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Abstract

Susceptibility to believing false or misleading information is associated with a range

of adverse outcomes. However, it is notoriously difficult to study the link between suscep-

tibility to misinformation and consequential real-world behaviors such as vaccine uptake.

In this preregistered study, we devise a large-scale socio-spatial model that combines the

rigor of a psychometrically validated test of misinformation susceptibility administered to a

nationally representative sample of 16,477 individuals with COVID-19 vaccine uptake data

of 129 sub-national regions published by the United Kingdom (UK) government, to show

that the general ability to detect misinformation strongly and positively predicts regional

vaccine uptake in the UK. We put this practically significant correlational effect size into

perspective by noting how psychological interventions that reduce individuals’ misinfor-

mation susceptibility could be associated with additional vaccine uptake.
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Testing whether exposure to and belief in misinformation is associated with real-world be-

havior is of critical scientific as well as societal importance [1, 2]. Within the context of the

COVID-19 pandemic, belief in misinformation about the virus has been linked to acts of van-

dalism [3], as well as a reduced willingness to comply with public health guidance [4, 5] and

intentions to get vaccinated against the disease [6, 7]. There is ample evidence of potentially

adverse consequences of misinformation from laboratory studies [8, 9] and studies conducted

on social media [10–12]. Within the context of public health, most studies are either lab-based

or intention-based, instead of assessing actually observed behaviors such as vaccine uptake [4].

Establishing whether misinformation susceptibility predicts observed vaccine uptake more gen-

erally is a major open question, and one that informs efforts to reduce the adverse effects of

exposure to misinformation [13, 14].

Doing so comes with several challenges, which we address in this study. First, accurately

measuring and comparing misinformation susceptibility at a national level requires a standard-

ized instrument that is consistent at assessing how likely people are to believe misinformation in

a general sense [15, 16]. We conduct a large-scale nationally representative survey in the United

Kingdom (UK; n = 16,477) featuring a psychometrically validated test of misinformation sus-

ceptibility [15, 16]. Second, since information is often transmitted between socially connected

individuals, misinformation susceptibility is likely mediated by networked information ecosys-

tems that individuals are a part of [10, 17], which requires a methodology that can account

for any network effects. We develop a novel modeling approach to investigate large-scale net-

worked social systems using privacy-preserving data, that can also be applied in other studies

where researchers are interested in detecting network effects underlying psycho-sociological

behaviors. Third, connecting individual-level misinformation susceptibility with observed out-

comes like a country’s vaccination rates requires a significant amount of data at the region level,

as regional variations in vaccine uptake may be related to a variety of factors such as political

dynamics, socio-economic status, or demographics [18]. We collate data from publicly avail-

able sources on vaccination outcomes and a large set of region- and individual-level covariates.

2



Misinformation and vaccination behaviors A growing body of recent literature has amassed

evidence of the relationship between misinformation belief and health outcomes [19, 20], par-

ticularly in the context of the COVID-19 pandemic [1, 3, 4, 10, 11, 17, 21] and, importantly,

when considering vaccinations against the disease [5–7, 22–26]. With regards to vaccina-

tion, evidence can be partitioned depending on whether it is (a) correlational or causal, and

whether it considers (b) unrealized behaviors—such as willingness to get vaccinated—or re-

alized behaviors—such as actual vaccine uptake. Ideally, we would like to elucidate whether

there is a causal effect of misinformation exposure on realized behaviors, so that ecologically

valid interventions can be designed and deployed to meaningfully address this pressing societal

challenge [27]. Unfortunately, most studies to date are correlational, with all [5, 6, 22, 23, 26]

but one [24] pertaining to unrealized outcomes, and some causal evidence pertaining to vaccine

intentions [7, 25]. There are at least three important problems with these studies that prevent

us from generating and testing causal claims about the relationship between misinformation

exposure and actual vaccine uptake.

First, all of the correlational studies [5, 6, 22–24, 26] focus too narrowly on misinformation

specific to the COVID-19 pandemic or vaccines and therefore ignore the more foundational

psychological factors that are likely to influence both belief in COVID-19 specific misinfor-

mation and hesitancy to vaccinate against the disease [28, 29]. For instance, one mechanism

explaining why people fall prey to misinformation is a predisposition to reject information from

expert authorities [9] that could concurrently force them to reject the COVID-19 vaccine [29].

Consequently, trust in expert sources of information may confound the relationship between

belief in COVID-19 misinformation and vaccinating against the disease and an observed cor-

relation between the latter two could potentially be attributed to this “common cause” of trust

in experts. Second, the causal claims associated with such correlational evidence are extremely

difficult, if not impossible, to test. Consider a recent study that uncovers correlational negative

evidence between online volumes of COVID-19 vaccine misinformation and actual COVID-19

vaccine uptake rates [24]. Besides the concern of confounding raised above, the study gen-
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erates a causal claim—reducing levels of online COVID-19 vaccine misinformation increases

levels of COVID-19 vaccine uptake—that is extremely challenging to test without large-scale

cooperation of governments, social media companies, and individuals collectively willing to

reduce the volume of online misinformation. Third, while the studies that directly measure a

causal effect through randomized experiments [7, 25] do not suffer from the above problems

“by design,” they have lower ecological validity as they measure merely people’s intentions to

vaccinate and not realized vaccination outcomes [4]. Thankfully, causal studies can neverthe-

less inform us about the possible psychological mechanisms underlying actual behavior and

enable an appropriate operationalization of the independent variable—that encodes a founda-

tional factor behind misinformation belief rather than belief in specific pieces of misinformation

[29]—whose relationship can then be tested with an actualized outcome.

Prior causal evidence shows that exposure to COVID-19 vaccine misinformation reduces in-

tentions to get vaccinated against the disease [7], whereas “psychological inoculation” against

COVID-19 vaccine misinformation through media literacy interventions increases intentions

to get vaccinated [25], suggesting that individuals may “lack the cognitive tools” [28]—in the

sense of being susceptible to misinformation more generally—that underlie these effects on

vaccination outcomes. In this study, we therefore hypothesize and test whether general misin-

formation susceptibility is associated with observed vaccine uptake, which can impart crucial

ecological validity to prior evidence supporting the corresponding causal claim [7, 25]. We

emphasize that our independent variable is not specific to COVID-19 specific misinformation

but a psychometrically validated construct of general misinformation susceptibility [15, 16],

and our dependent variable is actually observed COVID-19 vaccine uptake—thus addressing

the first and third problems, respectively. The corresponding causal claim states that changing

an individual’s susceptibility to misinformation can change their vaccination outcome—testable

under preexisting frameworks of experimental psychology, thus addressing the second problem.

Prior research already shows a causal effect of psychological inoculation on misinformation

susceptibility [30], and a causal effect of psychological inoculation on vaccine intentions [25].
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Demonstrating a credible relationship between misinformation susceptibility and actual vaccine

uptake would therefore strongly suggest a causal effect of psychological inoculation on vaccine

uptake via misinformation susceptibility. In our analyses, we control for a host of observed

socio-demographic variables that can confound this relationship [28], and rule out potentially

unobserved confounding due to a rejection of expert authority [9, 29] by two approaches: (a)

performing placebo analyses using actually observed placebo outcomes, and (b) controlling for

model-based estimates of trust in expert sources of information.

Geographical psychology We present our primary analyses at the lowest level classifica-

tion of Eurostat’s nomenclature of territorial units for statistics (NUTS-3) of the UK to ad-

dress our focal research question: does general misinformation susceptibility predict vaccine

uptake? Analyses at the region level, instead of the individual level, provide significant bene-

fits. First, region-level analyses combine spatially aggregated psychological data with existing

archival data on sensitive behavioral outcomes [31], some of which would be very difficult—

if not impossible—to collect at the individual-level as the data may be private, rare, or illegal

[32]. Prior research has consistently highlighted discrepancies between self-reports of people’s

hypothesized or past behaviors and their realized behavior, making it necessary to observe and

study actual behaviors [33]. This is especially relevant in the context of COVID-19 vaccine up-

take, as gaps have been noted between self-reported vaccination intentions and actual vaccine

uptake [34], and throughout the pandemic reports have surfaced suggesting that many individ-

uals would refuse to disclose their vaccine status [35]. Thus, leveraging nationwide regional

archival data from government sources to complement psychological data may result in more

accurate estimates of actual vaccination than relying on self-reported data. Second, harnessing

regional archival data enables researchers to build conservative and rigorous models as a host

of relevant controls—from regional socio-demographic compositions to economic indicators—

can be obtained with ease, at no cost, and at any (or even multiple) time point(s). Third, prior

research suggests that regionally aggregated psychological characteristics may not only repre-

sent an aggregation of individual-level scores, but also reflect the culture or ethos of a region
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(i.e., the practices, values, and social institutions that distinguish an area [36, 37]). Region-level

psychological characteristics have been shown to affect people’s cognitions [38], emotions [39]

and behaviors [40] above and beyond their individual dispositions—thus offering additional ex-

planatory power. Finally, region-level research offers an effective way to contextualize small

effects that might be overlooked at the individual level—but can have far-reaching consequences

at the societal level [41].

Importantly, however, prior research also suggests that relationships at the region level can

deviate from those at the individual level, known as the ecological fallacy [42, 43], as illustrated

by the finding that the association between income and political conservatism in the US is

positive at the individual level but negative at the state level [44]. Whether an ecological fallacy

can occur must be tested if individual level behavioral data can be acquired. In this study we ask

for survey respondents’ vaccination status which permits a secondary analysis at the individual

level, thus providing converging evidence for the effect of susceptibility on vaccine uptake that

addresses concerns of an ecological fallacy.

Measuring misinformation susceptibility Misinformation susceptibility is a complex con-

struct that is hard to define and to measure [2]. Various approaches have been taken towards the

development of tests of people’s ability to detect misinformation [30, 45], but these tests have

not been formally psychometrically-validated, making it unclear to what extent they allow fair

comparisons across different groups and enable researchers to draw firm conclusions [2]. As

national level analyses require a stable test that performs similarly across subgroups, for this

study we utilize the Misinformation Susceptibility Test (MIST [15, 16])—a psychometrically-

validated measure of susceptibility to misinformation, which has been validated and normed

across several large nationally representative samples in the UK and has proven to be robust

across age groups and political ideologies [15].

The unabridged version of the test, termed MIST-20, consists of 10 true and 10 false head-

lines that individuals rate as either “real” or “fake”. Misinformation susceptibility is assessed

through three different ability scores: veracity discernment ability (Mv; an individual’s overall
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accuracy in discerning true and false MIST headlines), real news detection ability (Mr; skill

to identify real headlines), and fake news detection ability (M f ; skill to identify false head-

lines). Taken together, these three scores provide insight into an individual’s general ability

to distinguish true and false information, how good they are at detecting truthful information,

and how likely they are to believe false information. In addition, the MIST allows one to cal-

culate two cognitive bias scores indicating general tendencies to be skeptical of any type of

headline (distrust; Md) and to rate any headline as true (naivety; Mn). For details on how the

scores are calculated see Methods: Poststratifying MIST scores, and for the MIST headlines see

Questionnaire in the supplementary information.

Study overview To test the relationship of general misinformation susceptibility and vaccine

uptake, five hypotheses were stated in this study’s preregistration [46]: that higher ability scores

of real news detection, fake news detection, and veracity discernment are associated with higher

vaccine uptake (Hypotheses 1–3), while lower bias scores of distrust and naivety are associated

with higher vaccine uptake (Hypotheses 4, 5), at the region level.

To obtain estimates of MIST scores in every region, a large-sample survey of 16,477 re-

spondents was conducted across the UK in which each individual answered the full MIST-20

battery and provided their socio-demographic and geographical information. Groups of NUTS-

3 regions, dividing the UK into 149 spatial units, constitute the level of spatial analyses in this

study and are hereon referred to simply as “regions”, yielding an average of 111 respondents

per region; see Methods: Data collection. To obtain representative estimates of MIST scores

in every region, we applied the approach of multilevel regression and poststratification (MRP

[47]) that has been extensively used in recent years for representative public polling of opin-

ions across small regions in political [44] and psychological [48] science. We developed a

multilevel item response theory (IRT [49]) model to infer individuals’ real and fake news de-

tection abilities, conditioned on their socio-demographics and region of residence; see Fig. S1.

As misinformation susceptibility is potentially mediated by information spreading in socially

networked systems—previously shown for vaccination attitudes [50] and in the context of the
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COVID-19 pandemic [10, 17]—structured random effects were included at the region level to

encode for regional similarity based on spatially aggregated data on online social connectivity

volumes. We call this a “social-IRT” model; see Fig. S1 for a modeling overview and Methods:

Social-IRT model. Once inferred, latent abilities to detect real and fake news provided expecta-

tions of MIST scores of any individual in any region, which were then poststratified [51] using

UK census microdata—i.e., for each MIST score, a weighted average was computed jointly

over all socio-demographics in every region; see Methods: Poststratifying MIST scores.

Since expectations of MIST scores follow a well-understood correlation structure, dom-

inance and correlation analyses were used to determine that, of the five MIST scores, only

the poststratified estimates of expected real (Mµ
r ) and fake (Mµ

f ) news detection ability scores

should be used as exogenous predictors of regional vaccine uptake rates; see Supplementary

methods: Predicting regional outcomes from MIST scores. That is, only two of the five prereg-

istered hypotheses could be tested, by using Mµ
r ,M

µ

f as predictors in a linear regression model

for the regional uptake rates of second doses of a COVID-19 vaccine as of 1 October 2021, in

129 regions of England and Scotland for which data were available; see Fig. S1 for a modeling

overview and Fig. S18 for a scatter plot of region level scores and vaccine uptake. We note that

this was the only deviation from our preregistered analyses, and although the data collection

for this study (in April 2021 for the survey data and in November 2021 for the data on regional

outcomes and covariates) was completed prior to the preregistration (on 27 November 2021)

the statistical analyses had not been executed until after the preregistration. While this study

is observational and was not designed as a randomized experiment to measure causal effects,

a large set of potentially confounding observed covariates at the region level were controlled

for: population density, proportion of females, proportion of those aged 60 or higher, income

per head, life expectancy of 60–64 year-olds, proportion of higher degree holders, percentage

of unemployed people, and proportion of people who voted to “remain” in the European Union

(EU) referendum of 2016. We remark that regional covariates related to COVID-19—like case

rates and death rates—will be influenced by vaccination rates and potentially by misinforma-
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tion exposure, that is they are potential common effects rather than potential common causes

which renders them as bad controls [52]. Therefore, COVID-19 covariates were not included

in our analysis. Since region-level predictors and vaccine uptake are expected to show spatial

autocorrelations [53], the regional adjacency structure was used to control for any confounding

spatial effects. See Methods: Vaccine uptake model for a full model description.

Additional non-preregistered analyses were performed to further eliminate potential modes

of confounding and the ecological fallacy. In particular, the relationship between real or fake

news detection abilities and vaccine uptake can be confounded by mere willingness to follow ex-

pert advice as people may fall for misinformation or conspiracies simply because they outright

reject expert authority [9, 29]. Since we do not have actual region-level observations of willing-

ness to follow expert advice, we tested this potential unobserved confounding by considering

observed “placebo” outcomes [54] that are expected to be directly influenced by willingness to

follow expert advice or accept public health recommendations but not by misinformation expo-

sure, and therefore not by misinformation susceptibility. If the effect of real or fake detection

ability scores on the placebo outcome is “practically significant” (“practically negligible”), then

this observation is consistent (inconsistent) with confounding; see Fig. S6 for a causal dia-

grammatic explanation. Given the public health advisory on reducing obesity levels [55], being

physically fit and active signals a willingness to follow expert advice or accept public health

recommendations, and is unlikely to be influenced by misinformation. Therefore, in this study,

we considered two region-level placebo outcome candidates that are available for 115 regions

across England: percentage of overweight or obese adults [56] and percentage of physically

active adults [56].

The questionnaire asks for which sources of information are trusted by the respondents

with regards to the COVID-19 pandemic—see Questionnaire in the supplementary information

and Fig. S16—which permitted an additional check on confounding by directly controlling

for trust in expert authority via model-aggregated “observations”. In particular, we inferred

an individual-level model for the probability of trusting an expert source of information and
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applied poststratification [51] to obtain region-level model-based estimates of trust in expert

authority that were used as an additional covariate to directly test if the effect of misinformation

susceptibility on actual vaccine uptake was confounded.

The questionnaire also asks for respondents’ COVID-19 vaccination status; see Question-

naire in the supplementary information. To rule out an ecological fallacy, that is, to test whether

any association of region-level abilities to detect real or fake news and COVID-19 vaccine up-

take rates holds at the individual level, an individual-level vaccine uptake model was inferred

using the survey data on self-reported vaccination status. For individuals who were invited to

get vaccinated as of April 2021—11,113 of the 16,477 respondents in our survey—this model

predicts their probability of taking one or more doses of a COVID-19 vaccine, using their ob-

served real and fake news detection ability scores as predictors, while controlling for their socio-

demographics—age, gender, ethnicity, highest education qualification, employment status, reli-

gious affiliation, annual income earned—and region-level covariates—population density, pro-

portion of females, proportion of those aged 60 or higher, income per head, life expectancy of

60–64 year-olds, proportion of higher degree holders—while assuming that region-level devi-

ations can arise due to the underlying social network structure; see Supplementary methods:

Individual-level vaccine uptake model.

Results

Bayesian statistical modeling was performed throughout; see Methods for details. In all results,

parameter posterior distribution means with corresponding 95% highest posterior density inter-

vals (HPDI) are specified; HPDIs indicate the region of most credible parameter values. As

Bayesian regression modeling was used, any concept of “significance” of an effect is distinct

from the posterior, and involves considerations on designing appropriate decision thresholds

[57]. We used the notion of a “region of practical equivalence” (ROPE) to null effects that

deems the observed effect as “practically negligible” if the HPDI of the coefficient of interest

falls within the ROPE, and as “practically significant” if it falls outside the ROPE, whereas the
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effect cannot be regarded as either negligible or significant if it overlaps with the ROPE [58].

Preregistered 95% HPDIs and ±0.05 ROPEs were used for the standardized regression coef-

ficients to determine the practical significance of each hypothesized effect at the region level,

which regards an effect size that is half of Cohen’s conventional “small” effect size [59] as prac-

tically negligible, since an effect size of 0.05 is deemed as “very small” for the explanation of

single events [60].

Ability to detect fake news predicts COVID-19 vaccine uptake

Fig. 1 shows the posterior estimates of the standardized regression coefficients βV
M measur-

ing the effect of increasing the region-level real or fake news detection ability score M by unit

standard deviation on increase in a COVID-19 vaccine’s second dose uptake rates V in Eng-

land and Scotland as of 1 October 2021, in units of standard deviation of regional vaccine

uptake rates. Fig. 1b shows that, in agreement with our hypothesis, region-level fake news

detection ability score Mµ

f has a practically significant and positive effect on vaccine uptake

rates: βV
Mµ

f
= 0.28 [0.09,0.48]. It is notable that this effect size is smaller in magnitude than

the effect size of only one of the control variables—the proportion of population aged 60 or

more. Controlling for spatial autocorrelations consistently and markedly improves the pre-

diction accuracy—see Fig. S20—and the effect of Mµ

f on uptake remains robust even after

accounting for spatial effects: βV
Mµ

f
= 0.26 [0.07,0.46]. Meanwhile, Fig. 1a shows that the prac-

tical significance of the hypothesized effect of region-level real news detection ability score

Mµ
r on vaccine uptake cannot be determined: both before (βV

Mµ
r
= 0.05 [−0.10,0.21]) and af-

ter (βV
Mµ

r
= 0.02 [−0.14,0.17]) controlling for spatial autocorrelations. Fig. S18 shows the raw

bivariate relationship between regional real and fake news detection scores and vaccine uptake.

To produce converging evidence at the individual level, an additional model for respondents’

self-reported vaccination status was inferred. Fig. 2 shows the posterior mean of the effect

β v
M of increasing an individual’s MIST score M by unit standard deviation on their log-odds

of being vaccinated v. All else held constant, β v
M > 0 (β v

M < 0) implies that an increase in
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M increases (decreases) the probability to be vaccinated. Both real and fake news detection

ability scores have a credibly positive association with vaccine uptake—β v
Mr

= 0.14 [0.07,0.21]

and β v
M f

= 0.32 [0.26,0.39]—with the effect size being larger for the fake news detection score.

This individual-level finding produces converging evidence to our region-level result: fake news

detection score has a practically significant effect on vaccine uptake, and the effect of real

news detection score on uptake cannot be determined—possibly due to its smaller effect size

at the individual level which does not become apparent at the region level; see Supplementary

results: Determinants of vaccine uptake for further details. We observe that the respondents’

gender and education seem to have no bearing on their vaccination status. We emphasize that

self-reported vaccination status appears to be reliable in our survey data, as noted by the large

region-level correlation of actual vaccine uptake [61] and poststratified model-based estimates

of vaccination probability using an individual-level vaccine uptake model with only individual

socio-demographics as the predictors; see Figs. 2 and S18.

To rule out confounding because of mere willingness to follow expert advice, two placebo

outcomes were considered. Fig. S19(d, e) shows the posterior estimates of the standardized

regression coefficients measuring the effect of increasing the region-level real or fake news

detection ability score by unit standard deviation on increase in a region’s placebo outcome

levels, in units of standard deviation of the outcome, after controlling for various covariates and

spatial autocorrelations. As per our expectation, both scores have a practically negligible effect

with the 95% HPDIs overlapping with the ±0.05 ROPEs: β o
Mµ

r
= 0.04 [−0.13,0.20] and β o

Mµ

f
=

0.07 [−0.14,0.29], β a
Mµ

r
= 0.15 [−0.02,0.33] and β a

Mµ

f
= 0.21 [−0.03,0.44], for rates of obesity

o and physical activity a, respectively. That is, our placebo outcome analyses are consistent

with no confounding due to willingness to follow expert scientific advice.

In the absence of observed data on region-level trust in expert advice, we inferred an individual-

level model on respondents’ propensity to trust an expert source of COVID-19 information

(see Fig. S17) and poststratified it to the region level, allowing these region-level trust es-

timates to be used as an additional control variable when measuring the contribution of real
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and fake news detection ability scores on actual vaccine uptake; see Fig. S19a. The ef-

fect of fake news detection ability score Mµ

f remains practically significant and positive—

βV
Mµ

f
= 0.26 [0.06,0.45] and βV

Mµ

f
= 0.24 [0.05,0.43] before and after controlling for spatial au-

tocorrelations, respectively—and of real news detection ability score Mµ
r remains practically

negligible—βV
Mµ

r
= 0.02 [−0.14,0.19] and βV

Mµ
r
=−0.01 [−0.17,0.14] before and after control-

ling for spatial autocorrelations, respectively. This explicit check on confounding, alongside the

placebo analyses above, strengthens the evidence of a practically significant and positive effect

of fake news detection ability on observed vaccine uptake.

The direct check on confounding was repeated at the individual level by inferring the individual-

level vaccine uptake model after controlling for the binary condition T indicating whether the

individual trusts an expert source of COVID-19 information, with an additional interaction term

between the individual’s real and fake news detection scores and T ; see Fig. 2. Both real and

fake news detection ability scores maintain a credibly positive association with vaccine uptake:

β v
Mr

= 0.17 [0.05,0.29] and β v
M f

= 0.40 [0.30,0.50]. Furthermore, the interaction coefficients are

much smaller, which suggests that the effect of misinformation susceptibility on vaccine uptake,

after controlling for socio-demographics, is largely independent of whether an individual trusts

expert information sources.

Socio-demographic determinants and sub-national mapping of misinfor-
mation susceptibility

Fig. 3 shows the posterior means of the contribution to log-odds of correctly identifying real

and fake news, given an individual’s socio-demographics; see Supplementary results: Deter-

minants of abilities to detect real and fake news for detailed analysis. Relative to 18–24 year

olds, each successive age group is progressively better at detecting both real and fake news,

which recapitulates prior evidence on misinformation susceptibility [15]. A similar trend is

found for education and income: increases in education and income levels are associated with

increased abilities to detect both real and fake news. Relative to females, males are better at

real news detection, but there is no difference detected in the ability to spot fake news. Relative
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to Christians, reporting as being atheist is associated with better abilities for both real and fake

news detection, while other religious groups have lower abilities for both real and fake news

detection. Students and retired groups have a better ability to detect real and fake news than

those who are employed. The estimates of ρ,ρ—measuring the proportion of variance in the

region-level random effects explained by social connectivity volumes—are credibly larger than

0.5: ρ = 0.94 [0.79,1.0] and ρ = 0.92 [0.7,1.0]. This suggests that social connectivity explains

a majority of residual variance in real and fake news detection abilities, after controlling for

individual- and region-level covariates, and that information spillovers in social networks may

play an important role in misinformation susceptibility. Interestingly, we also find that sparsely

populated areas generally have lower levels of misinformation belief than densely populated

ones.

Fig. S9 shows the posterior means of poststratified estimates of MIST scores mapped for

the entire UK; see Supplementary results: Interpreting MIST scores for further analysis, and

Fig. S11 for a comparison to raw survey estimates. It is insightful to compare regions’ mis-

information susceptibilities against each other, using a null reference model of “average” real

and fake news detection abilities across the UK; see Fig. 4. 43 of the 149 regions have close

to average ability scores. Regions with all three ability scores consistently below or above the

average are of particular interest, as they are indicative of the most or least susceptible regions

in the UK, respectively; see Fig. 4f.

It is immediately apparent that almost the whole of Scotland performs better than average

across the three ability scores, alongside select regions of England, totaling to 12 such “best-

performing” regions. This can be explained by Scotland’s position as the region with the largest

proportion of degree holders in the UK, and higher education levels are positively associated

with abilities to detect real and fake news; see Fig. 3. On the flip side, 10 regions—all in

England—are the “worst-performing”, including two boroughs of London—namely Brent and

Redbridge & Waltham Forest. The underperforming regions of London are highly ethnically

diverse—with nearly 64%, 57% and 48% of the population, respectively, composed of ethnic
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minorities as of the 2011 census [62]—and being an ethnic minority appears to be inversely

related to real and fake news detection abilities—possibly due to cultural and/or linguistic dif-

ferences between ethnic groups; see Fig. 3. In Wales, two regions perform better than average

at veracity discernment—Cardiff & Vale of Glamorgan and South West Wales—that are also

better than average at real and fake news detection abilities, respectively. In Northern Ireland,

only the region of Lisburn & Castlereagh performs better than average at two ability scores—of

real news detection and veracity discernment—while the region of Fermanagh & Omagh is both

better and worse than average at real and fake news detection abilities, respectively, which also

manifests as both lower and higher than average distrust and naivety bias scores, respectively.

Discussion

In this preregistered study, using a large nationally representative sample, we find that suscepti-

bility to misinformation in general—as measured by a psychometrically validated instrument—

predicts officially reported vaccine uptake in England and Scotland at the region level. Specif-

ically, we find that regional propensity to believe false news headlines is associated with lower

local COVID-19 vaccination rates, even when controlling for potential confounders such as age,

gender, life expectancy, unemployment, population density, political orientation, income, edu-

cation levels, geographic location, and spatial autocorrelations, and even after accounting for

potential confounding by mere willingness to trust expert authority. Analyses at the individual

level using self-reported vaccination status provide converging evidence for this relationship

and rule out rejection of authority as the dominant mechanism by which general misinforma-

tion susceptibility affects vaccine uptake, providing more support instead to misinformation

exposure as an independent mechanism.

This finding is of scientific and practical importance. We establish a direct link between

misinformation susceptibility and detrimental outcomes in the real world; our study is the first

to establish a link between general misinformation susceptibility and vaccination rates at the

region level, and to do so using observed vaccination rates (rather than vaccine intentions [5,
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7]). Consistent with (but different from) our results, recent research [24] reports that online

circulation of COVID-19 vaccine-related misinformation is associated with reduced vaccine

uptake observed at the state level in the United States. However, our results highlight that such

an effect is not restricted to sharing of vaccine-specific misinformation. That is, while previous

literature [24] would posit the causal claim that removal of COVID-19 specific misinforma-

tion may improve real-world vaccine uptake—which can be problematic if COVID-19 specific

misinformation is “merely a symptom of another problem [...] that similarly impacts vaccine

attitudes” [29]—our study puts forth the causal claim that improving individuals’ general abili-

ties to detect fake news may improve real-world vaccine uptake. This claim is further supported

by recent work establishing a causal effect of media literacy interventions on misinformation

susceptibility [30] and a causal effect of media literacy interventions on vaccine intentions [25]

that together suggest misinformation susceptibility as a plausible mechanism mediating the ef-

fect of such interventions on vaccination behaviors. The alignment of our ecologically valid

and robust associational finding with lab-based causal evidence [25, 30] thus provides an im-

petus to tackle misinformation susceptibility at scale, especially when acceptance of a public

health advisory may be lowered by misinformation exposure—as in vaccine acceptance [7].

Recent declining trends in global vaccine confidence [63] make studying the relationship of

misinformation susceptibility and vaccination behaviors in wider geographical settings a pub-

lic health priority. Because policies are implemented at the regional rather than the individual

level—media literacy interventions within specific school districts, or public health information

campaigns within individual federal states or provinces—our results offer a practical way for

policymakers to decide where and how to focus their efforts to build population-level resilience

against misinformation and tackle vaccine hesitancy [64]

Although this study is observational, assuming that the correlational effect size upper bounds

the causal effect size allows us to put the potential effect of fake news detection ability scores on

vaccination rates (βV
Mµ

f
= 0.26 [0.07,0.46]) in perspective: Given that the regression predictors

and the outcome were standardized, and the standard deviation of regional vaccine uptake rates
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and fake news detection ability scores are given by σV ≈ 5.73 percentage points and σMµ

f
≈ 0.44

respectively, a change in Mµ

f by ∆Mµ

f
is associated with a change in regional vaccine uptake

rates by ∆V = βV
Mµ

f
σV

∆
Mµ

f
σ

Mµ

f

≈ 3.37∆Mµ

f
[0.91∆Mµ

f
,6.04∆Mµ

f
] percentage points. This means that,

if residents of a region were to correctly identify, on average, an additional fake headline as

“fake” (∆Mµ

f
= 1), then this is associated with a 3.37 [0.91,6.04] percentage point increase in

regional vaccine uptake rates, or roughly 1.78 million [0.48M, 3.2M] additional doses adminis-

tered nationally across the UK’s 52.89 million adult population (estimated as of mid-2020). In

practical terms, consider a media literacy intervention grounded in the theory of psychological

inoculation such as one session of the 15-minute online media literacy game Bad News [30],

that induces on average a positive change in fake news detection ability scores in the MIST-8

battery of 0.28 [15]. As the MIST-8 is an abridged version of the MIST-20, extrapolating this

effect size to the MIST-20 fake news detection ability score at the region level, i.e. assuming

∆Mµ

f
= 0.28, implies that such an intervention could potentially be associated with 0.50 million

[0.13M, 0.89M] more vaccinations nationally, on average.

We also offer some contextualization of our findings. The correlation between belief in

vaccine-specific misinformation and vaccine hesitancy [5, 65] or actual vaccine uptake [24] has

been previously established, alongside the causal effect of exposure to vaccine-specific misin-

formation on vaccine hesitancy [7]. The causal effects of media literacy interventions on vaccine

hesitancy [25] and on the general ability to detect fake news have also been studied [30]. Here,

we provide correlational evidence for a cognitive mechanism that links up this chain of causal

evidence: that the ability to detect fake news may affect actual vaccine uptake. In particular, we

show that the general ability to detect fake news and COVID-19 vaccination rates vary by re-

gion in mutually informative ways, even after controlling for a large set of possible confounders

including socio-demographics (like age and education), spatial covariation, and willingness to

trust expert authority or accept public health recommendations. Because repeated exposure to

misinformation increases its perceived reliability [66], it is possible that exposure to COVID-19

vaccine misinformation, and sharing it with other community members upon failure to iden-
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tify it correctly as misinformation, is higher in some regions than others (possibly because of

targeted disinformation campaigns [67]), leading to increased belief in COVID-19 vaccine mis-

information in that region. We also observe the salience of social network structure—as online

social connectivity between different regions explain a majority of residual variance in indi-

viduals’ abilities to detect real and fake news after controlling for socio-demographics—which

suggests a relationship between online misinformation sharing and misinformation suscepti-

bility, further aligning with the recent finding that online misinformation sharing is associated

with observed vaccine uptake [24]. These processes, in turn, could contribute to lower trust

in COVID-19 vaccines and by extension reduce vaccination rates. Another possibility is that

people who are more likely to believe misinformation were also more likely to be on the fence

about getting vaccinated, particularly during the early stages of the vaccination campaign. Later

on, when the vaccine rollout was well underway, some chose to then get vaccinated. This may

also explain why we do not observe a practically significant effect of fake news detection ability

on the first vaccine dose uptake as of October 2021 (as opposed to the second dose uptake as of

October 2021), but the predictive effect on first dose uptake was stronger in July 2021 (i.e., early

on in the vaccination campaign); see Supplementary results: Misinformation susceptibility and

first dose uptake.

We note several limitations to our study. First, while large-scale, multi-level, rigorously

controlled, and actively ruling out confounds and alternative explanations, our study is observa-

tional and we cannot make causal inferences about the link between misinformation suscepti-

bility and vaccine uptake. However, considering the robustness of the reported associations and

genuine testability of our causal claim within preexisting frameworks of experimental psychol-

ogy [25, 30], we argue that it is of high scientific importance to explore causal connections and

establish whether there is a causal effect of susceptibility on vaccination of a size comparable

to the associated changes we report here. Second, we only looked at a single country (England

and Scotland, within the United Kingdom), and more research is needed to explore whether our

findings hold up cross-culturally. Finally, we were unable to assess precisely to what extent
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vaccine uptake can be increased through interventions that decrease individual misinformation

susceptibility, and our correlational estimates of the effect size are likely to be an upper bound

on the actual causal effect.

To summarize, (a) by using a foundational psychological construct as opposed to misin-

formation specific to COVID-19 vaccines [5–7, 22–26] as an independent variable, (b) that is

supported by in-lab causal studies of the effect of misinformation on vaccination outcomes [7,

25, 30], (c) to predict observed vaccine uptake instead of unrealized vaccination outcomes [5,

6, 22, 23, 26], (d) while accounting for the most likely (observed and unobserved) confounders,

this study has produced the strongest evidence to date for a testable and ecologically valid causal

claim about the potential impact of the ability to detect fake news on vaccination. Given recent

studies deploying media literacy interventions to successfully improve individuals’ vaccine in-

tentions [25] and fake news detection abilities at scale [68], a longitudinal study that randomizes

assignments of such an intervention and tracks individuals’ vaccination status—akin to a ran-

domized clinical trial—can be used to fully identify a causal effect; we look forward to future

research into the feasibility of such interventions. Prior research on the association between

misinformation belief and other socio-psychological outcomes, such as opinions on climate

change [69], motivates the plausibility of misinformation susceptibility as the cognitive mech-

anism underlying other observed relationships; we look forward to future work investigating

the link of misinformation susceptibility, as measured by our regional MIST scores, to such

outcomes observed at the regional level.

Methods

Data collection

Spatial unit of analysis The level 3 classification of Eurostat’s nomenclature of territorial

units for statistics (NUTS) was considered for spatial analyses [70], which divides the UK

into 179 “NUTS-3” regions ranging in population from 150,000 to 800,000; see Fig. S10.

These regions closely mirror the local authority districts (LAD) of the UK [71]. As safeguarded

19



census microdata [62, 72, 73] are available for groups of LADs to lower the risk of statistical

disclosure, there is some degree of mismatch between grouped LADs and NUTS-3 regions.

NUTS-3 regions were aligned to grouped LADs to yield 149 (129) “grouped” NUTS-3 regions

across the UK (England and Scotland); see Table S6. These grouped NUTS-3 regions constitute

the level of all spatial analyses in this study, and are referred to as “regions” throughout.

Survey sample A total of 17,611 adults (18 or older) were surveyed once (i.e., the sample is

cross-sectional) in the UK between 9 April 2021 and 27 April 2021, via online panels by ORB

International (www.orb-international.com). Respondent quotas were set to match UK popu-

lation’s marginal distributions across sex, age, and the first administrative level of geography

(NUTS-1; see Fig. S10). During data collection, quality control procedures resulted in the

removal of 1,084 responses, producing a total of 16,527 valid responses. Respondents were

mapped to regions of the UK using their outward postcode (OPC). However, as some OPCs

do not match to a unique region, the empirical probabilities of OPCs to match to regions were

computed from data on full postcodes—that do map uniquely—as the proportion of full post-

codes corresponding to a given OPC that match to a given region [74, 75]. Consequently, 50

individuals whose OPCs matched to any single region with a probability less than w = 0.5 were

excluded, yielding a final sample of 16,477 individuals who were each mapped to a unique re-

gion in the UK having the largest matching probability. (Robustness checks were performed

by incrementally excluding individuals who were least likely to be mapped to a unique region,

i.e. for different values of w ∈ {0.7,0.9}. The resulting posterior distributions of poststratified

regional MIST scores were very similar to those with w = 0.5; see Fig. S11.) Table S3 shows a

breakdown of the final survey sample across socio-demographic covariates, with a comparison

to national counts derived from the 2011 census microdata [62, 72, 73]. Tables S4 & S6 show

a breakdown of the final survey sample’s counts across the first administrative level (NUTS-1

geographies) and the level of spatial analyses (grouped NUTS-3 regions), respectively, with a

comparison to national counts derived from the 2019 population estimates [71, 76].
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Ethical approval and declaration Informed consent was obtained from all respondents be-

fore participating in the survey. Ethical approval was obtained via the Research Ethics Com-

mittee of London School of Hygiene and Tropical Medicine on 7 April 2021 with reference

25637.

Vaccine uptake, placebo outcomes, and controls Data on regional COVID-19 vaccine up-

take rates across England and Scotland were obtained from the UK government’s Coronavirus

Dashboard [61]. Data on regional rates of obesity and physical activity across England were ob-

tained from Public Health England’s Fingertips API [56]. Wherever possible, models controlled

for various regional covariates for which data were publicly available: population density [71,

76, 77], proportion of females [76], proportion of those aged 60 or higher [76], income per

head [76, 78], life expectancy of 60–64 year-olds [79, 80], proportion of higher degree holders

[62, 72, 73], percentage of unemployed people [81, 82], and proportion of people who voted to

“remain” in the European Union (EU) referendum of 2016 [83]. Models for real and fake news

detection abilities additionally controlled for region-level social connectivity volumes, sourced

from Facebook’s social connectedness index (SCI [84]). Safeguarded census microdata from

2011 [62, 72, 73] were used for poststratification.

Modeling overview

Poststratification To match the survey sample’s distribution with the UK population, the sur-

vey questionnaire elicited respondents’ socio-demographics—gender, age, highest level of ed-

ucation, ethnicity, employment status, and religious affiliation—that aligned with the UK cen-

sus. (Refer to Questionnaire in the supplementary information and Tables S1 & S2 for how

responses were recoded.) This allowed for poststratification [51] of MIST score estimates—

wherein the population in each region is divided into a sufficiently fine socio-demographic

partition and the estimate for a socio-demographic group is weighted by its population count

before aggregation to the region level to render representative small area estimates—according

to the population’s joint distribution across all socio-demographic groups, within every region.
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Multilevel regression While poststratified estimates possess a lower statistical bias with a

finer partition, the number of survey samples per group become sparser, inducing a larger vari-

ance of raw survey estimates. Instead of poststratifying raw survey estimates, inferring a regu-

larized regression model for MIST scores before poststratification allows for a large reduction

in variance by injecting a small amount of statistical bias [85]. We pursued a Bayesian modeling

approach—wherein placing multilevel priors offers the additional benefit of sparsely sampled

groups “borrowing strength” from more densely sampled groups—called multilevel regression

(followed by) poststratification (MRP [47]).

Item response theory For the multilevel regression step, two separate “social” item response

theory (IRT) models were inferred from the survey responses; see Methods: Social-IRT model.

Classic 2-parameter IRT models, the backbone of psychometric analysis, infer an individual’s

latent ability to correctly respond to a set of questions, or items, of varying difficulty and dis-

crimination [49]. In this case, latent abilities encode an individual’s abilities to detect real or

fake news items—how likely they are to correctly identify true and false news items as “real”

and “fake”, respectively—and item-specific parameters encode the (1) “difficulty” of correctly

identifying whether the news item was real or fake—that corresponds to the minimum individ-

ual ability required to guess the item correctly better than random—and (2) the item’s power

to “discriminate” between individuals with different abilities—that corresponds to the rate of

change in the log-odds of correctly identifying an item with change in individual ability [49].

Access to respondents’ socio-demographic and geographical information permitted condition-

ing an individual’s real and fake news detection abilities on their socio-demographic covari-

ates and region of residency; see individual and regional covariates above. Parameters for the

socio-demographic covariates received multilevel priors, allowing for sparsely sampled socio-

demographic groups to borrow strength from other groups. Parameters for regional covariates

received flat regularizing priors.
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Social network effects People who are well-connected to one another, say on an online so-

cial media platform, are likely to share similar information with each other, and perhaps even

respond similarly to such information due to social homophily [86]. Publicly available spatially

aggregated data on online social connectivity volumes [84] makes it possible to account for

individual-level social connectivity effects via region-level structured random effects, in a pri-

vacy preserving manner; see Supplementary methods: Individual social connectivity generates

regional spatial structure. This “structured” multilevel prior—wherein random effects encode

for correlations between regions based on social connectivity—allows for sparsely sampled re-

gions to borrow strength from other regions that they are socially well-connected to; thus, we

refer to this multilevel IRT model as a “social-IRT” model.

Vaccine uptake models For the poststratification step [51], expected values of the MIST

scores of an individual in every possible socio-demographic group of every region were com-

puted from the social-IRT models, and aggregated to the region level using census microdata

[62, 72, 73]; see Methods: Poststratifying MIST scores. For testing the proposed hypotheses,

posterior means of poststratified regional expectations of MIST scores were used as predictors

in a linear regression model for regional vaccine uptake rates, while controlling for regional

covariates, and both before and after accounting for spatial autocorrelation due to regional ad-

jacency; see Methods: Vaccine uptake model. Regional covariates with a positively skewed

distribution—population density, income per head, and proportion of higher degree holders—

were log-transformed. All predictors, covariates, and the outcome (regional vaccine uptake

rates) were standardized to zero mean and unit standard deviation.

Detailed statistical analyses A statistical analysis plan [46] was preregistered at https:

//osf.io/um2hd/. All Bayesian statistical analyses performed in this study are detailed in

the following sections. Lowercase letters (i, j), (u,v), and (a,b) are used to index individuals,

regions, and headlines, respectively. Other lowercase and uppercase letters denote scalars, while

boldface lowercase and uppercase letters denote (column) vectors and matrices, respectively.
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The notation vi, Mi, and Mi j is used to index into the entry i of vector v, the row vector i of

matrix M, and the entry in row i and column j of matrix M, respectively. To aid disambiguation,

the notation [v]i, [M]i, and [M]i j is used to clarify indexing. Unless otherwise stated, Latin

characters denote data or observed variables, while Greek characters denote model parameters

or latent variables.

Social-IRT model

Data variables

Let m and n be the number of regions and individuals, respectively, with c and d number of

regional and individual covariates, respectively. Let R and X be matrices of size m×c and n×d,

encoding the regional and individual covariates, respectively. (Since only discrete individual

covariates are considered, each row of X is a concatenation of one-hot encoding row vectors

corresponding to each socio-demographic covariate, while exactly one column of X consists of

all ones to encode the intercept. Since only continuous regional covariates were considered,

each column of R is transformed to have zero mean and unit standard deviation.) Let G be a

matrix of size n×m indicating the region of residence of all individuals, i.e. Giu = 1 if individual

i resides in region u and Giu = 0 otherwise. Let W be a symmetric non-negative valued matrix

of size m×m with zeros on the diagonal, encoding the “weights” of structural connectivity for

a given region pair. Let Y and Y be matrices of size n× k encoding the response of individuals

to real and fake news headlines in the MIST-20 battery [15, 16] (k = 10), respectively: Yia = 1

(Yib = 1) if individual i correctly identifies real (fake) news headline a (b) as “real” (“fake”)

and Yia = 0 (Yib = 0) otherwise.

Likelihood of the data

Let λ and λ be vectors of size n encoding the “latent” ability of individuals to correctly de-

tect real and fake news headlines, respectively. Assuming that an individual’s ability to detect

real and fake news is independent when conditioned on their socio-demographics and region

of residency, two independent models describe λ and λ ; see Fig. S2 for a graphical model
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representation. We describe a model for responses to real news headlines Y, and the one for

fake news headlines Y immediately follows. Let α and γ be vectors of size k encoding the

“difficulties” of responding to real news items and their “discrimination” powers, respectively

[49]. Assuming that the response to any two headlines is independent when conditioned on

their respective “difficulties” and “discriminations”, response Yia is an independent Bernoulli

outcome:

Yia |λ i,αa,γa ∼ Bernoulli(Pia) , (1a)

logit(Pia)≜ log
(

Pia

1−Pia

)
= γa (λ i −αa) , (1b)

where the discrimination of each headline a is constrained to be non-negative γa ≥ 0 for mul-

tiplicative identifiability of Eq. 1b. Using logit(·) implies that we model for the log-odds of

an individual i correctly responding to headline a. An individual’s ability is assumed to depend

linearly on both individual and regional covariates:

λ ≜ Xβ X +G(Rβ R +η) , (2)

where β X and β R are vectors of coefficients for individual and regional covariates, of sizes d

and c respectively. The vector η of size m encodes region-level random effects:

η ≜ σ

(√
1−ρθ +

√
ρφ

)
, (3)

such that σ ≥ 0 is the overall scale of random effects, θ and φ are vectors of size m encoding

the unstructured and structured components of the random effects, respectively, and ρ ∈ [0,1]

indicates the proportion of variance explained by the structured component φ [87].

An identical model definition for responses to fake news headlines Y yields individuals’

abilities to detect fake news λ , corresponding coefficients β X and β R for individual and re-

gional effects, respectively, and the total random effects η with unstructured and structured

components θ and φ , respectively. Figs. 3 & S8, and Tables S7 & S9 show the posterior

estimates for coefficients of individual and regional covariates. Fig. S7 shows the posterior

estimates for structured, unstructured and total random effects.

25



Prior distributions for random effects

The unstructured component follows a standard normal distribution:

θ ∼ N (0m,Im) , (4)

where 0m is the zero vector of size m and Im is the identity matrix of size m×m. For the

structured component, a weighted intrinsic conditional autoregressive (ICAR) prior (also known

as the Besag prior [88]) is used, which penalizes differences between the structured effects φ u

and φ v for two regions u,v, in proportion to the strength of their connectivity Wuv:

P(φ) ∝ exp

(
−sW

2

m

∑
u=1

m

∑
v=u+1

(φ u −φ v)
2Wuv

)
, (5)

where sW > 0 is an appropriately chosen scaling constant. The ICAR prior is commonly used

in Bayesian hierarchical (multilevel) models of spatial data, as it can be seen as defining a

Gaussian Markov random field over geographical space; Eq. 5 can be rewritten as:

φ ∼ N
(
0m,s−1

W L+
W
)
, (6a)

LW ≜ diag(W1m)−W, (6b)

where sWLW encodes the precision matrix for the distribution of φ , 1m is the vector of ones

of size m, and diag(·) indicates the diagonal matrix formed by a given vector. Contrasting Eq.

4 with Eq. 6a makes clear that θ and φ respectively encode the unstructured (diagonal) and

structured (both diagonal and off-diagonal) components of regional random effects. From Eq.

6b, note that 1m is an eigenvector of LW with eigenvalue 0, i.e. LW is singular. Thus L+
W,

that denotes the pseudoinverse of LW, defines an improper density in Eq. 6a. However, since

proportionality constants drop out when performing inference, Eq. 5 can be used directly to

define a prior on φ . Refer to Code 1 in Stan programs in the supplementary information for

further details.

We assume that any residual correlations in the ability to detect real or fake news arise due

to information flows, mediated by social connections at the individual level. It can be shown

26



that assuming correlations on an individual-level social network asymptotically translates to

the region-level spatial structure encoded in Eq. 5: see Supplementary methods: Individual

social connectivity generates regional spatial structure. Here, the weight matrix Wuv encodes

the number of social connections or “friendships” between regions u,v on Facebook, provided

by data on the probability of a connection between any two regions from Facebook’s social

connectedness index (SCI) [84], and data on population estimates of every region in the UK

[76].

Scaling the connectivity matrix

The scaling factor s must be chosen appropriately such that ρ can be readily interpreted as

the proportion of variance explained by the structured effects. From Eq. 6a, the marginal

distribution of structured effects is given by

φ u ∼ N
(
0,s−1

W
[
L+

W
]

uu

)
. (7)

Therefore, s can be chosen such that an “expectation” of marginal variances of φ u over all

regions induced by the structured prior is unity, i.e. same as the unstructured prior in Eq. 4. We

follow Ref. [87] and use the geometric mean as the expectation function. From Eq. 7, this is

equivalent to defining:

sW ≜

(
m

∏
u=1

[
L+

W
]

uu

) 1
m

. (8)

From Eqs. 6 and 8, it is evident that s induces an invariance to arbitrary scaling of the connec-

tivity matrix W. We remark that if a region u is entirely isolated, which can occur say if W

encodes physical adjacency between regions and u is an island, then every entry in row u and

column u of W is zero, yielding
[
L+

W
]

uu = 0 =⇒ sW = 0 from Eq. 8. This impropriety is

avoided by simply excluding such perfectly isolated regions u from the computation in Eq. 8.

Prior distributions on remaining model parameters

We follow Refs. [89, 90] to pick prior distributions for the remaining parameters specifying ran-

dom effects in Eq. 3: for ρ ∈ [0,1] we use a non-informative Jeffrey’s prior of ρ ∼ Beta
(1

2 ,
1
2

)
,
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and for σ > 0 we use σ ∼ HalfNormal(0,1). Note that structured effects φ must be constrained

for Eq. 5 to be additively identifiable, which is ensured by imposing a soft sum-to-zero con-

straint: ∑
m
u=1 φ u ∼ N (0,0.001m). For the item-specific parameters in Eq. 1b, item discrimina-

tions receive a hierarchical prior: γa ∼ LogNormal
(

0,σ2
γ

)
where σγ ∼ HalfNormal(0,1) [91,

92]. To prevent multiplicative non-identifiability in Eq. 1b, item difficulties receive regulariz-

ing priors: αa ∼ N (0,1). Regional covariate coefficients in Eq. 2 receive regularizing prior

distributions: β R ∼ N (0c,Ic). Individual covariate coefficients β X receive priors depending

on the dimensionality of each covariate. Coefficients for individual covariates COV with mul-

tiple groups {C1, · · ·C|COV|} where |COV| ≥ 2—age, ethnicity, highest education qualification,

employment status, religious affiliation, and annual income earned—receive hierarchical priors

[47, 51]: ∀i ∈ {1, · · · |COV|} : βCOV[Ci] ∼ N
(
0,σ2

COV

)
, σCOV ∼ HalfNormal(0,1). For sam-

pling efficiency, non-centered parameterizations are used for the hierarchical priors [92, 93].

Coefficients for individual covariates with a single group—βGEN[Male] for gender—and the

intercept—βINT encoding the average ability to detect a real/fake news headline—receive regu-

larizing priors: βGEN[Male] ∼ N (0,2), βINT ∼ N (0,2). See Code 1 in Stan programs in the

supplementary information for a complete Stan program [94] implementing this model.

Poststratifying MIST scores
Defining MIST scores

An individual’s MIST-20 response set can be summarized by five MIST scores that measure

different dimensions of misinformation susceptibility [15, 16]. The real news detection ability

score Mr ∈ {0,1 · · ·10} is defined as the number of real headlines that are correctly identified

as “real”. The fake news detection ability score M f ∈ {0,1 · · ·10} is defined analogously. The

veracity discernment ability score Mv ∈ {0,1 · · ·20} is the sum of real and fake news detec-

tion ability scores: Mv = Mr +M f . To penalize consistent skepticism or blind acceptance of

the headlines shown, two bias scores are also defined: distrust Md ∈ {0,1 · · ·10} and naivety

Mn ∈ {0,1 · · ·10}. If M f > Mr, then an individual is more likely to claim a randomly presented

headline as “fake” than “real”, and is assigned a distrust bias score of Md = M f −Mr, and
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naivety bias score of Mn = 0. Analogously, if Mr ≥ M f , then they are assigned Mn = Mr −M f

and Md = 0. Overall, larger ability scores and smaller bias scores indicate lower misinforma-

tion susceptibility. Once models for an individual i’s abilities to detect real and fake news are

inferred, posterior distributions for the MIST scores can be computed. More precisely, let Yia

and Yib denote the response of individual i to real and fake headlines indexed by a and b respec-

tively, and k = 10 denote the number of real and fake headlines in the MIST-20 battery. Then

individual i’s MIST scores are defined as:

Mr(i)≜
k

∑
a=1

Yia, (9a)

M f (i)≜
k

∑
b=1

Yia, (9b)

Mv(i)≜ Mr(i)+M f (i), (9c)

Md(i)≜ max
(
M f (i)−Mr(i),0

)
, (9d)

Mn(i)≜ max
(
Mr(i)−M f (i),0

)
. (9e)

Individual-level expectation of MIST scores

Conditioned on the model for MIST responses in Eq. 1a, it is evident from Eq. 9 that the abil-

ity scores Mr(i),M f (i),Mv(i) will follow Poisson binomial distributions, while the bias scores

Md(i),Mn(i) do not follow standard distributions—although their distributions can be obtained

via sampling. Regardless, the entire distribution is too large to effectively examine at the region

level. One can instead aggregate an informative statistical measure of an individual’s MIST

scores to the region level, such as their expected values that can be computed straightforwardly
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using Eqs. 1a and 9:

E [Mr(i)] =
k

∑
a=1

Pia, (10a)

E
[
M f (i)

]
=

k

∑
b=1

Pib, (10b)

E [Mv(i)] = E [Mr(i)]+E
[
M f (i)

]
, (10c)

E [Md(i)] =
k

∑
a=1

k

∑
b=a

P(Mr(i) = a)P
(
M f (i) = b

)
(b−a), (10d)

E [Mn(i)] =
k

∑
a=1

a

∑
b=1

P(Mr(i) = a)P
(
M f (i) = b

)
(a−b), (10e)

where the joint distribution over Mr(i),M f (i) factorizes upon conditioning over the latent abil-

ity and item parameters of the IRT models. The expectations in Eqs. 10d and 10e can be

computed efficiently using the discrete Fourier transform of the characteristic function of the

Poisson binomial distribution [95, 96]. For random variables P ∼ PoissonBinomial(p), Q ∼

PoissonBinomial(q), where p and q are vectors of size k with entries in [0,1], we denote the

expectation of max(P−Q,0) by ζ (p,q), and can write for the bias scores from Eqs. 10b and

10c:

E [Md(i)] = ζ (Pi,Pi) , (11a)

E [Mn(i)] = ζ (Pi,Pi) . (11b)

We note that under a null model of random guessing, i.e. ∀a,∀b : Pia = Pib =
1
2 , Eq. 10 yields

E [Mr(i)] = E
[
M f (i)

]
= 5 and E [Mv(i)] = 10, while Eq. 11 yields E [Md(i)] = E [Mn(i)] =

ζ
(1

21k,
1
21k
)
≈ 0.88.

Region-level expectation of MIST scores

Let SX be a matrix of size t × d encoding the set of all possible discrete individual covariate

combinations, such that each row is a vector of size d representing a single socio-demographic

coordinate, such as “18–24 year old male of white ethnicity with no education qualification

and employed and no religious affiliation”, in a given region. Using Eq. 1b for the ith socio-

demographic coordinate in region u, the probabilities of correctly guessing real and fake news
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items a and b are given respectively by:[
P̃u

]
ia
= logit−1 (

γa
(
[SXβ X]i +[Rβ R +η ]u −αa

))
, (12a)[

P̃u

]
ib
= logit−1

(
γ

b

([
SXβ X

]
i
+
[
Rβ R +η

]
u
−αb

))
, (12b)

where P̃u and P̃u are matrices of size t × k each, and logit−1 (x) ≜ (1+ exp(−x))−1. Let T be

a matrix of size m× t encoding the number of people in a given region with a given socio-

demographic coordinate, extracted from the UK census microdata from 2011 [62, 72, 73]. Us-

ing Eqs. 10, 11 and 12 yields a poststratified estimate [51] of the expected MIST scores of

region u:

Mµ
r (u) =

TuP̃u1k

[T1t ]u
, (13a)

Mµ

f (u) =
TuP̃u1k

[T1t ]u
, (13b)

Mµ
v (u) = Mµ

r (u)+Mµ

f (u) =
Tu

(
P̃u + P̃u

)
1k

[T1t ]u
, (13c)

Mµ

d (u) =
Tuζ

(
P̃u, P̃u

)
[T1t ]u

, (13d)

Mµ
n (u) =

Tuζ

(
P̃u, P̃u

)
[T1t ]u

, (13e)

where we define ζ (·, ·) to apply row-wise on matrix inputs and output a (column) vector. See

Fig. S4 for a graphical representation of poststratifying MIST scores. We emphasize that since

a Bayesian statistical model is used, Eqs. 12 and 13 yields a posterior distribution over the

expected MIST scores of region u. Figs. S9 & S12 show a map and bivariate relationships of

the posterior means, and Fig. 4 and Table S11 show a map and values of the HPDIs of expected

MIST scores from Eq. 13.

Vaccine uptake model
Non-spatial vaccine uptake model

Let M be a matrix of size m× l encoding the posterior means of the expected MIST scores of

every region, from Eq. 13. Let y be a vector of size m encoding the vaccine uptake rate in every
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region [61]. Then we assume that vaccine uptake depends linearly on regional MIST scores M

and covariates R:

y ∼ N
(

Mβ M +Rβ R,diag(σ)2
)
. (14)

where β M and β R are vectors of size l and c encoding the coefficients for MIST scores and

covariates, respectively, and σ is a non-negative valued vector of size m encoding the unstruc-

tured random effects. Fig. 1 and Fig. S19 show posterior estimates for β M—under inclusion

of real and fake news detection ability scores, i.e. l = 2—and β R. We note that Eq. 14 can be

re-parameterized in terms of the residuals after accounting for the fixed effects:

µ ≜ Mβ M +Rβ R, (15a)

θ ≜ y−µ ∼ N
(

0m,diag(σ)2
)
, (15b)

We emphasize that all predictors and the outcome are standardized to zero mean and unit stan-

dard deviation, and thus a separate intercept term is not included in the model. Regularizing

priors are placed over coefficients: β M ∼ N (0l,Il), and β R ∼ N (0c,Ic). For every region u

we use σu ∼ HalfNormal(0,1). See Code 2 in Stan programs in the supplementary information

for a complete Stan program [94] implementing this model.

Spatial vaccine uptake model

Vaccine uptake rates may co-vary in physical space even after controlling for regional covari-

ates, which the diagonal covariance structure of Eq. 14 cannot account for. Therefore, a spatial

vaccine uptake model with both structured (spatial) and unstructured (non-spatial) random ef-

fects, as in Eq. 3, can be considered using the regional ICAR specification for the structured

component from Eq. 5: see Methods: Social-IRT model. Contrary to the social-IRT models,

here the usual regional adjacency matrix Q, encoding the so-called “queen” contiguity criterion

[97] where Quv = 1 if regions u and v (u ̸= v) share a border and Quv = 0 otherwise, is used

as the weight matrix W ≜ Q in Eq. 5. Using Eqs. 3, 4, and 6a for the random effects, the full

spatial vaccine uptake model is given by:

y ∼ N
(

Mβ M +Rβ R,σ
2
{
(1−ρ)Im+ρs−1

Q L+
Q

})
, (16)
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that encodes a full covariance structure, unlike Eq. 14. However, since LQ is singular, the

density in Eq. 16 is improper. Analogously to Eq. 15, the model is re-parameterized in terms

of the residuals after accounting for the fixed effects and structured random effects:

µ ≜ Mβ M +Rβ R +σ
√

ρφ , (17a)

θ ≜ y−µ ∼ N
(

0m,σ
√

1−ρ Im

)
. (17b)

Structured random effects φ follow the ICAR prior in Eq. 5, and for every connected component

Cũ in the set of connected components C = {C1,C2, · · ·C|C |} of the regional adjacency network,

the random effects are softly constrained to sum to one: ∑u∈Cũ φ u ∼ N (0,0.001 |Cũ|). Unlike

the social-IRT model where a region-level spatial model is used to explain individual-level

outcomes, here it is used to explain region-level outcomes. Therefore, to prevent an overfit at the

region level, a regularizing prior is placed on the parameter ρ ∈ [0,1] that interpolates between

the structured and unstructured regional random effects: ρ ∼ Beta(4,4). For the overall scale

σ > 0 we use σ ∼ HalfNormal(0,1). See Code 3 in Stan programs in the supplementary

information for a complete Stan program [94] implementing this model.

We note that analogous non-spatial and spatial models were inferred for the placebo out-

comes in this study, with y encoding the rates of obesity or physical activity in every region.

Fig. S21 and Table S17 show the corresponding posterior estimates for coefficients of real and

fake news detection scores β M and regional covariates β R.

Statistical inference

All statistical inference was performed by Hamiltonian Monte Carlo [98] with the No-U-Turn

sampler [99] using pystan [100], the Python implementation of Stan modeling language [94].

Samples from the posterior distribution were drawn from 4 chains, comprising of 2,000 draws

for the social-IRT models and 4,000 draws for the region-level (vaccine uptake and placebo out-

comes) and individual-level models (vaccination status and trust in expert sources), i.e. 4,000

and 8,000 draws excluding warm-up, respectively. Model convergence was ensured for all key

parameters by ensuring that the potential scale reduction factor satisfies R̂ ≤ 1.02 and the effec-
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tive sample size satisfies Seff > 400 [101]: see Tables S8, S10, S16, S18, S19 and S21. Efficacy

of momentum resampling is monitored by checking that the Bayesian fraction of missing infor-

mation [102] satisfies BFMI> 0.3 [103]: see Table S22. The target average proposal acceptance

probability for the sampler was set to 0.95 and 0.999 for the social-IRT and vaccine uptake mod-

els, respectively, and no divergent transitions were encountered. The maximum tree depth for

the sampler was set to 14. Relevant statistics for the parameters of interest—log-odds, MIST

scores, and other model parameters—were extracted from the posterior samples using ArviZ

[104], with all results reporting the posterior means indicating the effect size and 95% highest

posterior density intervals (HPDI) [105] indicating credible values: an interval containing 95%

of the (posterior) probability mass while ensuring that all values within the interval are more

probable (and thus more “credible”) than any values outside the interval. Model convergence

and sampling diagnostics were computed using ArviZ [104].
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Fig. 1. Regional expectation of fake news detection ability scores has a practically significant pos-
itive association with regional COVID-19 vaccine uptake rates in England and Scotland. Posterior
density of the standardized coefficients of real (Mµ

r , a) and fake (Mµ

f , b) news detection ability scores
are shown, both before (blue) and after (red) controlling for spatial effects of regional adjacency, with
corresponding shaded regions indicating 95% HPDIs, and the green shaded region indicating the prereg-
istered region of practical equivalence (ROPE) to null effects of (−0.05,0.05). The models control for
a set of regional covariates (c): markers indicate posterior means while bars indicate 95% HPDIs, and
dotted line indicates the reference value of 0. See Table S15 for full posterior values.
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Fig. 2. Individual-level regression models for self-reported COVID-19 vaccination status provide
converging evidence for the association of fake news detection ability scores and vaccine uptake.
Markers indicate posterior means while bars indicate 95% HPDIs of the coefficients of observed real
(Mr) and fake (M f ) news detection ability scores, while controlling for individual socio-demographics,
regional fixed effects (“Region”) and random effects structured by social connectivity volumes. For
each individual covariate, the reference group is indicated by a bounding box and markers at 0 and bars
of 0 length. “Null” corresponds to undisclosed socio-demographic identity; see Table S2 for full variable
recodes. The dotted line indicates the reference value of 0. Models that include real and fake news
detection ability scores as predictors control (blue) and do not control (red) for trust T in expert source of
COVID-19 information (see Fig. S16); Mr ×T and M f ×T indicate the interaction effect. The credibly
large coefficient for M f , even after controlling for T , suggests that the effect of fake news detection
ability on vaccination status goes beyond mere willingness to trust expert authority. See Table S20 for
full posterior values.
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Fig. 3. Being older, more educated, atheist, and of white ethnicity, are individual characteristics
associated with an improved abilities to detect real and fake news headlines in the United Kingdom.
Those who are students or retired have higher real and fake news detection abilities, while being
male is associated with a higher real news detection ability. At the region level, residing in a
region with a larger proportion of higher degree holders is strongly indicative of a higher real
news detection ability, whereas those in densely populated regions have lower fake news detection
abilities. Panels correspond to different individual covariates, except for the last panel “Region” that
corresponds to regional covariates. “Null” corresponds to undisclosed socio-demographic identity; see
Table S2 for full variable recodes. Markers indicate posterior means while bars indicate 95% HPDIs.
For each individual covariate, the reference group is indicated by a bounding box and markers at 0 and
bars of 0 length. See Table S7 for full posterior values.
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Fig. 4. Regions across the United Kingdom (UK) with credibly above or below average misinforma-
tion susceptibility test (MIST) scores. Panels a-e indicate poststratified regional estimates of expected
ability scores of real news detection (Mµ

r , a), fake news detection (Mµ

f , b), veracity discernment (Mµ
v , c),

and expected bias scores of distrust (Mµ

d , d), and naivety (Mµ
n , e). For each score, colors indicate whether

the 95% HPDI lies below (“below average”), includes (“close to average”), or lies above (“above aver-
age”) the posterior mean of the “average region” R, such that R’s posterior mean is closest to the average
of posterior means across all regions, with blue (red) indicating higher ability (bias) scores than average
and thus lower (higher) misinformation susceptibility than average. Panel f indicates whether regions are
credibly above or below the average across all three ability scores (Mµ

r ,M
µ

f ,M
µ
v ). See Table S12 for full

posterior values. 52


