly more likely to develop long
- 289 COVID. Sicker patients with higher 2-year Elixhauser scores were significantly more likely to develop long
- 290 COVID. Patients with multiple comorbidities should be made aware of this risk and participate in active
- surveillance for the development of signs and symptoms of long COVID.
- 292 The American Medical Association (AMA) notes there are three categories of long COVID patients: Those
- who do not recover completely and have ongoing symptoms; those with symptoms related to chronic
- hospitalization; and those who develop new symptoms after recovery.²⁷ In our study, we did not
- differentiate by these subtypes and instead leave that to future research. It is possible that some of
- these signs and symptoms may have occurred during the first month and may be the persistent subtype.
- It is possible that some of the upregulated codes may be found with other serious illnesses, though only
 9.1% of our cohort had severe COVID based on oxygen saturation <94%. We are not able to distinguish
- conditions that represent acceleration of pre-existing disease from those that represent de novo COVID-
- related conditions. For example, is the increased incidence of Non-ST elevation (NSTEMI) myocardial
- 301 infarction (I21.4) related to the general stress of acute illness impacting preexisting coronary artery
- 302 disease or to an underlying de novo long COVID related condition? Better understanding will require
- additional research. In any event, whether causal or associative, de novo disease or exacerbation of
- 304 chronic disease, new or persistent clinical problems require assessment, treatment, and monitoring.
- Limitations include that the cohort study population is 84% male, reflective of the overall VA patient
- 306 population which is between 87% and 95% male (depending upon data source and whether gender has
- 307 been self-reported).^{28,29} Additionally, the male Veteran population who use the VA healthcare system is
- 308 older than the population of female Veterans who use VA. Our study did not include home testing for

- 309 Covid-19 that went unreported to the VA healthcare system. Patients who tested positive during the
- omicron dominant time period were slightly more likely to develop Long COVID when compared to the
- earlier strains (76% vs 72%, p<0.001). The reality of emerging viral variants emphasizes the need for a
- 312 well-defined and well-maintained definition of long COVID over time and with variant-specific
- derivation. The study was not powered to show independence of the individual risk factors for long
- 314 COVID.
- In this case-crossover study, we hope that our empirically defined long COVID definition will lead to
- 316 more consistent identification of long COVID and its medical specialty subtypes and support of a variety
- of COVID related initiatives. Our definition is actionable as individuals who have multiple co-morbidities
- and more severe bouts of COVID should be followed more closely for the development of long covid
- signs or symptoms. Our definition can also inform screening questions for high-risk patients. For
- example, helping clinicians identify patients with enhanced long COVID risk who may benefit from
 monitoring programs or patients with previously undiagnosed long COVID for whom it may be
- 322 appropriate to create a referral to a long COVID clinic. We also anticipate that our long COVID definition
- 323 may support through standardization of future subspecialty specific long COVID research.
- 324 Future research should look at health outcomes for each long COVID medical specialty subtypes to
- 325 identify those at greatest risk of developing severe morbidity. Predictive analytics should be employed
- to help refer these individuals earlier to monitoring and treatment programs.
- As of March 5th, 2023, there have been 759 million confirmed cases of COVID-19 worldwide.³⁰ Case
- 328 counts are ever increasing. As Dr. Levine notes, immediately useful long COVID definitions are needed as
- 329 are ultimately more fully inclusive definitions.¹⁴ We offer our long COVID definition as a public health
- 330 contribution to our pandemic response.
- 331

332 Acknowledgements

- This work has been supported in part by grants from NIH NLM T15LM012495, R25LM014213, NIAAA
- R21AA026954, R33AA0226954 and NCATS UL1TR001412. This study was funded in part by the
- 335 Department of Veterans Affairs.
- 336

337 References

- 3381.Phillips S, Williams MA. Confronting Our Next National Health Disaster Long-Haul Covid. New339England Journal of Medicine 2021;385(7):577–9.
- Carfi A, Bernabei R, Landi F. Persistent Symptoms in Patients After Acute COVID-19. JAMA
 2020;324(6):603.
- 3. Ng SC, Tilg H. COVID-19 and the gastrointestinal tract: more than meets the eye. Gut
 2020;69(6):973–4.
- Villapol S. Gastrointestinal symptoms associated with COVID-19: impact on the gut microbiome.
 Translational Research 2020;226:57–69.

346 347	5.	Davis HE, Assaf GS, McCorkell L, et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 2021;38:101019.
348 349	6.	Douaud G, Lee S, Alfaro-Almagro F, et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 2022;604(7907):697–707.
350 351	7.	Menni C, Valdes AM, Freidin MB, et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat Med 2020;26(7):1037–40.
352 353	8.	Sudre CH, Murray B, Varsavsky T, et al. Attributes and predictors of long COVID. Nat Med 2021;27(4):626–31.
354 355 356	9.	Ballering A v, van Zon SKR, olde Hartman TC, Rosmalen JGM. Persistence of somatic symptoms after COVID-19 in the Netherlands: an observational cohort study. The Lancet 2022;400(10350):452–61.
357 358	10.	Logue JK, Franko NM, McCulloch DJ, et al. Sequelae in Adults at 6 Months After COVID-19 Infection. JAMA Netw Open 2021;4(2):e210830.
359	11.	Cutler DM. The Costs of Long COVID. JAMA Health Forum 2022;3(5):e221809.
360 361	12.	Belluck P. Long Covid Is Keeping Significant Numbers of People Out of Work, Study Finds. New York Times. 2023;
362 363	13.	SHINING A LIGHT ON LONG COVID: An Analysis of Workers' Compensation Data [Internet]. 2023 [cited 2023 Jan 29]. Available from: nysif.com
364	14.	Levine RL. Addressing the Long-term Effects of COVID-19. JAMA 2022;
365 366	15.	Souden M. Overview of VA Data, Information Systems, National Databases and Research Uses. 2017;
367 368	16.	Clinical Spectrum of SARS-CoV-2 Infection [Internet]. 2022 [cited 2023 Jan 30];Available from: https://www.covid19treatmentguidelines.nih.gov/overview/clinical-spectrum/
369 370	17.	A Randomized Trial of Long-Term Oxygen for COPD with Moderate Desaturation. New England Journal of Medicine 2016;375(17):1617–27.
371 372	18.	Sahni S, Talwar A, Khanijo S, Talwar A. Socioeconomic status and its relationship to chronic respiratory disease. Adv Respir Med 2017;85(2):97–108.
373 374	19.	Leng B, Jin Y, Li G, Chen L, Jin N. Socioeconomic status and hypertension. J Hypertens 2015;33(2):221–9.
375 376	20.	Jaffiol C, Thomas F, Bean K, Jégo B, Danchin N. Impact of socioeconomic status on diabetes and cardiovascular risk factors: Results of a large French survey. Diabetes Metab 2013;39(1):56–62.
377 378	21.	Ding X, Xu J, Zhou J, Long Q. Chest CT findings of COVID-19 pneumonia by duration of symptoms. Eur J Radiol 2020;127:109009.
379 380	22.	Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. New England Journal of Medicine 2020;383(2):120–8.

381 382	23.	Matheson AM, McIntosh MJ, Kooner HK, et al. Persistent 129Xe MRI Pulmonary and CT Vascular Abnormalities in Symptomatic Individuals with Post-Acute COVID-19 Syndrome. Radiology 2022;
383 384	24.	Kuehn BM. Cardiac Complications More Common After COVID-19 Than Vaccination. JAMA 2022;327(20):1951.
385 386	25.	Meringer H, Mehandru S. Gastrointestinal post-acute COVID-19 syndrome. Nat Rev Gastroenterol Hepatol 2022;19(6):345–6.
387 388	26.	Costa ÍF, Bonifácio LP, Bellissimo-Rodrigues F, et al. Ocular findings among patients surviving COVID-19. Sci Rep 2021;11(1):11085.
389 390	27.	What is long COVID? [Internet]. 2022 [cited 2023 Feb 10];Available from: https://www.ama- assn.org/delivering-care/public-health/what-long-covid
391 392	28.	National Healthcare Quality and Disparities Report: Chartbook on Healthcare for Veterans [Internet]. Rockville: 2020.
393 394	29.	Peltzman T, Rice K, Jones KT, Washington DL, Shiner B. Optimizing Data on Race and Ethnicity for Veterans Affairs Patients. Mil Med 2022;187(7–8):e955–62.
395 396 397	30.	World Health Organization. COVID-19 weekly epidemiological update, edition 133, 8 March 2023 [Internet]. Geneva: World Health Organization; [cited 2023 May 5]. Available from: https://apps.who.int/iris/handle/10665/366416
398		