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Methods 

Prior Learned elastic-net regression to model gene expression 

We developed a methodology called PriLer (Prior Learned elastic-net regression) that estimates 

gene expression from cis‐acting SNPs, combining elastic-net regression with biological annotation 

of individual genetic variants defined as prior. This includes for example annotation information 

such as cell type specific chromatin state or GWAS association signal. Since the relevance of each 

considered biological annotations is a priori unknown, we implemented an iterative learning 

procedure to obtain optimized weights for each prior in a nested cross-validation fashion 

(Supplementary Fig. 1 Module 1, Supplementary Fig. 2). 

Namely, let 𝑁 be the total number of genes expressed in a tissue across 𝑀 individuals, 𝑃 the total 

amount of SNPs and indels across all genome and 𝐾 the number of prior features included. For 

𝑛 = 1,… ,𝑁, we indicate with 𝑌! the 𝑀-length vector of expression of gene 𝑛 and with 𝑋! the 

genotype matrix 𝑀 × 𝑃! of cis-effects for gene 𝑛 where 𝑃! is the number of cis-variants distant 

from the corresponding transcription starting site (TSS) not more than 200kb. Prior information is 

modelled as a 𝑃 × 𝐾	binary matrix 𝐴 where 1 indicates that variant 𝑝 intersects prior feature 𝑘 

(e.g. is in an open chromatin region of cell type	𝑘).  

In elastic-net regression without prior information, gene expression is modeled as a function of 

cis-variants effects, where the regression coefficients for each gene 𝑛 are found by solving 

min
𝜷𝒏

	[	
1
𝑀 ∥ 𝒀𝒏 − 𝑋!𝜷𝒏 ∥$$	+ + 𝐿-𝛽!,&, 𝜆!, 𝛼!2

&'(,…,*"

] 

with 𝐿 being the elastic-net penalty function specific for variant 𝑝: 

𝐿-𝛽!,&, 𝜆!, 𝛼!2 = 	 𝜆!(	
1 − 𝛼!
2 	𝛽!,&	$ +	𝛼!|𝛽!,&|	)	 



 
 

3 
 

The problem is solved separately for each gene using glmnet R package 1 with 𝜆! and 𝛼! 

hyperparameters controlling shrinkage of regression coefficients and ridge/lasso contribution and 

are optimally found via nested 5-fold cross validation.  

In PriLer instead, we hypothesize that variants carrying biological prior information are more 

likely to be putative regulatory variants (reg-SNPs) i.e. regulating at least one gene. To that end, 

each variant 𝑝	is multiplied by a prior coefficient 𝑣&obtained as a nonlinear combination through 

the sigmoid function of prior information in matrix 𝐴: 

𝑣& = 1 −
1

1 + 𝑒𝑥𝑝-−∑ 𝛾, 	𝐴&,,'(,…,- 2
	 

where 𝛾, represents the prior weight associated to prior feature class 𝑘 (vector form 𝛾) and is 

automatically learned by PriLer through an iterative procedure. Thus, PriLer aims at solving the 

following problem with respect to 𝛽!for all the genes and the 𝛾	prior weights vector: 

min
𝜸,𝜷𝒏,!'(,…,/

			{ + [
1
𝑀 ∥ 𝒀𝒏 − 𝑋!𝜷𝒏 ∥$$	+ + 𝑣&	𝐿-𝛽!,&, 𝜆!, 𝛼!2

&'(,…,*!'(,…,/

] + 𝐸 ∥ 𝜸 ∥$$	} 

Note that since we consider all the genes together, we now iterate through 𝑃 variants although 

regression coefficients for variants not in cis-regions of a certain gene 𝑛 are set to 0. The last term 

of the objective function represents a regularization term for prior weights and the number of 

hyperparameters is 2𝑁 + 1 i.e. gene-specific 𝜆!, 𝛼! pairs and 𝐸. 

The problem is solved in a 2-step iterative procedure. Initially, prior weights are set to 0 for all the 

𝐾 features. The first step minimizes PriLer function with respect to 𝛽! separately for each gene 

keeping 𝜸 as fixed (hence 𝑣&) via cyclical coordinate descendent algorithm as implemented in 

glmnet R package; the second step minimizes the PriLer function with respect to 𝛾, for 𝑘 =

1,… , 𝐾 keeping 𝜷𝒏 fixed through globally-convergent method-of-moving-asymptotes 

implemented in nloptr R package 2. The algorithm stops until convergence is reached in term of 
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the maximum number of iterations or minimal decrease of the objective function from previous 

step.  

In general, the lower the prior coefficient 𝑣&, the less will the corresponding regression coefficient 

for variant 𝑝	shrink to zero for all the genes. Hence, the more relevance the variant will have in the 

gene expression prediction. On the other hand, the weights for the prior features 𝛾, are dependent 

on putative reg-SNPs across all the genes that have prior information not zero: the more there are 

reg-SNPs intersecting a certain prior feature, the higher the correspondent prior weight will be. It 

is also worth noting that, for prior features intersecting a considerable higher number of variants, 

the corresponding prior weight will be higher since by chance that prior feature intersects more 

reg-SNPs. However, in the iterative procedure, if that prior feature is not actually relevant for that 

tissue-regression model, the corresponding weight remains stable and does not increase (see 

“Evaluation of prior weights selection in PriLer through random prior simulation” section).  

Since PriLer uses the combined information across all genes to derive prior weights, we do not 

want to introduce noise in that estimation due to genes that are poorly explained by cis-effects. 

Hence, we estimate prior weights using only heritable genes for which a non-null proportion of 

variation in gene expression is determined by genetic effects. The list of heritable genes for GTEx 

and CMC are downloaded from http://gusevlab.org/projects/fusion/ database of TWAS method 3 

(reference functional data), where heritability is estimated for each gene from cis-SNPs via REML 

algorithm implemented in GCTA 4. Heritable genes are defined as those having heritability p-value 

 < 0.01 estimated in GTEx v7 (https://gusevlab.org/projects/fusion/weights/GTEX7.txt) and CMC 

(https://data.broadinstitute.org/alkesgroup/FUSION/WGT/CMC.BRAIN.RNASEQ.tar.bz2). A 

gene expression prediction model is built for all the genes that have cis-variants in the predefined 
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window. In case of not heritable genes, we use prior coefficients 𝑣& estimated from heritable genes 

only. 

To find an optimal hyperparameter configuration and evaluate gene expression prediction models, 

we implemented PriLer in a nested 5-fold cross-validation (CV) setting dividing the procedure in 

4 steps (Supplementary Fig. 2). The first step involves heritable genes only and estimates gene 

expression using elastic-net regression (enet) without prior information. The inner CV finds the 

optimal 𝛼!, 𝜆!	combination for each gene 𝑛 separately that minimizes the mean squared error 

(MSE) on test folders, the outer CV instead builds enet models based on the optimal 

hyperparameters and evaluates each gene-model via average	𝑅$on the test folders (𝑅01$ ).  

The second step uses 𝛼!, 𝜆!	combination found in step 1 and builds PriLer models in the outer CV 

across all heritable genes for different values of hyperparameter 𝐸, which controls 𝛾 module. The 

optimal 𝐸 parameter is chosen as the one minimizing MSE on the test folds and for that 

hyperparameters combination 𝛼!, 𝜆! and 𝐸 we evaluate PriLer performance based on 𝑅01$ . The 

third step creates a final model for each gene applied to all 𝑀	samples that will be further used in 

the external prediction to genotype-only data. Hence, from a single CV, optimal 𝛼!, 𝜆! 

combination for enet is found and used in PriLer together with optimal 𝐸 parameter found in step 

2. Finally, the fourth step is used to build PriLer (and enet) models for not heritable genes: step 

from 1 to 3 are repeated but prior weights 𝛾, and consequentially prior coefficients 𝑣& are kept 

fixed as obtained in step 2 and step 3 (for evaluation and final model creation). 

In summary, we obtain 𝑅01$  that estimates PriLer and enet performance, gene expression prediction 

models together with the corresponding 𝑅$computed across all samples and for all the genes 

having cis-variants in 200kb window. 
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The algorithm we implemented is inspired by the Lirnet algorithm described in 5, however PriLer 

is adapted to large reference panels of matched genotype and gene expression data, uses a 

simplified formula for computing the prior coefficients and optimizes α and λ penalty parameters 

instead of using the same penalty across all genes, thus allowing for differences in gene sparsity. 

We introduce in PriLer the possibility to model also effects from cofounders to gene expression 

and variant-gene interaction in a linear manner. In this case, the first term of the objective function 

representing the prediction squared error becomes: 

∥ 𝒀𝒏 − 𝑋!𝜷𝒏−	𝑍	𝝁𝒏 ∥$$ 

With 𝑍 the 𝑀 × 𝐶 confounder matrix unique to all the genes and 𝜇! the corresponding regression 

coefficient specific to gene-model	𝑛. The penalty factor term however does not change, being 

applied only to genotype data. This is practically achieved via the penalty.factor option of glmnet 

set to zero in correspondence of the confounders position so that they are included in all the models 

for gene expression. 

Finally, in order to evaluate PriLer performance as well as enet, we used 𝑅$ in the sense of fraction 

of deviance explained by the model as implemented in glmnet (dev.ratio). In our model, we 

explicitly account for linear confounder effects as well as their interaction with cis-variants due to 

the probable not orthogonal effect especially between variants and genetically derived ancestry 

components. However, we are mostly interested in the variance that can be explained by genotype 

only. Consider 𝑌	T  as the predicted gene expression vector estimated by the model for a certain gene  

𝒀T ≔ 𝑋𝜷T + 𝑍𝝁V	 

and 𝑌W the mean original gene expression, let ∥∙∥$ be the Euclidean norm operator and ⟨∙,∙⟩ be the 

scalar product operator among 2 vectors, then 𝑅$ can be formulated as  

1 −
∥ 𝒀 −	𝒀T ∥$$

∥ 𝒀 −	𝑌W ∥$$
=	
∥ 𝒀T −	𝑌W ∥$$+ 2	⟨𝒀 −	𝒀T, 𝒀T − 𝑌W⟩

𝜎𝒀$
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For this reason, we split 𝑅$ in three components: 𝑅3$ + 𝑅0$ + 𝑅3,0$  (see Appendix A) with  

𝑅3$ =
∥ 𝑾] −𝑊_ ∥$$	+ 2 < 𝑾−	𝑾],𝑾] −𝑊_ >

𝜎𝒀$
 

𝑅0$ =
∥ 𝑽T − 𝑉dW ∥$$	

𝜎𝒀$
 

𝑅3,0$ =
2 < 𝑾−	𝑊_ , 𝑽T − 𝑉dW >

𝜎𝒀$
 

where 𝑾] ≔ 	𝑋𝜷T is the predicted genotype effect, 𝑾≔ 𝒀− 	𝑍𝝁V		is the gene expression vector 

corrected for the confounder effect hence carrying supposedly only the genotype effect and 𝑊_  the 

corresponding mean, 𝑽T ≔ 𝑍𝝁V is the predicted confounder contribution and 𝑉dW  the corresponding 

mean. Hence, 𝑅3$ represents the part of the variance in gene expression that is due to the genetic 

component, 𝑅0$ is the contribution of confounders and 𝑅3,0$  represents the joint effect between two. 

For simplicity, throughout the text we will refer to 𝑅3$ as 𝑅$ and average 𝑅3$ in cross validation as 

𝑅01$ . 

 

Reference panels for training gene expression models 

Gene expression prediction models are built based on matched data composed of gene expression 

and genotype individual dosages, also referred to as reference panels. We used GTEx v6p6 that 

includes donors across 44 non-diseased post-mortem tissues and cell lines and CommonMind 

Consortium (CMC) Release17 composed of RNA-Seq data extracted from post-mortem 

dorsolateral prefrontal cortex (DLPC) for patients with schizoaffective disorders and controls.  

For genotype preprocessing, REF and ALT alleles were aligned to human reference genome hg19 

and variants were filtered out based on imputation quality score (INFO) < 0.8, minor allele 

frequency (MAF) < 0.05 and deviation from Hardy-Weinberg Equilibrium (HWE) P < 5e-5 as 
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well as removal of multiallelic position. Since GWAS data is optionally used as prior information 

in PriLer, genotype data was matched with CAD and SCZ GWAS summary statistic obtained from 

8 and 9 in case of GTEx and only SCZ in case of CMC such that only variants with the same 

position and REF/ALT annotations are kept. Genotype probabilities were then converted to 0-2 

dosages where 0 refers to REF/REF configuration and the final number of variants was 6,486,416 

and 6,491,178 for GTEx and CMC respectively across 22 autosomal chromosomes. 

For RNA-sequencing data, we followed the respective guidelines used to process data for eQTL 

analysis by the 2 consortia. In case of CMC, we used ‘SVA corrected excluded ancestry’ gene 

expression processed data that includes residuals from weighted regression through voom-based 

log transformed CPM (read counts per million total reads) and correspondent observation weights 

corrected for chosen confounders (see 7 for details). In case of GTEx instead, we excluded poor 

quality samples (sample attributes SMAFRZE column equals to ‘EXCLUDE’), considered only 

the ones matching genotype data and excluded tissues with less than 70 resulting samples. We then 

followed the GTEx guidelines for eQTL analysis6 i.e. for each tissue, genes such that RPKM > 0.1 

in at least 10 individuals and number of reads ≥ 6 in at least 10 individuals were retained, RPKM 

expression values were quantile normalized to the average empirical distribution observed across 

samples and expression values were inverse quantile normalized to a standard normal distribution 

for each gene across samples. We additionally excluded from the analysis tissues sex specific and 

tissues not matching any prior features (see below) resulting in a total of 33 tissues. Finally, genes 

were annotated using Ensembl on GRCh37 via biomaRt (Bioconductor), in order to define 

transcription starting site (TSS). 

For covariates included in the PriLer model, we followed again the guidelines for eQTL analysis 

in the respective consortia. In particular, for CMC we used 5 ancestry components provided and 
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computed via GemTools based on a set of high-quality autosomal SNPs from pre-imputed data. 

For GTEx instead, we included as covariates individual sex, genotype array platform, PEER 

components calculated from normalized expression matrices for each tissue separately with the 

number of PEER factors determined as a function of the tissue sample size (N): 15 factors for N < 

150, 30 factors for 150 ≤ N < 250 and 35 factors for N ≥ 250 and finally the first 3 principal 

components (PCs) from genotype data computed using EIGENSTRAT as implemented in Ricopili 

(see (5) for details). We included in our analysis only samples with Caucasian ancestry: CMC 

ethnicity ‘Caucasian’ and GTEx reported race ‘white’ for a total of 478 samples (212 controls and 

266 cases) and 377 respectively. 

Our methodology incorporates prior information into elastic-net regression. To that end, we used 

as prior features cell-type specific open chromatin regions one-hot encoded and included CAD 

GWAS summary statistic 8 for tissues related to CAD and SCZ GWAS summary statistic 10 for 

brain lines and immunological cell types. GWAS information is converted into binary using 0.05 

and 0.01 nominal p-values threshold respectively.  

The resulting prior matrix is a binary format with dimension n. of variants times n. of prior features 

included in the tissue specific model with 1 indicating either the variant intersects an open 

chromatin region for that cell type or it passes the nominal GWAS threshold. Open chromatin 

regions are derived from H3K27ac ChIP-seq data obtained from the Epigenome Roadmap Project 

as well as ENCODE and merged together (see Data S1 for full sample list). In addition, H3K27ac 

and ATAC-Seq feature based profiles are combined and included for heart related tissues, obtained 

from 11 (GSE72696).  For SCZ and brain related tissues, we used ATAC-Seq profiles from human 

post mortem prefrontal cortex neuronal cells from12 (GSE83345). All annotation information can 

be downloaded from the supplemental website at https://gitlab.mpcdf.mpg.de/luciat/castom-igex/-



 
 

10 
 

/tree/master/refData/prior_features/. The brain related prior features from ATAC-Seq 

(FPC_neuronal_ATAC_R2 and FPC_neuronal_ATAC_R4) were modified due to the reduced 

number of included putative gene regulatory elements (GREs) compared to the H3K27ac derived 

features (number of GREs 44,475 and 34,883 versus mean number 128,817.3) and a consequence 

reduction in the number of variants with those priors that would have greatly penalized the 

correspondent PriLer prior weight (see below for detail). Hence, for each GREs of these 2 prior 

features, we extended it by half median length of GREs in H3K27ac data (1,192) in both directions.  

With the purpose of not introducing noise in the selection of these prior features, the weights are 

solely estimated from heritable genes (see “Prior Learned elastic-net regression to model gene 

expression” section). The complete list of tissue-specific gene expression model, number of 

samples, number of genes and prior features can be found in Table S1 and tissue specific usage 

for each prior in Data S1. Tissue-specific trained models are also available here 

https://doi.org/10.6084/m9.figshare.22347574.v2. 

 

Genotype-only datasets preprocessing 

To impute gene expression from PriLer in large-scale genotype-only datasets, the first step is to 

match genetic data with reference panels (GTEx and CMC). In particular, for UK Biobank 

(UKBB), we used imputed data from third release, aligned REF and ALT allele to hg19 and 

excluded samples due to non-white British ancestry and withdrawn consent. As post-imputation 

QC, we filtered variants based on SNP call rate < 0.98, INFO < 0.8, MAF < 0.05 and HWE p-

value < 1e-6 as well as multiallelic positions. We then excluded relatives up to 3rd degree based 

on kinship matrix such that the largest amount of samples not related would be retained, following 

UKBB guidelines 13. Additional samples with no matching submitted and inferred gender and 
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poor-quality ones being outliers for heterozygosity and missing rates are excluded. Our final set 

after quality control included 340,939 individuals. Genotype data was separately matched with 

previously processed GTEx and CMC imputed genotype excluding variants having differences in 

ALT frequency > 0.15 resulting in 5,728,140 and 5,774,100 variants respectively. For CAD 

application, we used as replication 9 case-control European ancestry cohorts from CARDIoGRAM 

consortium: German Myocardial Infarction Family Studies (GerMIFS) I14, II15, III16, IV8, V17, the 

LUdwigshafen RIsk and Cardiovascular Health Study (LURIC)18, Cardiogenics (CG), Wellcome 

Trust Case Control Consortium (WTCCC), Myocardial Infarction Genetics Consortium 

(MIGen)19. Pre-imputation QC was performed on each cohort separately using the following 

criteria: individual call rate ≥ 0.98, SNP call rate > 0.98, minor allele frequency (MAF) > 0.01, 

concordant recorded and genotype-derived gender, population outliers excluded (deviate beyond mean 

± 5x standard deviation) for top two dimensions from the multidimensional scaling (MDS) analysis, 

PI_HAT < 0.0625 (individuals more distant away than fourth-degree relatives) in the identity-by-

descent (IBD) analysis, heterozygosity rate within mean ± 3 x standard deviation, and HWE p-value > 

1e-6. Imputation was performed on each cohort separately using the Haplotype Reference 

Consortium panel on the Sanger Imputation Server (https://www.sanger.ac.uk/science/tools/sanger-

imputation-service). Post-imputation QC was then performed with the following criteria; SNP call rate 

> 0.98, MAF > 0.05, HWE p-value >1e-6, INFO score ≥ 0.8, multiallelic position excluded and 

PI_HAT < 0.0625 in IBD analysis for individuals. We then considered all the cohorts together to 

remove up to fourth-degree relatives (PI_HAT < 0.0625), keeping if possible individuals annotated 

as cases and/or with the lowest missing rate. Finally, only variants in common across all the cohorts 

were retained as well as with the aforementioned UKBB-GTEx matched genotype set and such 

that ALT frequency differences for each pair of cohort/UKBB/GTEx dataset did not exceed 0.15. 

This procedure yield to a total of 26,681 individuals across the 9 cohorts and 4,257,718 variants 
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matching CARDIoGRAM cohorts, UKBB and GTEx genotyping data. GTEx tissue models 

adopted for CAD analysis are composed of 2 adipose tissues (subcutaneous and visceral 

omentum), adrenal gland, 2 artery tissues (aorta and coronary), 2 colon tissues (sigmoid and 

transverse), 2 heart tissues (atrial appendage and left ventricle), liver and whole blood. 

For SCZ application instead, we used 36 PGC cohorts of European ancestry from Psychiatric 

Genomic Consortium (PGC) for SCZ wave210. Following PGC guidelines, for each cohort we 

excluded imputed variants based on MAF < 0.01, INFO < 0.6, multiallelic positions and variants 

that were missing in at least 20 samples (genotype certainty < 0.8). Prior to matching variants with 

GTEx and CMC, we filtered the reference panels such that INFO ≥ 0.6 and MAF ≥ 0.01 based on 

Caucasian individuals. Finally, variants with ALT frequency differences across all possible pair of 

dataset > 0.15 are excluded, obtaining a total of 5,912,207 and 5,934,252 SNPs and Indels when 

matching GTEx and CMC respectively. Individuals across all the cohorts are excluded if diagnosis 

is not available and samples are duplicated/related or a total of 55,419 individuals. GTEx tissue 

models adopted for SCZ analysis are composed of 8 brain tissues (caudate basal ganglia, cerebellar 

hemisphere, cerebellum, cortex, frontal cortex BA9, hippocampus, hypothalamus, and nucleus 

accumbens basal ganglia) and cell EBV transformed lymphocytes while CMC tissue model is 

based on dorsolateral prefrontal cortex. 

 

UKBB phenotype pre-processing and coronary artery disease diagnosis definition 

UK Biobank is a large-scale biomedical database and research resource containing genetic, 

lifestyle and health information from half a million UK participants13. We used the available deep 

phenotyping in two different contexts: i) to define CAD and extract CAD related phenotypes in 

order to perform TWAS and PALAS as well as detect endophenotype differences and treatment 
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response in CAD cases using as genotype data the matched dataset with CARDIoGRAM cohorts, 

ii) to perform TWAS and PALAS analysis for SCZ related phenotypes and build gene risk scores 

(gene-RS) weights to model gene-RS in external cohorts such as PGC. 

Similarly to previous CAD HARD definition20, CAD diagnosis was determined by either hospital 

episode or self-reported via questionnaire combining ICD10 and ICD9 codes for myocardial 

infarction and ischaemic heart diseases (I21-I24 and 410-412), old myocardial infarction (I25.2), 

OPCS-4 codes for procedures for coronary artery bypass graft surgery (CABG) (K40-K46), 

percutaneous transluminal coronary angioplasty (PTCA) (K49-K50, K75) and self-reported heart 

attack, PTCA, CABG and triple heart bypass. In addition, we used CAD SOFT definition20 to 

define reference set composed of controls for gene T-scores computation (see “From imputed gene 

expression to gene T-scores”). CAD SOFT phenotype was defined with the same requirement of 

CAD HARD plus individuals reporting ICD9 codes for angina pectoris and coronary 

atherosclerosis (413-414), ICD10 codes for angina pectoris and chronic ischemic heart disease 

(I20, I25), and self-reported angina.  

Phenotypes we had access under application numbers 34217 and 25214 were processed for 

subsequent analysis using PHESANT software21. PHESANT automatically converts UKBB 

phenotypes distribution to continuous inverse-rank normalized, ordered categorical, unordered 

categorical or binary, depending on original data type (continuous, integer, categorical single or 

multiple). Based on the final category, the correct generalized linear model was applied during 

TWAS and PALAS: Gaussian for continuous, logistic for unordered categorical and binary or 

ordinal logistic regression for ordered categorical. In addition, PHESANT automatically removes 

phenotypes recorded for less than 500 individuals and constant ones across the samples.  
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Original phenotypes not converted via PHESANT are only used in hypothesis-driven CAD 

endophenotype analysis in which clinical phenotypes are tested (35 in total, nominal significant 

results are shown in Table S4).  

 

SHIP-Trend cohort preprocessing 

The Study of Health in Pomerania (SHIP-Trend) is a population-based cohort study in West 

Pomerania (northeast of Germany) and is focused on the prevalence and incidence of common 

population-relevant diseases and their risk factors. Baseline examinations for SHIP-Trend were 

carried out between 2008 and 2012, comprising 4,420 participants aged 20 to 81 years. Study 

design and sampling methods were previously described22.  

Regarding genotyping, data was collected from nonfasting blood samples. A subset of the SHIP-

Trend samples was genotyped using the Illumina Human Omni 2.5 array, while the majority of 

samples were genotypes using Global Screening Array (GSA-24v1). Genotypes were determined 

using the GenomeStudio 2.0 Genotyping Module (GenCall algorithm). Individuals with a 

genotyping call rate < 94%, duplicates (based on estimated IBD), and mismatches between 

reported and genotypedwere removed. Genotypes were imputed using the HRCv1.1 reference 

panel and using the Eagle and minimac3 software implemented in the Michigan Imputation Server 

for pre-phasing and imputation, respectively. Before imputation QC steps include the removal of 

SNPs with a HWE p-value < 0.0001, call rate < 0.95, monomorphic SNPs, variants having position 

mapping problem from genome build b36 to b37, duplicate IDs, or with inconsistent reference site 

alleles. As post-imputation QC steps, variants with MAF > 0.05, HWE p-value >1e-6, INFO score 

≥ 0.8 were retained and multi-allelic positions were excluded. Individuals more distant away than 

fourth-degree relatives in the identity-by-descent (IBD) analysis were kept (PI_HAT < 0.0625). The 

resulting variants were matched with the final set of 4,257,718 variants harmonized for 
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CARDIoGRAM cohorts, UKBB and GTEx genotyping data (CAD-matched variants). SHIP-

Trend variants were matched based on same position and REF/ALT annotation. Variants with ALT 

frequency differences between SHIP-Trend cohort and GTEx not exceeding 0.15 were kept. This 

procedure yield to 4,240,949 SNPs in the SHIP-Trend cohort also available in the CAD-matched 

variants set across 4,119 individuals.  Finally, gene expression was imputed based on previously 

trained models of liver and whole blood tissues using CAD-matched variants (see “From imputed 

gene expression to gene T-scores”).   

Regarding transcriptome analysis, RNA was prepared from whole blood under fasting conditions 

using the PAXgene Blood miRNA Kit (Qiagen, Hilden, Germany). 500ng of RNA was reverse 

transcribed into cRNA and biotin-UTP-labeled via Illumina TotalPrep-96 RNA Amp Kit 

(Ambion). 3000ng of cRNA were hybridized to the Illumina HumanHT-12 v3 Expression 

BeadChips, followed by washing steps as described in the Illumina protocol. Gene expression raw 

intensity data was generated with the expression arrays were exported from Illumina’s 

GenomeStudio V 2010.1 Gene Expression Module to the R environment and processed (quantile 

normalization and log2-transformation) with the lumi 1.12.4 package from the Bioconductor open 

source software  as described elsewhere23. Quality-controlled gene expression data and genotyping 

data were available for 976 SHIP-TREND samples. 

 

PsyCourse Study pre-processing 

The PsyCourse Study is a longitudinal, multi-center observational study of patients suffering from 

severe mental disorders (mainly schizophrenia, bipolar disorder, and recurrent depression) as well 

as healthy control that were subjected to comprehensive neuropsychological testing24 and 

assessment of disease history. All participants were subjected to genotyping using the Infinium 
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Global Screening Array-24 Kit, version 3.0. Prior to imputation, SNPs were filtered based on 

MAF≥	0.01, removal of SNPs HWE P < 0.0001, palindrom SNPs and SNPs with MAF deviating 

more than 10% for EUR reference populations. Subjects were Sex checked and individuals were 

filtered based on SNP call rate > 98%, individual call rate > 98% and excluding MDS outliers.  

Genotypes were imputed using the HRCv1.1 reference panel and using the Eagle and minimac3 

software implemented in the Michigan Imputation Server for pre-phasing and imputation, 

respectively, resulting in 7,712,287 SNPs dosages. Subsequently, SNP names were changed to 

rsID and duplicate rsIDs removed (multiallelic markers and SNP annotation duplicates). This 

procedure left 556 individuals with suffering from SCZ or schizoaffective disorder. The resulting 

variants were matched with the final set of 5,934,252  variants harmonized for PGC2 cohorts and 

CMC genotyping data (SCZ-matched variants). Variants with ALT frequency differences between 

the PsyCourse Study and CMC not exceeding 0.15 were kept, yielding to 5,094,785 SNPs in the 

PsyCourse Study also available in the SCZ-matched variants set.  Finally, gene expression was 

imputed based on previously trained models of DLPC tissue using SCZ-matched variants (see 

“From imputed gene expression to gene T-scores”).   

 

From imputed gene expression to gene T-scores  

After the gene expression prediction model is built on reference panels, the first step is to impute 

tissue-specific gene expression on genotype-only cohorts based on PriLer models 

(Supplementary Fig. 1 Module 2). Let 	𝑋g	be the 𝐿	 × 𝑃 matrix of dosages for 𝐿 new individuals. 

For each reliable gene 𝑛 (𝑅$ > 0.01	and 𝑅01$ > 0) in a certain tissue, we predict gene expression 

for 𝐿 individuals based on cis-effects estimated via PriLer 

𝑾]! ≔	𝑋g	𝜷T!. 
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In all applications with the only exception of SHIP-Trend Trend cohort and the PsyCourse Study, 

𝑃 variants in the genotype-only datasets and reference panels are matched via the harmonization 

process described in “Genotype-only datasets preprocessing”. Thus, 𝜷T!is a P-length vector with 

non-zero entries only in correspondence of the cis-variants in 200kb window of the gene 𝑛 TSS. 

Instead, the genotype matrix of SHIP-Trend and PsyCourse are composed of a subset of the 

original CAD-matched variants or SCZ-matched respectively, of dimension 𝑄 < 𝑃. In these cases, 

gene expression is imputed using 𝑄 regression coefficients  𝜷T𝒏
𝑸  also available in  𝜷T!. 

We do not use directly predicted gene expression to test for disease association but convert the 

imputed expression to gene t-scores for each individual. T-scores are generated as individual 

moderated t-statistic or ordinary t-statistic depending on the sample size due to computational 

feasibility. For each cohort in PGC and CARDIoGRAM, the samples are divided in a reference 

set comprising randomly selected 80% of the control individuals as well as the comparison set, 

composed of the remaining controls plus all the cases. A moderate t-statistic is computed using 

eBayes function from limma R package25  between each individual in the comparison set and all 

the other samples in the reference set, bootstrapping over the controls and averaging across 40 

folds. The same procedure is used in SHIP-Trend cohort and the PsyCourse Study however without 

a priori cases-controls division. Instead, in each repetition 20% of the individuals were randomly 

selected as reference set. 

In UKBB, due to the large sample size (~340,000) we defined gene t-score as the ordinary t-

statistic for each sample 𝑙 in the comparison set as 5"̅
78(𝑪𝒏)/	=>#$%

	where 𝑪𝒏 ≔	𝑊T!	(𝑙) −𝑾]𝒏	(𝑟𝑒𝑓) 

is the vector of singular differences between current sample 𝑙	and the samples in reference set of 

size 𝐿?@A. For CAD analysis, we adopted bootstrapping technique over 10 folds and used as 

reference set 30% of individuals not annotated as CAD (SOFT) for a total of 92,784 individuals. 
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For SCZ related phenotypes analysis in UKBB instead, we did not use a priori cases-controls 

division but randomly selected 10 times 20% of the individuals (68,190 in total) as reference set. 

Differently from the large incidence of CAD in UKBB cohort, individuals with registered 

schizophrenia disorders were limited to 1022 out of 340,939 considered samples (ICD10 F20-F29, 

ICD9 295, self-reported schizophrenia). Because they only compose the 0.29% of the total cohort, 

they are negligible to the actual reference set size, and we simply sampled across the entire 

population. 

Using gene T-scores instead of imputed gene expression allows both to obtain a similar distribution 

for all the genes that now are not scaled according to the predictive performance and variance 

explained of the corresponding PriLer model. 

 

Computation of individual-level pathway-scores 

From the gene T-scores, we subsequently computed individual level pathway scores. In contrast 

to previous approaches26–28, we do not set a cut-off for gene level significance or perform an 

enrichment analysis. Instead, for each sample a representative score for the pathway activity is 

computed as the mean across gene T-scores that belong to a certain pathway. We used as pathway 

databases Reactome29 and Gene Ontology30 as default in CASTom-iGEx pipeline and additionally 

considered Human WikiPathways31 as custom gene-sets. In each tissue, gene-sets are defined 

based on the reliable set in that tissue (𝑅$ ≥ 0.01	and 𝑅01$ > 0) and only pathways that are not 

redundant (i.e. composed by the same set of genes) are retained, giving priority to more specific 

gene-sets being composed of a lower number of genes. The advantage of gene T-scores in the 

computation of pathways instead of directly imputed gene expression relies on the new scaling 

space such that each gene can contribute equally regardless the variance explained in the model. 
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Association of genes and pathways with a trait 

For both gene T-scores and pathway scores, we separately tested the association of each 

gene/pathway with a certain trait (Supplementary Fig. Module 2), using glm (Gaussian or logistic 

regression for continuous or binary trait) or polr (ordinal logistic regression for ordered 

categorical) functions in R and correcting for additional covariates. In case of CARDIoGRAM 

cohorts and UKBB for CAD analysis, we corrected for sex and first 10 Principal Components 

(PCs) estimated from pre-imputed data. In case of SCZ cohorts, we corrected for 10 PCs (from 1 

to 7, 9,15 and 18) as suggested in 10, correcting for biases due array type and to population 

structure, that are partially reflected in the phenotypic variability. We used additional covariates 

in UKBB dataset for CAD analysis when testing blood biochemistry (category 17518) and blood 

count (category 100081) phenotypes to correct for medication effect affecting blood levels: 

medication for pain relief, constipation, heartburn (Field 6154), dietary supplements (Field 6155, 

6179) and medication for cholesterol, blood pressure and diabetes (Field 6153, 6177). When using 

UKBB for SCZ related phenotypes instead, we considered as confounders first 10 PCs, age, sex 

and phenotype specific covariates: for ‘Maximum digits remembered correctly’ (Field 4282) 

additional covariates are fields 4250, 4253, 4283 and 4285; for Symbol digit substitution (category 

122) we tested fields 20158, 20230 and 20245 additionally correcting for fields 20195 and 20200; 

for T1 structural brain MRI (category 110) we tested all data fields and regional grey matter 

volumes subclass correcting for scanner coordinates (fields 25756-25759). In general, we refer as 

gene/pathway Z-statistics as the estimated effect for trait association divided by its standard error.   

In case of multiple cohorts (CARDIoGRAM and PGC), we implemented an approach for meta-

analysis  similar to GWAMA32. Namely, a fixed-effect meta-analysis is initially performed for 

each gene/pathway weighted by the inverse of their variance. In the presence of heterogeneity 
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effects between cohorts tested via Cochran’s statistic (P ≤ 0.001), we adopted a random-effects 

meta-analysis calculating the random-effects variance component. 

Genes and pathways are finally corrected for multiple testing controlling false discovery rate 

(FDR) using Benjamini-Hochberg procedure for each tissue, removing pathways composed of a 

single gene and considering each pathway database separately.  

Finally, to identify loci harboring associated genes, we defined loci based on gene TSS position, 

using a window of 200kb in both directions and merging genes with overlapping window or with 

boundaries not distant more than 1Mb.  

 

GWAS for coronary artery disease 

We compare our TWAS and PALAS with two GWAS summary statistics. The first GWAS 

(simply referred as “GWAS”) is a recent meta-analysis of UK Biobank SOFT CAD GWAS with 

CARDIoGRAMplusC4D 1000 Genomes-based GWAS and the Myocardial Infarction Genetics 

and CARDIoGRAM Exome20 downloaded from www.CARDIOGRAMPLUSC4D.ORG. The 

second GWAS, also called “matched GWAS” is performed on UKBB data set using PLINK 

(v2.00a2LM) software33 via --glm option using the same individuals, case-control distribution, 

covariates as well as SNPs and indels. In both cases, GWAS p-values are adjusted with Benjamini-

Hochberg (BH) procedure to be consistent with the correction adopted for TWAS and PALAS 

results. The first GWAS is used study the novelty of the identified loci from our TWAS. The 

matched GWAS instead is used to compare GWAS, TWAS and PALAS summary statistics, 

having kept the same sample size and variants, and to investigate the aggregation of small effects 

variants into biological mechanisms, i.e. genes and pathways. 
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Additional pathway-detection methods 

We applied other two state-of-the-art strategies to detect significant pathways in CAD. 

The first is based on hyper-geometric test using significantly associated genes from TWAS. For 

each tissue, we considered genes reliable in a tissue as background. For each pathway detected in 

a tissue based on the reliably expressed genes, we computed an hypergeometric test using fisher-

exact test R function (alternative=”greater”). We considered as genes in a pathway those genes 

that are also reliably expressed in the considered tissue and we intersect this set with the genes 

FDR 0.05.   

The second method is based on MAGMA34 using a matched GWAS from the UKBB or GWAS 

results from the summary statistics of a recent large GWAS35. MAGMA analysis was performed 

by first annotating all SNP locations with genes in vicinity using standard parameters and magma 

–annotate. Subsequently, we performed gene analysis on SNP p-value data using the European 

reference panel from Phase 3 of the 1000 Genomes project and GO as well as Reactome pathways 

for subsequent pathway level analysis leaving all parameters at their standard values. Only 

pathways significant below an FDR of 0.05 were retained for further analysis. 

 

Pathway characterization and prioritization 

To further characterize the significant pathways identified, we split them into two classes based 

on the corresponding genes significance. Let Ω be a significant pathway with FDR(Ω) ≤ 0.05. 

Suppose Ω is defined from {𝑔(, … , 𝑔!} genes (called original genes) of which {𝑔(, … , 𝑔!B}  (𝑛r ≤ 𝑛) 

are those also reliable in the tissue considered (called T-score genes) and hence used to compute 

the corresponding pathway score.  We divided pathways into two categories. The first category is 

composed of pathways with at least one gene more significant than the pathway association, i.e.  
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it exists a gene 𝑔C ∈ {𝑔(, … , 𝑔!B} such that p-value (𝑔C) ≤ p-value (Ω). The remaining significant 

pathways (second category) are then formed by genes all less significant than the pathway itself, 

i.e. for all 𝑔C ∈ {𝑔(, … , 𝑔!B} it results p-value(𝑔C) > p-value(Ω). These are further split in those 

including at least one gene significant at FDR 0.05 (green) and those having no gene passing FDR 

0.05 threshold, hence considered “novel”. Pathways in the first category are perturbed by the action 

one or more strong effect genes with non-concordant effects, whereas pathways in the second 

category are disrupted by the aggregation of effects, either from putative targets identified from 

TWAS or from completely weak signals that would be missed using a p-value cut-off strategy, 

hence novel. 

To prioritize the associated pathways (FDR 0.05), we apply the following strategy to focus on 

more plausible candidates. We select only pathways computed from T-score genes 5 < 𝑛r ≤ 200 

or 3 ≤ 𝑛r ≤ 200 if pathway coverage 𝑛r/𝑛	 ≥ 0.1, that originally included genes 𝑛 < 200 and 

reaching nominal significance p-value(Ω) ≤ 0.0001.  

 

Patient stratification based on gene T-scores 

For the purpose of stratifying patients based solely on genetically derived data (Supplementary 

Fig.  S1 Module 3), we adopted a graph-based clustering approach similar to the PhenoGraph 

method36 developed in Seurat for single-cell data. Cases are represented as a node and connected 

to their neighbors via edges with corresponding weights defined as the similarity between 

individuals. We apply for each tissue the following pre-processing steps to perform features 

filtering and normalization, and reduce ancestry contribution. First, gene T-scores are clumped at 

absolute Pearson correlation of 0.9, directly estimated from the considered cases and giving 

priority to genes that are more significant with respect to the disease of interest. In details, genes 
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are sorted from the most to the least significantly associated with the phenotype of interest (CAD 

or SCZ) based on the TWAS p-value. All genes are initially assigned to a “current set” and the 

first gene in this list is compared to all the others based on Pearson correlation estimated from that 

set of samples, the genes with an absolute Pearson correlation > 0.9 are included in the “remove 

set”.  The “current set” is then updated removing the considered genes and the correlated ones 

above 0.9 threshold and the entire procedure is repeated until “current set” coincides with an empty 

set. Finally, the set of clumped genes is obtained discarding the genes in the “remove set” from 

those initially available in the tissue. Second, each gene is standardized removing the average and 

dividing for sample standard deviation computed across cases (DEF
G
). Third, standardized gene T-

scores are independently corrected for the same PCs considered in TWAS/PALAS, taking the 

residuals of the gene-specific linear model. This step is crucial to reduce the relevance of 

population structure in the final clustering (see Supplementary Fig. 12d). Fourth, the corrected 

gene T-scores are multiplied by the corresponding Z-statistic for trait association (CAD or SCZ) 

such that i) differences between patients are enhanced and ii) genes that are more relevant for a 

certain trait will have a higher impact in the clustering decision, despite retaining all the 

information. For SCZ clustering on PGC cohorts, the different data sets are merged together via 

juxtaposition and the same steps descried before are applied, even PCs correction on the merged 

data set due to PCs estimation on the merged cohorts in PGC wave2. Given the data heterogeneity 

of the different PGC cohorts, we additionally perform outlier removal. In particular, the four steps 

previously described are performed and outliers are detected as a union across 10 tissues and 2 

clumping strategy (0.9 and 0.1) of samples that deviate beyond median ± 6x s.d. for the first 2 UMAP 

components37 (minimum distance = 0.01 and n. of  neighbor = 30). These SCZ affected individuals are 

excluded from further analysis and the pre-processing steps are performed again on the filtered set of 
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samples. Across the 36 PGC cohorts, 35 were used for clustering, filtering 259 outliers for a total 

of 22,732 cases and 1 cohort (scz_boco_eur, 1,773 cases) was used for external validation. In SCZ 

analysis, the set of variants of PGC cohorts was not harmonized with UKBB data set that is used 

to approximate missing phenotype information (see “Risk scores computation”). Thus, to ensure 

a consistent imputation of the genetic variables, we computed Pearson correlation of impute gene 

expression and imputed pathway scores between the models built from UKBB and PGC. Genes 

and pathways are included in the clustering analysis if the correlation between imputation on the 

reference panels GTEx and CMC between the two genotype-only data sets is higher than 0.8. After 

pre-processing, we construct a sparse similarity matrix for each pair of samples based on the 

number of shared nearest neighbor (SNN). We initially computed scaled exponential similarity 

kernel38 between samples 𝑖	and 𝑗	as 

𝐾(𝑖, 𝑗) = exp z−
𝑒𝑑$-𝒁𝒊, 𝒁𝒋2
0.5𝜎C,J

} 	 

with 𝑒𝑑-𝒁𝒊, 𝒁𝒋2 the Euclidean distance between normalized gene-level t-scores and 

𝜎C,J =
𝑚𝑒𝑎𝑛-𝑒𝑑(𝒁𝒊, 𝑁C)2 + 	𝑚𝑒𝑎𝑛 �𝑒𝑑-𝒁𝒋, 𝑁J2� + 𝑒𝑑(𝒁𝒊, 𝒁𝒋)

3 	 

where 𝑚𝑒𝑎𝑛-𝑒𝑑(𝒁𝒊, 𝑁C)2 is the averaged Euclidean distance between sample 𝑖 its k=30 closest 

neighbors. Hence, this initial similarity matrix depends already on the local density of the data due 

to the customized scaling parameter	𝜎C,J. However, to sparsify the similarity and give information 

only on the local interactions, we used the similarity kernel defined above to compute the 

percentage of shared nearest neighbor (SNN) between samples 𝑖	and 𝑗: 

𝑆(𝑖, 𝑗) =
�𝑣C⋂𝑣J�
|𝑣C⋃𝑣J|
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with 𝑣C the set of k=30 nearest neighbor based on 𝐾. 𝑆 matrix represents the weight for edges in 

the patient graph structure. We finally applied Louvain Method39 implemented in igraph R 

package40 to detect communities that would maximize modularity based on SNN graph. The 

number of groups is automatically detected by the algorithm in an unsupervised manner, however 

it depends on the hyperparamter k. We fixed the number of nearest neighbors to consider a priori 

30 since it represented a good compromise between being large enough to estimate the local 

geometry and small enough to avoid large neighborhoods. 

 

Polygenic risk score computation in CAD cases 

To compute polygenic risk score (PRS) for individuals in UKBB related to CAD phenotype, we 

used PRSice2 software41 with default parameters. We considered as base and target data sets the 

UKBB cohort with CAD phenotype. The GWAS results for --base input are the matched GWAS 

summary statistics as described in “GWAS for coronary artery disease”. Distributions among cases 

and controls division as well as clusters were obtained after standardization of best-fit PRS across 

all individuals. Of note, the use of the same data set for base (GWAS summary statistic) and target 

(prediction) cohort leads to overfit in the separation between cases and controls. Nevertheless, the 

focus of this analysis is not the variance explained by PRS but rather the similar distribution and 

non-stratification of the identified cluster of cases. 

 

Detection of genes and biological pathways associated with clustering structure 

In order to test for genes and pathways associated with detected clustering structure, we considered 

each tissue separately and test differences of a certain gene/pathway in 𝑔𝑟3 versus the remaining 

patients via Wilcoxon-Mann-Whitney (WMW) test implemented in rstatix R package42. In each 
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test, the WMW estimates and confidence intervals are computed corresponding to the median 

difference of the location parameter (Hodges-Lehmann estimator). Let 𝐺 be the total number of 

clusters detected, for each group 𝑔	𝑖𝑛	1, … , 𝐺 in a tissue, p-values were corrected for multiple 

comparison using Benjamini-Hochberg procedure to control for false discovery rate. Note that, 

although the clustering is tissue specific, we tested for differences in gene and molecular pathways 

across all tissues. Cluster-specific genes were subsequently combined across tissues in loci based 

on physical location (TSS window 200kb, merged if distance < 1Mb). To identify cluster-specific 

pathways, we tested only pathways filtered with the following strategy. For each tissue, we 

considered pathways both in Reactome and GO composed of at least 3 genes and no more than 

200 (both original genes and T-score genes in the pathway). These pathways are then clumped 

giving priority to those with the highest coverage (ratio between T-score genes and original genes) 

and highest number of genes used to compute the pathway (T-score genes). The resulting set of 

pathways have a pairwise Jaccard Index not exceeding 0.2.  

In addition, we tested pathways in WikiPathway and CommonMind gene-sets7  in SCZ without 

this initially filtering but using all the available pathways. 

 

Predict cluster structure and validate gene signature 

Similarly to PhenoGraph approach, we implemented a projection method based on the percentage 

of SNN in order to use the detected clustering structure from one cohort to predict groups on 

external cohorts such as CARDIoGRAM for CAD and scz_boco_eur for SCZ. In particular, for 

each cohort we considered only genes used in the clustering model and repeated the gene-specific 

standardization, correction for PCs and Z-statistic multiplication as described in the clustering pre-

processing procedure. The Z-statistic for the projection coincides with the one used in the initial 
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clustering and is obtained from the general TWAS. Then, we computed the percentage of SNN 

based on the exponential similarity kernel as previously described among each pair of individuals 

in the combined datasets (model plus external cohort). For each sample in the external cohort, the 

assigned label is based on the probability that a random walk originating at external sample will 

first reach a labeled sample in the model clustering for each group	𝐺. The problem is solved via a 

system of linear equations based on graph Laplacian of the enlarged sample network and each new 

sample is then allocated to the group that it reaches first with highest probability, see36 for details. 

We evaluated the projected clustering on external cohorts based on i) the fraction of cases assigned 

to a certain cluster both in model clustering and projected and ii) the correlation among cluster-

relevant genes. The latter is computed for each group as the Spearman correlation of WMW 

estimates for model clustering and external cohort across all tissues, including only genes that are 

cluster-relevant (FDR < 0.01) in the model. In addition, we estimated the number of reproduced 

loci in the external cohort using the identified loci of cluster-relevant genes. For each group 𝑔, we 

considered each relevant locus and retained the most significant gene in that locus, we then 

annotated the locus as replicated if the WMW estimate for that gene has the same sign in model 

and external cohort. 

 

Detection of endophenotype differences across patient strata 

To test for differences among trait related endophenotypes across patient clusters, we applied 

generalized linear models to detect group-specific differences, comparing group 𝑔	(𝑔𝑟3)	versus 

the remaining samples. More specifically, we applied this strategy for the CAD analysis, 

leveraging the UKBB deep phenotyping and 637 phenotypes included the following categories: 

alcohol, arterial stiffness, blood biochemistry, blood count, blood pressure, body size measures, 
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diet, hand grip strength, impedance measures, physical activity, sleep, and smoking (class 1 

phenotypes). We also included additional clinical information such as family history, medications, 

ICD10 diagnosis related to anemia, circulatory system, respiratory system, and endocrine system 

(class 2 phenotypes). The following phenotypes were excluded: all phenotypes having less than 

100 values, binary phenotypes with less than 50 true values and categorical ordinal phenotypes 

with less than 10 samples in the base category both inside and outside the considered group. 

Continuous phenotypes were initially standardized �DEF
G
�. Depending on the nature of the 

phenotype (continuous, binary or categorical ordinal) and similarly to trait-gene/pathway 

association, for endophenotype 𝑗 and group 𝑔, we applied the following generalized linear model 

(GLM): 

𝑝ℎ𝑒𝑛𝑜J 	~	𝑔𝑟3 + 𝑐𝑜𝑣( +	⋯+ 𝑐𝑜𝑣K 

with 𝑔𝑟3 a binary n. of cases-vector having 1 in correspondence individuals clustered in group 𝑔. 

In both class 1 and 2 phenotypes, the covariates included first 10 PCs, age and sex. Additionally, 

for class 1 we also corrected for medication usage: pain relief medication (aspirin, ibuprofen, 

paracetamol), vitamin supplements (A, B, C, D, E, folic acid), mineral and dietary supplements 

(glucosamine, calcium, zinc, iron, selenium), blood pressure medication, cholesterol lowering 

medication and insulin usage (part of Fields 6154, 6155, 6179, 6153, 6177). Hence, for each 

endophenotype 𝑗 and group 𝑔 we obtained an estimate of group 𝑔 impact with respect to all the 

other cases in the form of adjusted regression coefficient 𝛽L>M and corresponding p-value tested 

from normality assumption. Subsequently, we filtered endophenotypes for those that showed 

evidence for association from PALAS with at least one group associated pathway (pathway-group 

association FDR ≤	0.05) and corrected group-specific p-values considering both class 1 and 2 

endophenotypes for multiple testing using the Benjamini-Hochberg procedure. 
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In case of the hypothesis-driven analysis for CAD, we tested with the same procedure 33 clinical 

variables among UKBB (BMI, unstable angina pectoris, history of myocardial infarction, coronary 

artery bypass graft, percutaneous coronary intervention, history of bleeding, heart function 

severity, hypertension, hyperlipidemia, diabetes, diabetes type 1, diabetes type 2, insulin 

mediation, peripheral vascular disease, cerebrovascular disease, cerebral stroke, transient cerebral 

ischaemic attacks, chronic obstructive pulmonary disease, chronic kidney disease, dialysis, 

atherosclerotic heart disease, poor mobility, pulmonary hypertension, left ventricular ejection 

fraction, history of cancer, smoking, age of angina diagnosis, age of heart attack, age of stroke, 

death due to acute myocardial infarction, death due to chronic ischemic heart disease, death due to 

stroke, age of death) and 2 endophenotypes registered for GerMIFSV (Gensini score and n. of 

vessel affected). In contrast to the general analysis, clinical variables in UKBB were not converted 

via PHESANT software but directly used relying on a permutation based p-value. To that end, 

individuals were randomly assigned to any of the 5 CAD clusters, respecting the original group 

followed by the same GLM based endophenotype analysis, this was repeated 50 times (see 

“Patients clustering simulation in CAD” Supplementary Text). We then determined the frequency 

that a particular clinical variable was nominally (p-value ≤	0.01) associated with any of the groups 

in any of the 50 partitions and used this frequency to determine  an empirical p-value by dividing 

by the number of tests. We then retain only clinical variables with an empirical p-value below 

0.01. 

For the SHIP Trend cohort, both 20 collected clinical variables (imt_auto_t0, ldlch, hdlch, tg_s, 

igf1, hba1c, crp_hs_re_z, bmi_t0, bia_magermasse, sysbp_t0, diabp_t0, hyp_t0, mi_first_t0, 

stroke_first_t0, plaque_t0, stenos_t0, fmd_reduced, abi_pathol, mort_all, mort_cvd) and 24,925 

measured gene transcripts across 975 samples were tested with the previously described procedure. 
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We included as covariates testing group-specific clinical variable differences the first 10 PCs, sex, 

genotype array type and medication info for blood pressure, cholesterol lowering and insulin. In 

addition to these covariates, we also included in the cluster-specific measured gene expression 

analysis RNA integrity number, amplification batch (96 well plates), sample storage time, white 

blood cell count, hematocrit, red blood cell count, platelet count as well as neutrophils, 

lymphocytes, monocytes, and basophiles percentages. To compare the differences in actual gene 

expression with the imputed one, we considered only group-wise significant genes from UKBB at 

FDR 0.01 in whole blood. Measured transcripts were restricted to the set of group-specific 

significant genes from UKBB matched by not null ENTREZ gene ID. P-values for adjusted beta 

in this subset of transcripts were corrected via Benjamini-Hochberg procedure. In addition, we 

built pathway-scores in SHIP-Trend cohort from the measured gene expression (called measured 

pathway-scores) and tested group-specific differences via GLM. These measured pathway-scores 

are obtained in a similar manner to the predicted gene expression but using all measured genes in 

the whole blood microarray dataset based on the quantile normalized, z-scored residuals after 

correction for covariates. 

For the PsyCourse Study, we tested the following phenotypes using the same GLM based 

procedure evaluating the following variables: v1_nrpsy_tmt_A_rt, v1_dur_illness, 

v1_age_1st_inpat_trm, v1_age_1st_out_trm, v1_nrpsy_dg_sym, v1_chol_trig, 

v1_panss_sum_pos, v1_tms_daypat_outpat_trm, v1_1st_ep, v1_bmi, v1_nrpsy_tmt_B_rt, 

v1_diabetes, v1_cat_daypat_outpat_trm, v1_cgi_s, v1_nrpsy_mtv, v1_kid_fail, 

v1_outpat_psy_trm, v1_gaf, v1_stroke, v1_epilepsy, v1_hyperten, v1_nrpsy_mwtb, 

v1_panss_sum_neg, v1_nrpsy_dgt_sp_bck, v1_fam_hist, v1_nrpsy_dgt_sp_frw, v1_autoimm, 
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v1_ang_pec, v1_heart_att, v1_liv_cir_inf, including Age, Sex, center of patient recruitment and 

the first two PCs from the genotype analysis as covariates. 

 

Group-specific treatment response analysis in CAD 

Taking advantage of the treatment annotation in UKBB data, we investigated whether cases from 

different genetically detect groups exhibited a different treatment response. For this purpose, we 

regarded as response phenotypes the categories of arterial stiffness, blood biochemistry, blood 

count, blood pressure, body size measure, hand grip strength and impedance measures; and we 

considered as treatments the 17 medications previously described for endophenotype differences 

analysis (pain relief, vitamin supplements, mineral and dietary supplements, blood pressure 

medication, cholesterol lowering medication and insulin). Consider group 𝑔 composed of 𝑛3cases 

and consider phenotype 𝑗 values in corresponding of group 𝑔 (𝑝ℎ𝑒𝑛𝑜J(𝑔𝑟3)). Phenotypes with less 

the 300 available values were excluded, and continuous ones were normalized. The response for 

medication 𝑖 (e.g. cholesterol lowering medication) in group 𝑔 measured based on phenotype 𝑗 is 

tested via GLM 

𝑝ℎ𝑒𝑛𝑜J-𝑔𝑟32~	𝑚𝑒𝑑C-𝑔𝑟32 + 𝑐𝑜𝑣((𝑔𝑟3) +	⋯+ 𝑐𝑜𝑣K(𝑔𝑟3) 

and we denote as 𝛽�C,J,3 regression coefficient representing treatment 𝑖 effect on phenotype 𝑗 in 

group 𝑔. We used as covariates first 10 PCs, age, sex as well as all the other treatment binary 

categories.  In order to test differences among treatment-phenotype effects across groups, for each 

pair of groups (𝑔, ℎ) we evaluated regression coefficient differences using Z-test43: 

𝑍C,J	(𝑔, ℎ) = 	
𝛽�C,J,3 −	𝛽�C,J,N

�-𝑆𝐸	𝛽�C,J,32
$ + -𝑆𝐸	𝛽�C,J,N2

$	
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where 𝑆𝐸 is the standard error for regression coefficient computed from GLM. P-values were 

computed under the assumption of normal distribution and corrected for multiple testing across all 

the phenotypes but separately for each group-pair (𝑔, ℎ) and treatment 𝑗	taken into consideration. 

 

Risk scores computation and differences detection in cases stratification 

In order to test for endophenotypic differences in datasets without any endophenotypic information 

such as PGC cohorts, we developed a strategy to annotate patient with endophenotypes from 

genetic information using tissue-specific gene-risk scores (gene-RS). For each tissue, gene-

phenotype association was estimated (TWAS) as previously described in UKBB for phenotype	𝑗, 

obtaining for each gene 𝑛 association Z-statistic 𝑍!
J = O"

&

PQ	O"
&  . Secondly, we filtered redundant genes 

due to LD structure clumping genes at 0.1 squared Pearson correlation cut-off and giving priority 

to those with higher genotype 𝑅$ imputation. The correlation among genes was estimated via a 

subset of UKBB samples without CAD HARD diagnosis. Finally, for an external cohort composed 

of 𝐿 individuals, gene-RS is defined as the 𝐿-vector of weighted sum for gene t-scores previously 

corrected for PCs (𝑻𝒏	𝐿-vector, for 𝑛 = 1,⋯ ,𝑁) multiplied by gene-phenotype Z-statistic 𝑍!
J : 

𝑹𝑺𝒋 = + 𝑻𝒏𝑍!
J

!'(,…,/

 

Hence, we obtained a continuous risk score that mimics the actual phenotype not available for 

PGC cohorts, which was then tested for group-specific differences. Namely, PGC cohorts are 

combined, and each gene is corrected for PCs as described in the clustering procedure. Gene-RS 

are then computed with phenotype effect estimated from UKBB and standardized. Finally, cluster 

differences are tested via GLM with gaussian link function including PCs as covariates and 

considering the partition of SCZ cases previously computed on PGC cohorts. In SCZ analysis, we 
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leveraged TWAS results for 1,000 phenotypes from UKBB among the categories of alcohol use, 

anxiety, blood biochemistry, blood count, blood count ratio, blood pressure, body size measure, 

cannabis use, depression, dMRI skeleton, happiness and well-being, mental distress and health, 

sleep, smoking, social support, susceptibility weighted brain MRI, T1 structural brain MRI, task 

functional brain MRI, traumatic events. In hypothesis-driven analysis, we specifically investigated 

cognitive function and used TWAS Z-statistic from numeric memory, pairs matching, prospective 

memory, reaction time, fluid intelligence, symbol digit substitution, trail making. 

The reliability of the gene-RS to estimate the actual endophenotype differences depends on i) the 

number of samples in the gene-endophenotype association analysis together with the genetic 

heritability of the phenotype and ii) the effect size of the cluster specific difference. The former 

was measured in UKBB via F-test statistic: gene-RS ability to model actual phenotype was 

estimated via nested linear models of phenotype predicted via gene-RS plus covariates or only 

covariates. The latter was estimated via the absolute value of the regression coefficient from GLM 

cluster differences for gene-RS (|𝛽3| for 𝑔	𝑖𝑛	1,⋯ , 𝐺 groups). Hence, we defined a cluster-reliable 

non-negative measure (CRM) for each endophenotype 𝑖	and group 𝑔 as the product of F-statistic 

and cluster-specific coefficient: 	𝐶𝑅𝑀(𝑗, 𝑔) = 𝐹𝑠𝑡𝑎𝑡J ∙ |𝛽3|	(see Supplementary Text for 

validation). 

 

Pathway analysis and drug response 

We utilized gene2drug tool44 for drug repositioning for each group levering the group-specific 

signature of up-regulated and down-regulated pathways. Briefly, this method uses genome-wide 

transcriptional response to treatments of 1,309 small molecules measured on 5 cell lines called 

Connectivity Map (CMap)45. The results across CMap multiple experiments are merged using 
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Prototype Ranked Lists approach as described in 46 to obtain a summary matrix of measured 

transcriptional changes (genes) for each tested drug. This information is then converted into 

pathway expression profiles as signed enrichment score (ES) from Gene Set Enrichment Analysis 

(GSEA), that indicates how much the expression of genes in a pathway is perturbed by the drug 

administration 47. Afterwards, pathways enrichment scores are ranked for each drug according to 

their p-values, with most significantly up-regulated pathways at the top and down-regulated at the 

bottom. Given a set of pathways, gene2drug uses these ranked pathway expression profiles to 

compute for each drug an enrichment score and a p-value via GSEA that represent the extent of 

those pathways to be up- or down-regulated by each drug. Thus, the aim of gene2drug method is 

to predict drugs that can target the provided set of pathways. In our application to group-specific 

pathway signatures, we first removed shared significant pathways across tissues that showed a 

discordant WMW estimates sign. We used the gene2drug R Bioconductor package (gep2pep) and 

considered precomputed pathway expression profile of the CMap available from  

http://dsea.tigem.it/data/Cmap_MSigDB_v6.1_PEPs.tar.gz. We matched the filtered group-

specific pathways with those available in the CMap annotation for Reactome 

(“C2_CP:REACTOME”), Gene Ontology Biological Process (“C5_BP”), Molecular Function 

(“C5_MF”), and Cellular Component (“C5_CC”). Following the transcription reversion signature 

principle for drug repositioning 48, we searched for drugs with inhibiting effects (ES < 0) of group-

specific up-regulated pathways and, vice-versa, activating effects (ES > 0) for group-specific 

down-regulated ones. Thus, for each group and pathway database we performed two analyses, 

separately providing up-regulated and down-regulated pathway in a group and searching for drugs 

that target those pathways but induce an opposite effect. The resulting p-values from GSEA were 

corrected for multiple testing via BH procedure and results with FDR £ 0.05 were retained. Finally, 
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we annotated drug names with ATC codes by matching names, using summary tables generated 

via https://github.com/fabkury/atcd (date 2021-12-03).  

 

Clustering based  on genotype derived principal components 

To study the ancestry contribution to tissue-specific clustering, we separately cluster cases (CAD 

or SCZ) solely based on the PCs derived from genotype data. For CAD, we considered the first 40 

PCs available in UKBB data set. For SCZ instead we considered the first 20 PCs available and 

computed jointly in the PGC cohorts. In both diseases, we separately standardized each PCs to 

mean 0 and standard deviation 1 and performed Louvain clustering on shared nearest neighbor 

network built from the available PCs. We then compared the obtained clustering structure to those 

obtained from the actual tissues via NMI and compared it to the 10,000 random partitions of cases 

of the same size (Supplementary Fig. S14c, Supplementary Fig. S22c).  To investigate the 

overlap at the single group level, we additionally computed the odds ratio from Fisher’s Exact test 

comparing each pair of groups from PCs and imputed gene expression, namely individuals in gri 

(PC) and outside gri (PC) with individuals in grj (imputed expression) and outside grj (imputed 

expression) (Supplementary Fig. S14d, Supplementary Fig. S22d). Finally, endophenotype 

differences in PC clustering was performed via previously described GLM approach but only 

correcting for age and sex covariates. To compare endophenotype differences, we considered for 

each endophenotype tested the group reaching highest significance (lowest p-value) and compared 

-log10 p-value between clustering based on PCs and based on imputed gene expression 

(Supplementary Fig. S14f, Supplementary Fig. S22e).   
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Appendix A 

We explicit 𝑅$ as 1 minus the ratio between the variance explained by the model and the original 

one: 

1 −
∥ 𝒀 −	𝒀T ∥$$

∥ 𝒀 −	𝑌W ∥$$
=	
∥ 𝒀T −	𝑌W ∥$$+ 2	⟨𝒀 −	𝒀T, 𝒀T − 𝑌W⟩

𝜎𝒀$
 

with 𝒀T ≔ 𝑋𝜷T + 𝑍𝝁V	 the predicted gene expression,	𝑌W  the mean original gene expression, 𝑋 the 

cis-variant dosage matrix for the gene in consideration and 𝑍 the covariate matrix also including 

all-one vector to account for intercept term. 

Let 𝑾] ≔ 	𝑋𝜷T be the predicted genotype effect, 𝑾≔ 𝒀− 	𝑍𝝁V		the gene expression vector 

corrected for the confounder effect  and 𝑊_  the corresponding mean, 𝑽T ≔ 𝑍𝝁V the predicted 

confounder contribution and 𝑉dW  the corresponding mean. Thus by definition, 𝒀 = 𝑾+	𝑽T and 

𝑌W = 	𝑊_ + 𝑉dW,	hence the first term of 𝑅$ nominator can be written as 

∥ 𝒀T −	𝑌W ∥$$=	∥ 𝑾] + 𝑽T −𝑊_ −	𝑉dW ∥$$=	∥ 𝑾]−𝑊_ ∥$$ 	+∥ 𝑽T − 𝑉dW ∥$$+ 	2⟨𝑾] −	𝑊_ , 𝑽T − 𝑉dW⟩. Since by 

definition 𝒀 −	𝒀T = 	𝑾 −	𝑾], the second term of 𝑅$ nominator becomes 

�𝒀 −	𝒀T, 𝒀T − 𝑌W� = �𝑾 −	𝑾],𝑾	] + 𝑽T −𝑊_ −	𝑉dW� = �𝑾 −	𝑾],𝑾	] −𝑊_ � +	�𝑾 −	𝑾],𝑽T −	𝑉dW�	 

Hence, 𝑅$ can be expressed as 

∥ 𝑾] −𝑊_ ∥$$+ 2�𝑾−	𝑾],𝑾	] −𝑊_ �	+	∥ 𝑽T − 𝑉dW ∥$$+ 2�𝑾−	𝑊_ , 𝑽T −	𝑉dW�

𝜎𝒀$
 

which we grouped in 3 components 𝑅3$, 𝑅0$	and 𝑅3,0$ . 
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Supplementary Text 

Validation and comparison of Priler against elastic-net regression 

Since PriLer is an extension of elastic-net regression (enet) that incorporates prior knowledge on 

individual variants, we initially benchmarked PriLer against enet across 34 tissue-specific models 

(33 GTEx and 1 CMC). First, we compare PriLer and enet in terms of reliable genes i.e. genes 

predicted from genetic data having 𝑅$ ≥ 0.01 and 𝑅01$  > 0. The number of reliable genes is very 

similar (Supplementary Fig. 3a) but always higher for PriLer for a total of 2,922 additional genes 

(mean ± sd: 85.94 ± 47.39). In addition, for reliable genes in PriLer, we observed an increase in 

number of genes having higher 𝑅01$  in PriLer compared to enet (Supplementary Fig. 3b), showing 

an overall better prediction performance. The number of genes with improved prediction 

performance is partly correlated with number of priors used in the model across tissues (Pearson 

corr. 0.48) and negatively with the number of training samples (corr. -0.28). PriLer not only 

increases the number of genes that can be accurately predicted, but also decreases the number of 

reg-SNPs (Supplementary Fig. 3c), with a total decrease across all genes of 1,462,466 variants 

(mean ± s.d. 43,014 ±14,530). The difference in number of reg-SNPs significantly depends on the 

number of prior features (corr. -0.68). Moreover, we observe an increase in fraction of reg-SNPs 

that contain any prior information used in PriLer model (Supplementary Fig. 3d). The mean 

increase is 11% (sd 3.32%) with the difference in fraction of reg-SNPs with prior being partly 

dependent on the number of prior included (corr. 0.26). In addition, we compared reg-SNPs 

robustness in whole blood tissue, downsampling to 100 individuals 10 times and comparing reg-

SNPs selection in each pair of repetition using Jaccard index (Supplementary Fig. 3e), PriLer 

shows a significant increase in terms of concordance of selection with respect to enet (Wilcoxon-

Mann-Whitney P=2.8e-14).  In summary, PriLer generates better performing models of genotype-
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based expression imputation, using a reduced amount of variants but more biologically meaningful 

and robust compared to elastic-net regression without prior information.  

Finally, we observe the differences in terms of predictive performances for heritable and not 

heritable genes defined a priori via GCTA software in PriLer. The majority of expressed genes are 

not heritable across all tissues (Supplementary Fig. 4a). Thus, prior weights are calibrated on a 

smaller set of genes whose size varies with the training sample size. On the other hand, as expected 

heritable genes constitute most of the reliable genes defined by PriLer (Supplementary Fig. 4b), 

and the variance explained for heritable genes is always significantly higher compared to not 

heritable ones in the same tissue (Supplementary Fig. 4c, Wilcoxon-Mann-Whitney p-value < 

2.21-49). Overall, median prediction accuracy of heritable-vs-non heritable genes differs by 0.0398 

on average, inversely dependent on overall training sample size (Spear. correlation = -0.8128)  and 

ranging from 0.0125 for whole blood to 0.077 for spleen. Similarly, the proportion of heritable-

vs-non-heritable genes depends on sample size (Spear. correlation = 0.8105), with proportions 

ranging from 49% for hippocampus to 78% for thyroid. 

 

Evaluation of prior weights selection in PriLer through random prior simulation 

To examine whether the learned weights for prior features were meaningful for the model tissue 

considered, we simulated random prior features using as example artery coronary tissue and 

focusing on heart_left_ventricle prior features that indicate whether a variant is located in an open 

chromatin position based on H3K27ac for heart left ventricle cell type. We define as baseline prior 

7 priors that are normally adopted in artery coronary model tissue (Data S1). 

First, we define two new prior features called heart_left_ventricle_Var_random and 

heart_left_ventricle_Var_random2x randomly selecting variants in the same size or twice 
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respectively of the original prior feature heart_left_ventricle (Supplementary Fig. 5c). The aim is 

to emulate a prior that is not biologically meaningful but contain the same amount of information 

or twice of an existing one. The estimates for prior weights across 50 repetitions are close to zero 

although different from it (mean ± sd = 0.0145 ± 2.04e-03 and 0.0317 ± 3.22e-03) 

(Supplementary Fig. 5a) with Var_random2x increased compared to Var_random but still lower 

than the original prior heart_left_ventricle (mean ± sd = 0.109 ± 4.01e-04). Indeed, when a prior 

feature intersects SNPs that are used even to a small extent in a gene regression model, the initial 

estimate cannot be exactly zero and the bigger the prior size (number of variants it intersects), the 

more likely is that prior to be relevant just because of randomly intersecting reg-SNPs. In addition, 

just by chance, the variants randomly selected still intersects baseline prior features that are used 

in the model (mean sharing 20%, Supplementary Fig. 5b).  However, in the iterative procedure, 

the weights for the randomly created priors remain fixed instead of increasing until convergence 

as it happens for the original prior (Supplementary Fig. 5d). This means that the use of variants 

intersecting heart_left_ventricle in the gene regression models increases the performance, which 

does not happen for the randomly generated priors. 

Second, we generated random prior features that resemble ChIP-Seq H3k27ac data used to build 

prior information. To this end, we randomly select open chromatin regions i.e. gene regulatory 

elements (GREs) from the original data in the same size or twice as heart_left_ventricle and 

intersected with variants location to create heart_left_ventricle_Epi_random and 

heart_left_ventricle_Epi_random2x priors. In addition, we included Ctrl_150_allPeaks which is a 

prior feature related to brain tissue. Differently from the first scenario that just extrapolates variants 

by chance, sampling GREs allows taking into consideration genomic positions and LD structure. 

The randomly selected GREs across 50 repetitions partly overlap with baseline GREs used in 
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artery coronary tissue (Supplementary Fig. 5f) resulting in a sharing of 67% and 65% of variants 

in Epi_random and Epi_random2x respectively as well as 81% shared variants with 

Ctrl_150_allPeaks. Thus, to generate a random prior that would not show a high sharing with the 

baseline model, we randomly selected GREs excluding the ones used in the baseline prior features 

and in the same size as GREs for heart_left_ventricle. The newly created prior feature 

(Epi_random_noint) only shares 20% of the variants detected among the baseline priors due to 

GREs possible overlapping. The number of variants from randomly generated priors are similar to 

the original heart_left_ventricle for Epi_random and Epi_random_noint while twice the amount 

for Epi_random_2x (Supplementary Fig. 5g). Differently from the first scenario, the estimate for 

prior weights Epi_random Epi_random_2x and Ctrl_150_allPeaks are very different from zero 

(mean ± sd = 0.06 ± 0.005, 0.096 ± 0.004, 0.052 ± 0.001). The only random prior reaching the 

similar weight as heart_left_ventricle (0.095 ± 0.002) is Epi_random_2x, which includes twice the 

amount of the information than the original (Supplementary Fig. 5e), while Epi_random_noint 

estimates are very close to zero (0.01 ± 0.0004). Although the new prior included in the model are 

not related to artery coronary, the relevance can be explained by the high sharing in terms of 

variants with respect to the baseline model. Indeed, when the percentage is reduced as in the case 

of Epi_random_noint, the associated weight is close to zero. Regardless Epi_random_2x starting 

at higher relevance due to the increased size, it just reaches the same value of original 

heart_left_ventricle at convergence (Supplementary Fig. 5h).  

We conclude that the weights reflect a tissue specific configuration of gene expression regulation 

that can be partially confounded by high sharing of variants with actual relevant prior features. 

However, not relevant prior weights are reduced to the minimum when their sharing with relevant 

priors is only marginal, even in case of existing GREs reflecting genome structure. 
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Comparison of Priler against existing methods: TWAS and prediXcan 

We compared PriLer to prediXcan49 and TWAS50 methods build on GTEx v6p and CMC datasets. 

Summary of tissue models for prediXcan are downloaded from 

https://s3.amazonaws.com/predictdb2/deprecated/download-by-tissue-HapMap/ and 

https://github.com/laurahuckins/CMC_DLPFC_prediXcan/blob/master/DLPFC_oldMetax.db.tar.

gz and for TWAS from https://data.broadinstitute.org/alkesgroup/FUSION/WGT/GTEx.ALL.tar 

and https://data.broadinstitute.org/alkesgroup/FUSION/WGT/CMC.BRAIN.RNASEQ.tar.bz2. In 

order to compare PriLer performance with previous methods we used 𝑐𝑜𝑟01$  defined as squared 

correlation between 𝑾𝒕𝒆𝒔𝒕 and  𝑾]𝒕𝒆𝒔𝒕 defined as adjusted gene expression and predicted 

expression from genetic effects respectively combing all test folds. Since we restrict our analysis 

to Caucasian only, the number of individuals used in PriLer is lower (mean decrease 22 ± 17 and 

19 ± 18 respect prediXcan and TWAS), slightly decreasing the overall power. We then consider 

only genes in PriLer having any 200kb cis-variants and being also present in prediXcan or TWAS 

summary statistics. Combining all the tissues together, PriLer shows an increase in term of 

predictive performance: the percentage of genes with higher 𝑐𝑜𝑟01$  in PriLer is 64.6% compared to 

prediXcan out of 158,249 and 76.6% compared to TWAS out of 68,891 (Supplementary Fig. 6a-

b). The number of genes that uses more reg-SNPs in PriLer is instead similar to prediXcan (50.1% 

higher in PriLer) but particularly greater compared to TWAS (80.5% higher in PriLer). A possible 

reason for this increase is that TWAS choses the best model among 5 different ones which also 

include best eQTL. Therefore, PriLer outperforms TWAS and prediXcan even including a reduced 

amount of training samples and with a number of selected variants that is higher only compared to 

TWAS, resulting in an even improved	𝑐𝑜𝑟01$ . Similar to the comparison with elastic-net regression, 
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the fraction of reg-SNPs intersecting tissue specific prior information is increased for PriLer 

(Supplementary Fig. 6c). In order to externally validate the enrichment of reg-SNPs for PriLer in 

biologically meaningful regions, we use recently annotated map of DNase I hypersensitive sites 

(DHSs) across 733 human biosamples encompassing 438 cell and tissue types and states 51, 

including reg-SNPs from reliable genes for PriLer and enet as well as reg-SNPs in TWAS and 

prediXcan. Intersecting their location with DHSs, each reg-SNP is annotated with the number of 

biosamples it overlaps with respect to a DHS. We tested the differences between PriLer and enet, 

prediXcan and TWAS in term of distribution of number of reg-SNPs intersecting DHSs 

biosamples using Kolmogorov-Smirnoff test (Supplementary Fig. 6d). Although TWAS shows 

the highest percentage of reg-SNPs intersecting at least 1 biosample DHSs, PriLer displays an 

increased percentage of reg-SNPs intersecting multiple biosample DHSs with a significant 

improvement for brain hippocampus, heart left ventricle and muscle skeletal tissues. Interestingly, 

these tissues already showed the strongest improvement in term of increased fraction of reg-SNPs 

having prior information for PriLer with respect to the other methods (Supplementary Fig. 3d, 

Supplementary Fig. 6c).  In summary, we developed a gene expression imputation method that 

offers multiple and incremental improvements over existing strategies. 

 

Calibration of type 1 error in TWAS and PALAS 

In order to determine whether the approach to TWAS and PALAS proposed here provided well-

calibrated p-values both at the gene and pathway-score levels, we considered whole blood as 

exemplar tissue that included  3,840 genes, 902 Reactome pathways and 2,803 GO pathways and  

simulated random phenotypes 50 times. In detail, we created binary vectors that resembled CAD 

phenotype keeping the same case/control size, i.e. 19,026 cases and 321,913 controls. To create 
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random phenotypes that resembled as closely as possible the same confounders as the actual CAD 

classification, we selected the same number of female/males and the same age compared to the 

actual CAD phenotype among the case/control classes. We then performed TWAS and PALAS 

and tested for associations between the randomly created phenotypes and gene T-scores and 

pathway-scores that were previously computed for CAD (i.e. considering as reference set a subset 

of individuals non-affected by CAD). Finally, multiple-testing correction is performed via BH 

procedure, correcting for each simulation separately. Combing all the simulations, we observed 

that p-value distribution approximates a uniform distribution in (0,1) range (Supplementary Fig. 

8a-c), validated also via Kolmogorov-Smirnoff test that compared a random uniform distribution 

with the simulated one form gene associations (p-value=0.17), pathway associations in Reactome 

(p-value=0.87) and pathway associations in GO (p-value=0.5). The same conclusions can be 

drawn from quantile-quantile plots in Supplementary Fig. 8d-f, with the expected distribution of 

p-value extracted from a uniform one. The association signal with the actual CAD phenotype 

greatly diverged from the simulated ones, with very few genes/pathways passing the FDR 0.05 

threshold in the simulated phenotypes (blue points). However, all simulation results remain in the 

95% confidence intervals of the standard uniform order statistics that follows a beta distribution. 

We can then conclude that CASTom-iGEx strategy for TWAS and PALAS returns well-calibrated 

p-values. 

 

Relevance of genes correlation in pathway significance 

Next, we investigated whether gene correlation and LD structure were connected to the increase 

observed in pathway-score significance. To this aim, we performed two analyses: 
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1.  Simulation of pathway structure from actual gene T-scores in whole blood, creating gene-sets 

composed of 3 or more genes located in the same loci, for a total of 46 simulated pathways. In this 

case, the goal was to understand how the loci structure can influence the pathway significance. 

2. Estimation of relationship between pathway significance increase and average gene correlation 

across all detected pathways with n ≥ 2, to observe the actual relevance and extent of genes 

correlation in pathway significance. 

For 1., we only considered actual genes in whole blood that were showing a certain level of 

significance i.e. nominal TWAS p-value £ 0.01 and created simulated gene-sets from those genes 

that were also in the same loci and had the same effect size sign in CAD associations (all Z-stat 

genes >0 or < 0), to avoid a compensatory effect for gene relevance. This procedure led to a total 

of 46 simulated pathways with the number of genes included varying from 3 to 7. Although all the 

genes were in the same loci, the increase in pathway significance was dependent and inversely 

proportional to the estimated average genes correlation (Supplementary Fig. 10a), with almost 

no increase for pathways that included highly correlated genes, This resulted in a general lower 

significance of pathways composed of correlated genes (Supplementary Fig. 10b). Based on 

these findings we concluded that the gene correlation due to the regulation from the same variants 

(or in LD with them) rather than the vicinity of genomic coordinates is relevant in the observed 

pathway significance and that genes in the same loci not correlated do still lead to an improvement 

in the information captured by the pathway scores. 

For 2., we finally considered the actual pathway-scores and increase or decrease in pathway 

association level compared to the average genes correlation included in the pathways. Across all 

the pathways databases, there was no rank correlation between average differences of significance 

in pathways versus genes and genes correlation (Supplementary Fig. 10c-e, absolute Spearman corr. 
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< 0.045). Indeed, we observed that pathways with highly correlated genes (> |0.5|), usually 

including less than 4, showed only marginal improvement in pathway significance. In contrast, 

pathways with a striking effect of increased significance were those formed by more than 10 genes 

and having and average correlation around zero. Hence, we conclude that the increase in pathway 

relevance with respect to single genes became maximal when the correlation among genes was 

minimal. Overall, genes correlation due to LD structure did not increase pathway significance nor 

pathway improvement compared to single genes. Finally, observing actual pathway structures, the 

gene-sets with best improvement were formed by not correlated genes.  

 

Training sample size effect on TWAS and PALAS results for CAD 

To assess the robustness of TWAS and PALAS results based on the reference panel sample size, 

we performed a down-sampling analysis and applied PriLer on 50% 70% and 90% of samples in 

artery aorta (AA) and heart left ventricle (HLV) tissues. Afterwards, we imputed gene expression 

on same UKBB data set used for CAD, converted them into gene T-scores and pathway-scores. 

Finally, we tested the reliable genes and computed pathways for association with CAD phenotype 

as previously described.  

Consistently to what was observed across different tissues, the number of reliable gene decrease 

with the decrease of the same size (Supplementary Fig. 11a). When comparing model 

performances in terms of R2CV, considering all reliable genes the R2 estimates remained stable 

across sampling percentages but drastically improved for those genes in common (Supplementary 

Fig. 11b). This indicates that increasing the sample size 1) we can reliable predict more genes that 

have a weaker genetic component of expression regulation and 2) we can better estimate the 

genetic dependencies of more heritable genes. We then predicted gene expression on UKBB for 
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the corresponding reliable genes and computed gene T-scores and pathways scores as previously 

explained. Finally, we run TWAS and PALAS analysis, testing for CAD associations. The 

percentage of shared genes as well as the correlation of genes Z-statistics from TWAS were higher 

for the same tissue across sub-sampling percentages, with an increase when increasing the 

sampling percentage (Supplementary Fig. 11c). The trend was similar for pathways associations 

but with a general lower correlation (Supplementary Fig. 11d). This is due to the fact that the 

same pathway across sub-sampled tissues can have different coverages and can be composed of a 

different gene set, depending on the tissue-specific reliable gene set.  

Finally, we investigated the concordance in prediction of significant genes and pathways (FDR 

0.05) across the sub-sampled models compared to the full model (100%) using all samples 

(Supplementary Fig. 11e-h). For each comparison (sub-sampled vs full model), we considered 

only predicted genes/pathways in common and we computed the receiver operating 

characteristic (ROC) curve and the corresponding area under the curve (AUC) considering 

significant genes/pathways as real positives, and absolute value of CAD Z-statistic in each sub-

sampled model as prediction score. The concordance is particularly high for TWAS results, with 

AUC > 0.99 for all the comparison in both tissues and increasing with the training sample size 

(Supplementary Fig. 11e,g). A similar increase is observed for PALAS results but with a lower 

prediction performance, leading to a AUC > 0.73 in aorta and > 0.6 in left ventricle 

(Supplementary Fig. 11f,h). In conclusion, a decrease in sample size leads to a lower number of 

reliable genes and worse model performance, as expected. The TWAS and PALAS association are 

highly correlated across sub-sampled models in the same tissue, although less for pathways than 

genes. Similarly, the prediction of significant genes is highly consistent between the full and the 

sub-sampled models, however lower performances were observed for pathways. This is related to 
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the difference in considered gene-sets given fewer genes that can be reliably estimated at lower 

sample size. Nevertheless, these trends (correlation and prediction) are increasing with the sub-

sampled training size. 

 

Clustering simulation in CAD 

To generate an empirical null-distribution of gene, pathway, and endophenotype associations with 

clustering structure, we randomly partitioned UKBB CAD patients 50 times into similar sized 

groups compared to actual liver-based clustering. All random partitions but one were independent 

(Supplementary Fig. 16a), with repetition 2 only showing a mild association (P=0.0063) and not 

passing FDR 0.05 threshold (FDR = 0.32). Considering the first 10 repetitions due to 

computational time constraints, we then detected the group-specific genes and pathways across 

clusters. The WMW p-value distributions mostly did not deviate from the expected uniform 

distribution (Supplementary Fig. 16b,d) with some exception for genes such as repetition 9 in 

group 5. Observing the number of association passing FDR thresholds, across each group the 0.01 

upper bound identifies 1 gene significant in 1 out of 10 repetitions (Supplementary Fig. 16c) and 

1 pathway significant in at max 2 repetitions (Supplementary Fig. 16e). Thus, to reduce the 

number of false-positives, we used as FDR threshold for cluster-specific genes and pathways of 

0.01 instead of the otherwise used 0.05. Finally, we computed the endophenotype differences in 

each cluster via GLM across the 50 random clustering testing 637 UKBB phenotypes. We 

compared the effect size βGLM and the corresponding -log10 p-value from random clustering 

repetitions and liver cluster (Supplementary Fig. 16f). Extremely significant results were only 

achieved for liver clusters and maximum 1 endophenotype was significant (FDR 0.05 ) in 7 

different repetitions. In conclusion, FDR cut-off of 0.01 ensures a reduction of false positives for 
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cluster-specific genes and pathways. Moreover, the empirical null-distribution of endophenotype 

associations leads to almost no significant results and greatly different compared to the actual 

clustering in liver. Endophenotype associations in random clusters were also tested for the 33 

hypothesis-driven clinical phenotypes and used to compute the empirical p-value (see “Detection 

of endophenotype differences across patient strata” in Methods). 

 

Investigation of ancestry contribution to clustering structure 

To reduce possible biases in clustering structure given by ancestry, we correct imputed gene 

expression for 10 genotype-based PCs as pre-processing step prior clustering. in the context of 

CAD, we observed that clustering of the data on the residuals compared to no correction showed 

no/minimal remaining associations with PCs (Supplementary Fig. 12d). This step only minimally 

changed the clustering structure compared to no correction, indicating that the overall impact of 

population structure as captured by PCs was already small (NMI > 0.5, Supplementary Fig. 12e). 

In the context of CAD clustering in liver and SCZ clustering in DLPC, PCs association reduced 

after correction but was still significantly associated with the detected clusters (Supplementary 

Fig. 13c, Supplementary Fig. 21c), with a stronger effect in SCZ. Nevertheless, in both CAD and 

SCZ we observed that the actual PC distribution across clusters (Supplementary Fig. 13c, 

Supplementary Fig. 21c) was not driving the partitioning compared to the imputed gene 

expression based on effect size estimates (30-50 fold differences between each contributing gene 

and PCs Supplementary Fig. 13d, Supplementary Fig. 21e), hence not separating the patient 

space. In fact, the coefficients of variations (effect-sizes divided by confidence interval range) 

specific to each group for the strongest associated PCs (PC4-PC5 in CAD and PC1-PC5 in SCZ) 

were below 0.92 and 2.6 in absolute value compared to the top 5 genes per group (P < 1e-100) that 
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showed a coefficient of variation > 4 and 23 respectively,  with a peak of 300 for SORT1 and 85 

for C4A, respectively for CAD and SCZ (Supplementary Fig. 13d, Supplementary Fig. 21e).  

To better characterize the PCs contribution, we performed clustering of individuals based solely 

on PCs and repeated the endophenotype analysis (see “Cluster cases from genetic principal 

components” in Methods, Supplementary Fig. 14, Supplementary Fig. 22). Both for CAD and 

SCZ, we found marginal overlap between tissue based clusters and PCs based ones (NMI < 0.0052, 

Supplementary Fig. 14b, Supplementary Fig. 22b), although significant based on chi-squared 

test and with a stronger signal in SCZ. Specifically in liver for CAD and DLPC for SCZ, the 

minimal overlap was not null and greater than what is reached by a randomly assigned clustering 

structure (Supplementary Fig. 14c, Supplementary Fig. 22c). To understand which groups from 

tissue based and PCs based shared a higher by chance number of individuals, we compared 

pairwise Fisher’s Exact test odds ratio (Supplementary Fig. 14d, Supplementary Fig. 22d). For 

CAD, an enrichment was detected between gr7 in PCs and gr1 in liver, with a consequential 

depletion between gr3 in PCs and gr1 in liver. This could be related to a higher fraction of samples 

in gr7 PCs and gr1 liver originally from Reading and Birmingham surroundings (Supplementary 

Fig. 14e). For SCZ instead, 10 pairs showed either a significant enrichment or depletion (p-value 

< 0.01), with strongest enrichment among gr2 in DLPC and gr5 in PCs (Supplementary Fig. 22d).  

Most importantly, we observed that the minimal overlap found between tissue-derived and 

ancestry-derived clustering did not influence the group-specific endophenotype differences 

(Supplementary Fig. 14f-g, Supplementary Fig. 22e-f). For CAD, we observed different 

endophenotype significance among the two clustering structures (Supplementary Fig. 14e), with 

place of birth in UK being the strongest signal in PCs clustering not significant for liver clustering, 

as expected (Supplementary Fig. 14f). For the three endophenotypes significant in both clustering 
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configurations (height, comorbidity with lipidaemia and aspartate aminotransferase), we 

additionally examined whether this was related to the mild overlap between gr1 in liver and gr7 in 

PCs.  Looking at cluster-specific effect-sizes (Supplementary Fig. 14g), hyper lipidaemia 

diagnosis showed an opposite effect in the two not enriched nor depleted groups (gr5 in liver and 

gr2 in PCs), height strongest associations were referring to overlapping gr1 liver and gr7 PCs but 

with an opposite effect, and aspartate aminotransferase was strongest in two depleted groups (gr3 

PCs and gr1 liver) with an opposite effect, thus being the only concordant result with clustering 

overlap (OR = 0.86, P = 0.0002). Similarly, for SCZ the trend among best p-value endophenotype 

association was different between DLPC and PCs cluster (Supplementary Fig. 14e) and with a 

great variability in magnitude. However, 6 endophenotypes passing FDR 0.05 threshold were 

identified in both partitions. Considering results with FDR 0.1 threshold, we then investigated the 

group-specific differences for the strongest association in each endophenotype (Supplementary 

Fig. 14f). Platelet crit is lowest in two not enriched nor depleted groups (DLPC gr1 and PCs gr2), 

similar to  LDL direct and apolipoprotein B decreased in DLPC gr1 and PCs gr3 as well as the 

following diffusion magnetic resonance imaging (dMRI) phenotypes: Mean L1 in fornix cres+stria 

terminalis on FA skeleton (left), Mean L3 in cingulum hippocampus on FA skeleton (right) and 

Mean MD in fornix cres+stria terminalis on FA skeleton (left). The remaining dMRI phenotypes 

showed strongest but opposite effect for DLPC gr3 and PCs gr3 that again show evidence of no 

significant overlap nor depletion. The only endophenotype with concordant result based on group 

overlap was Volume of grey matter in Inferior Frontal Gyrus that had strongest associations with 

concordant sing in PCs gr4 and DLPC gr3 and were actually enriched for shared individuals. 

Jointly, these results show that patient groups and detected endophenotype differences in our 
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analysis were not driven by PCs as would be expected if population structure had a major impact 

on overall clustering.  

 

Incremental effect from pathway-scores: case study "De novo loss-of-function” gene-set 

In order to evaluate the power gain using gene set based aggregation  in more detail, we performed a high 

resolution analysis of the De novo LoF gene-set in DLPC in SCZ. This gene-set is a collection of genes 

harboring rare variants detected in probands from multiple SCZ family studies. In DLPC, this pathway was 

composed of 35 genes and reached a significance of P = 2.92e-07, exceeding that of any individual gene 

(genes P ≥ 2.29e-05). We sorted the 35 pathway member genes with respect to SCZ Z-statistic and added 

one gene at a time to the gene-set structure, computing at each increment the gene-set association with SCZ 

(Supplementary Fig. 19e). This analysis showed that an increment in the pathway level significance 

corresponding to the best incremental gene-set configuration was achieved when adding same directional 

effect genes even with very low effect (i.e. until nominal P < 0.1), supporting notion of the importance of 

the small effect variants in SCZ architecture. In addition, significant opposite sign association can disrupt 

the overall pathway signal. For instance, the overall pathway significance drastically decreased when 

adding ALMS1 gene that was positively and significantly associated with SCZ, hence with an opposite sign 

with respect to the majority of genes (Supplementary Fig. 19e). On the other hand, genes with a negative 

Z-statistic but not associated with SCZ even at the nominal level contributed only  to the gene-set signal 

and thus slowly decreased the overall level of significance (from NEB to ULF1 genes). Importantly, the 

considered genes were independent and mostly located in different loci with only ALS2CL and NCKIPSD 

both in 3p21.31 and indeed showing the highest interaction (Pearson corr.= −0.03, data not shown).  

 
Validation of gene risk scores to mimic actual phenotype in cluster-specific differences 

To evaluate the reliability of cluster-specific differences for gene-RS in term of actual differences 

in corresponding endophenotype, we defined a cluster-reliable measure (CRM). We calibrated a 
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reasonable threshold for CRM based on CAD analysis and UKBB phenotyping. This threshold is 

subsequently applied to SCZ cluster-specific gene-RS differences to highlight significant results 

that are likely to be observed also in the actual phenotype. 

First, we build gene-RS weights (Z-statistics) for 369 CAD related phenotypes in UKBB in 10 

GTEx tissues. Then, we compute gene-RS separately on each CARDIoGRAM cohort and tissue, 

correcting each gene for the cohort-specific first 10 PCs and considered the projected clustering 

structure based on UKBB CAD tissue-specific results. Via meta-analysis similar to TWAS and 

PALAS, gene-RS group-specific differences across all cohorts are summarized and CRM for each 

group-endophenotype combination is computed as described in Methods (“Risk scores 

computation and differences detection in cases stratification”) for those passing FDR 0.05 cluster-

specific significance. Success rate of gene-RS reliability, i.e. actual endophenotype differences 

detected for the same clustering structure in UKBB, is measure in term of precision 

(Supplementary Fig. 24). This is computed based on the fraction of group-specific gene-RS 

differences having same sign of 𝛽L>M	in gene-RS and actual endophenotype analysis in UKBB 

among all the endophenotypes passing a certain CRM threshold: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
#(𝛽L>M

3@!@EUP ∙ 	𝛽L>M
&N@!V > 0				 ⋀ 				𝐶𝑅𝑀3@!@EUP > 𝑡ℎ𝑟5UM)
#(𝐶𝑅𝑀3@!@EUP > 𝑡ℎ𝑟5UM)

 

Combining all tissues together, CRM cut-offs on CARDIoGRAM of 610 or 265 lead to precision 

> 0.85 or > 0.8 respectively (Supplementary Fig. 24a) for CAD. A similar trend was observed 

when comparing cluster-specific results from gene-RS and endophenotype on UKBB 

(Supplementary Fig. 24b), with increased precision performances having estimated F-statistic on 

the same samples where actual endophenotypes where measured. Thus, we adopted those 

thresholds to define strongly reliable and reliable cluster-specific results in SCZ.  
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Application of CASTom-iGEx to non-european individuals in UKBB 

To test trans-ancestry performances of CASTom-iGEx trained on European samples, we applied 

CASTom-iGEx pipeline to individuals from UKBB of Indian origins. In particular, we filtered 

samples using ethnic background (data-field 21000) coded as “Indian” (code 3100), being the 

largest non white British population. In addition, we removed individuals that withdraw consent, 

non-imputed ones, having a discordant genetically inferred and reported gender as well as relatives 

up to 3rd degree. The final cohort included 5,236 individuals among which 461 were satisfying 

the CAD HARD definition (see Methods). We considered only variants used for CAD analysis in 

UKBB white British cohort harmonized with GTEx v6p reference panel and CARDIoGRAM 

cohorts, matched by SNP IDs. On this genotype-only dataset, we imputed gene expression across 

the 10 CAD related tissues trained on GTEx v6p European samples and performed TWAS and 

PALAS testing for CAD phenotype. Fraction of concordance based on Z-statistic sign for UKBB 

white British (UKBB WB) significant results indicated an overall mild replication (< 0.65) 

combining all tissues, that however was not significant in some of the tissues (Supplementary 

Fig. 28a) and lower than the replication reached in the European based CARDIoGRAM meta-

analysis (Supplementary Fig. 28b). In addition, we projected Indian UKBB cohort into the 

clustering structure computed on UKBB WB in liver. The fraction of cases assigned to each group 

differed in UKBB Indian from clustering model more than what was observed across 

CARDIoGRAM cohorts (Supplementary Fig. 28c-d). Similarly, the Spear. correlation of cluster-

specific genes was different from null but strongly reduced in UKBB Indian compared to 

CARDIoGRAM (Supplementary Fig. 28e). In conclusion, the performances and replications 

were overall poor when using CASTom-iGEx European trained models on different ancestry 

population. 
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