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Abstract 

Electronic health records (EHRs) represent a rich data source to support precision medicine, 

particularly in disorders with small and heterogeneous populations where longitudinal 

phenotypes are poorly characterized. However, the impact of EHR data is often limited by 

incomplete or imperfect source documentation and the inability to leverage unstructured data. 

Here, we address these shortcomings through a computational analysis of one of the largest 

cohorts of developmental and epileptic encephalopathies (DEEs), representing 466 individuals 

across six genetically defined conditions. The DEEs encompass debilitating pediatric-onset 

disorders with high unmet needs for which treatment development is ongoing. By applying a 

platform approach to data curation and annotation of 18 clinical data entities from 

comprehensive medical records, we characterize variation in longitudinal clinical journeys. 

Assessments of the relative enrichment of phenotypes and semantic similarity analysis highlight 

commonalities and differences between the six cohorts. Evaluation of medication use reflects 

unmet needs, particularly in the management of movement disorders. We also present a novel 

composite measure of seizure severity that is more robust than existing measures of seizure 

frequency alone. Finally, we show that the attainment of developmental outcomes, including the 

ability to sit independently and the ability to walk, is correlated with seizure severity scores. 

Overall, the combined analyses demonstrate that patient-centric real world data generation, 
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including structuring of medical records, holds promise to improve clinical trial success in rare 

disorders. Applications of this approach support improved understanding of baseline disease 

progression, selection of relevant endpoints, and definition of inclusion and exclusion criteria. 
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Introduction 

The developmental and epileptic encephalopathies (DEEs) represent conditions where both 

epileptic activity and an underlying genetic etiology contribute to abnormal development.1 The 

promise of precision medicine for DEEs is increasing, as demonstrated through early successes 

in pre-clinical studies for Dravet syndrome,2 SCN2A encephalopathy,3 and Angelman 

syndrome,4 among others. With a growing population of DEEs that are candidates for targeted 

therapies, scalable approaches to characterization of natural history are required to define 

cohorts of interest, support the development of meaningful outcome measures, and optimize 

clinical trial design. However, this has remained challenging for the DEEs as they represent 

small, heterogeneous populations that are geographically distributed with variable access to 

clinical and research expertise. This is exacerbated in conditions where genotype-phenotype 

correlations have been described; ascertainment bias may contribute to underrepresentation of 

more moderate phenotypes, and the ability to identify phenotypic differences within a cohort can 

be diluted in smaller case series.5  

 

The US Food and Drug Administration (FDA) defines real world data (RWD) as “data relating to 

patient health status and/or the delivery of health care routinely collected from a variety of 

sources”.6 Increasingly, RWD is included as part of submission packages to the FDA, 

particularly in those for orphan products given its ability to address limitations in traditional study 

design.7,8 Between 2019 through the first half of 2021, 85% of submissions to the FDA included 

RWD.7 With high healthcare utilization established for individuals living with a rare diagnosis,9 

electronic health records (EHRs) represent a comprehensive and longitudinal RWD source that 

captures both the onset of symptoms and their evolution. However, the value of this data source 

is dependent on the ability to address and accommodate for key limitations, including 
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fragmentation of healthcare; variability in documentation practices; and ability to leverage 

unstructured text, which represents >80% of EHR content.10  

 

More recently, the application of ontologies has emerged as a viable strategy to harmonize 

disparate data sources where inconsistent terminology and specificity is used to describe 

clinical findings. Ontologies represent structured, hierarchical frameworks that allow for 

characterization of data, such as phenotypes, through computational methods.11 Through the 

use of ontologies, narrative data sources can be structured by applying a controlled vocabulary 

with established relationships between increasingly specific concepts. This approach has been 

successfully applied to characterize the epilepsy phenotype of children cared for at a large 

pediatric epilepsy center12,13 as well as in genetic DEEs,14–17 to establish genotype-phenotype 

correlations,15,17 and to expedite genetic diagnosis.18 The use of longitudinal EHR data 

combined with mapping to standard ontologies provides unprecedented breadth and depth of 

medical history data for representative samples of rare populations. However, this approach can 

be further strengthened by expanding data capture beyond individual health systems and 

through use of a common framework for data generation and evaluation. 

 

In this study, we describe the use of a novel patient-centric RWD platform to establish robust 

characterization of six DEEs, representing 466 individuals with causative variants in: FOXG1 

(n=90; MIM: 613454), KCNQ2 (n=33; MIM: 613720), SCN2A (n=49; MIM: 613721), SCN8A 

(n=67; MIM: 614558), STXBP1 (n=85; MIM: 612164), and SYNGAP1 (n=142; MIM: 612621). In 

aggregate, we reviewed the equivalent of >3,000 patient years of data through evaluation of 

97,256 annotated clinical concepts. We employed computational analyses of phenotypes, 

medications and physical exam findings mapped to an ontology to illustrate respective patient 

journeys, as well as intra- and inter-cohort similarity. We also present a novel composite 
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measure of seizure severity to characterize the epilepsy phenotype longitudinally and correlate 

with developmental outcomes.          

Subjects and Methods 

Study Participants 

The study population was drawn from individuals enrolled in Ciitizen®, a wholly owned 

subsidiary of Invitae Corporation. Although the platform is made available to any individual with 

a rare neurodevelopmental disorder, the majority of enrollment is achieved through engagement 

and collaboration with patient advocacy groups. Genetic diagnoses were verified through 

collection and review of clinical genetic test reports. All variants were reviewed and classified as 

pathogenic, likely pathogenic, or a variant of uncertain significance (VUS) in accordance with 

guidance outlined by the American College of Medical Genetics and Genomics; individuals with 

likely benign or benign variants were excluded from analyses.19 Individuals with VUS were 

included if at least two of the following criteria were met: (1) the variant was de novo with 

assumed parentage, (2) the ordering physician considered the VUS to be diagnostic and 

managed the participant accordingly, and/or (3) internal review demonstrated a consistent 

phenotype for the associated DEE. Individuals were eligible to participate if they had a qualifying 

variant in any of the six genes of interest: FOXG1, KCNQ2, SCN2A, SCN8A, STXBP1 or 

SYNGAP1. Individuals with a second genetic diagnosis associated with an overlapping clinical 

phenotype were excluded. Similarly, individuals with copy number variants encompassing more 

than one of the six genes above were excluded.  

 

Caregivers and/or legal guardians of study participants provided broad consent to share de-

identified data for research. The generation and subsequent analysis of participant data 

received determinations of exemption through a central IRB.  
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Generation of RWD through the Ciitizen Platform      

Ciitizen is a patient-centric RWD platform that transforms medical records into structured 

datasets that describe phenotypes and medical interventions at the request of patient 

participants.20 Ciitizen has developed an end-to-end operation that spans medical record 

collection through to data delivery. Medical records were collected from institutions within the 

United States where participants received care using the right of access granted by the Health 

Insurance Portability and Accountability Act (HIPAA). Following record retrieval, each participant 

was reviewed for completeness by trained clinicians; only those individuals with sufficient and 

specific documentation surpassing defined minimum thresholds were included. Example 

completeness criteria include collection of the participant’s genetic test report, as well as at least 

annual documentation by relevant physicians and clinicians.  

 

Ciitizen has developed tooling to scale data harmonization and organization from unstructured 

medical record documents, including physician notes, diagnostic imaging reports, and genetic 

test reports. In brief, each document was systematically evaluated for relevant data variables, 

including clinical phenotypes and diagnoses, medication use, therapeutic procedures, 

hospitalizations, attainment of developmental milestones, and seizure severity. In aggregate, 

scope of data capture included 18 unique clinical data entities, encompassing 48 variable fields 

(Table S1). To correct for variation in clinical documentation, extracted data were mapped to an 

internationally recognized terminology;21 diagnoses, observations, and procedures were 

mapped to SNOMED CT (US Edition, version 2022_03_01),22 whereas medications were 

mapped to RxNorm (version 20AA_220307F).23 Throughout the text, annotated concepts are 

presented as “clinical concept, SNOMED CT code” to provide documentation of both the 

assigned name and static code. In annotation, the most specific concepts were used to ensure 

fidelity of data capture. Resulting data underwent de-duplication through a process of 

aggregation, where like data variables are condensed into a representative “entity” that spans a 
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single date or date range. The resulting concepts can be compared within and across cohorts, 

longitudinally. Extracted data undergo review by a team of advanced practice providers with 

relevant training and clinical experience who confirm accurate annotation and perform source 

document verification. The resulting data elements were stored securely in a HIPAA-compliant, 

controlled access, indexed database. 

 

Enrichment Analysis and Terminology Propagation 

To support clinical data analysis across individuals, we leveraged the hierarchical structure of 

SNOMED CT to propagate annotated concepts to more general “ancestral” concepts. To reflect 

specificity of cohort data, the highest-level ancestral concepts used throughout propagation 

were limited to those that were recorded for at least one participant in the sample dataset. For 

example, the clinical concept of “absence seizure, 79631006” would be mapped up to an 

ancestral concept of “seizure, 91175000” by way of the increasingly non-specific concepts 

“generalized onset seizure, 246545002” and “epileptic seizure, 313307000”. However, 

propagation would not proceed to “finding of brain, 299718000” as this ancestral concept was 

not documented for any patient in the sample dataset. As such, we enabled a degree of concept 

normalization to facilitate comparisons amongst individuals, while avoiding the use of 

excessively nonspecific clinical concepts.  

 

To establish “enrichment” of clinical diagnoses and observations, including physical exam 

findings, we compared frequency of a given annotated or ancestral concept in one cohort to its 

frequency in the remaining cohorts. Concepts were considered to be enriched if their frequency 

in one cohort was ≥2.5-fold than in the remaining data set. Only concepts present in at least 10 

individuals in the broader cohort were included in this analysis.     
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Intra- and Inter-cohort Phenotypic Similarity 

To evaluate phenotypic similarity between DEE cohorts, we leveraged the ontology of SNOMED 

CT to calculate information content (IC) for the most informative common ancestor (mica) of two 

given SNOMED CT codes. This approach has been described previously,24,25 and employed in 

other DEE cohorts using ontological annotation.14–17 We computed the IC for each concept, 

defined as -log2(f), where f is the frequency of the term in the sampled population. Therefore, 

greater IC values correspond to increasing specificity. For example, general concepts common 

to most participants, such as “developmental disorder, 5294002” (IC = 0.00) and “seizure, 

91175000” (IC = 0.20) have the lowest computed IC. In contrast, clinical concepts associated 

with increased specificity, like “right hemiplegia, 278284007” (IC = 6.14) and “vocal tic disorder, 

230336005” (IC = 6.14) have the highest IC. With propagation of individual concepts, as 

described above, the most informative common ancestor represents a shared ancestor between 

two concepts with the highest IC score (sim_mica). To represent a similarity score for a cohort 

of individuals, we calculated mean sim_mica scores for 2000 randomly sampled participant 

pairs.   

 

Evaluation of Epilepsy Severity using a Novel Composite Score 

To quantify relative burden of epilepsy, we developed a composite seizure severity score that 

encompasses four domains: (i) seizure frequency, (ii) use of concomitant anti-seizure 

medications (ASMs), (iii) frequency of prolonged seizures (>5 minutes), and (iv) frequency of 

hospitalizations for prolonged seizures or increased seizure frequency. In doing so, we sought 

to better reflect disease burden beyond seizure frequency alone. For each domain, individuals 

were scored on a 6-point scale, with the exception of frequency of prolonged seizures which 

was scored on a 3-point scale (Table S2). To illustrate the progression of seizure burden across 

cohorts, each domain was evaluated in yearly intervals, with the maximum score recorded in 

that year contributing to the representative composite score. Analyses were restricted to ages 0 
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through 16 given reduced sample sizes at older ages. Higher composite seizure severity scores 

are associated with greater seizure burden.  

 

Performance of the composite score was compared to a previously reported scale used in the 

evaluation of relative seizure burden in a pediatric cohort as documented in medical records.26 

To evaluate sensitivity and robustness of the composite score to data omission, we measured 

the percent change in score as a result of random deletion of 10% or 20% of the source data.  

 

Statistical Analyses 

Computations were performed using Graphpad Prism 9 and Python framework with scipy, 

statsmodel, and seaborn packages for statistical analysis and production of visualizations. 

When plotting central tendency measures such as average seizure severity scores over time, 

95% confidence intervals are presented. For mean comparisons, nonparametric statistical tests 

were performed at significance level of 0.05 with Bonferroni correction for multiple comparisons. 

An Ordinary Least Square (OLS) regression model was fit when investigating the relationship 

between seizure severity scores and the time for patients to be able to perform development 

milestone tasks.  

 

Results 

Computational analysis of structured medical record data can generate detailed patient 

journeys 

Data from 466 individuals with a DEE enrolled in the Ciitizen platform were analyzed, 

representing participants with causative genetic variants in one of six genes: FOXG1, KCNQ2, 

SCN2A, SCN8A, STXBP1, and SYNGAP1 (Table 1, Figure S1).  
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Table 1. Demographic information for six DEE cohorts 

 
Cohort 

 
n 

 
male (%) 

 
female (%) 

 
Mean age  

± SD 

# unique concepts 

diagnosis 
exam 

findings 
seizure 

type 

FOXG1 90 57 (63.3) 33 (36.7) 7.5 ± 5.4 438 216 30 

KCNQ2 33 17 (51.5) 16 (48.5) 7.4 ± 5.7 381 190 28 

SCN2A 49 25 (51.0) 24 (49.0) 7.2 ± 4.9 381 189 31 

SCN8A 67 33 (49.3) 34 (50.7) 8.4 ± 5.6 465 217 34 

STXBP1 85 41 (48.2) 44 (51.8) 8.3 ± 6.7 380 201 27 

SYNGAP1 142 72 (50.7) 70 (49.3) 9.1 ± 7.8 449 175 25 

All 466 245 (52.6) 221 (47.4) 8.2 ± 6.5 798 364 45 

Demographic variables are presented for all participants, including cohort size, sex assigned at 

birth, and age at analysis. In addition, the total number of unique annotated clinical concepts are 

shown for diagnoses, physical exam findings, and seizure types.  

 

There were no significant differences in age or biological sex between cohorts. The average age 

of participants at the time of analysis was 8.2 years (range 0.7 - 65.9), and average age at 

diagnosis was 3.0 years (range 0.04 - 12.7). Age at diagnosis was significantly lower for 

individuals with a variant in KCNQ2 compared to all cohorts except SCN2A; conversely, age at 

diagnosis was significantly higher in individuals with a variant in SYNGAP1 compared to all 

cohorts except SCN8A (Figure S2A). The correlation between age at diagnosis and age at 

seizure onset ranged from no correlation (R2 = 0.0000, KCNQ2) to a moderate correlation (R2 = 

0.4142, SCN2A) (Figure S2B). High comprehensiveness of medical record collection was 

demonstrated through the number of unique institutions (mean 5.84 per participant, range 1-30), 

the volume of medical records (mean 1211.00 pages per participant, range 33-16,972) and 

representative years of patient data (mean 7.77 years per participant, range 1-48) (Table S3). 

The number of years of data represented suggests that the resulting dataset extends to the time 
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of symptom onset. In aggregate, 3,424 patient years of data were reviewed. The average 

duration from first enrolled participant through to data generation for all participants in a cohort 

was 1.39 years ± 0.43 SD across the individual cohorts described here.   

 

Table 2. Relative frequency of common ancestral phenotypes 

phenotype Code FOXG1 KCNQ2 SCN2A SCN8A STXBP1 SYNGAP1 

developmental disorder 5294002 0.989* 0.970 1.000 1.000 1.000 1.000 

microcephaly 1148757008 0.878* 0.091 0.122 0.179 0.047 0.049 

altered bowel function 88111009 0.833* 0.727 0.735 0.731 0.518 0.599 

seizure 91175000 0.744 1.000* 0.755 0.940* 0.741 0.831 

hypotonia 398152000 0.733 0.545 0.755 0.642 0.800* 0.514 

movement disorder 60342002 0.722 0.576 0.490 0.552 0.471 0.225* 

strabismus 22066006 0.722* 0.545* 0.306 0.254 0.153 0.211 

gastroesophageal reflux disease 235595009 0.678 0.576 0.673 0.552 0.400 0.232* 

dysphagia 40739000 0.656* 0.485 0.388 0.433* 0.200 0.261 

feeding problem 78164000 0.633* 0.606 0.551 0.448 0.306 0.408 

visual disturbance 63102001 0.600* 0.394 0.347 0.284 0.176 0.113* 

sialorrhea 53827007 0.500 0.545 0.408 0.403 0.247 0.317 

dependency on feeding tube 12991000224107 0.489 0.636 0.408 0.433 0.106* 0.056* 

increased muscle tone 56731001 0.478 0.545 0.286 0.299 0.271 0.127* 

communication disorder 278919001 0.167 0.152 0.327 0.224 0.318 0.585* 

seizure free 370994008 0.144 0.606* 0.020 0.075 0.094 0.120 

tremor 26079004 0.056 0.121 0.122 0.343* 0.565* 0.134 

Relative frequency of ancestral clinical concepts present in ≥50% of one of the six DEE cohorts 

are shown. Values with asterisks represent those that are significantly different from one or 

more cohorts.  

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 28, 2023. ; https://doi.org/10.1101/2023.03.02.23286645doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.02.23286645
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

11 

Clinical phenotypes described in participant medical records were annotated with 798 unique 

and 97,256 total SNOMED CT concepts to support harmonization across disparate data 

sources. To account for variability in specificity of documentation, assigned concepts were also 

propagated to the most general ancestral concept used at least once in the DEE cohort (see 

Methods). We evaluated relative frequency of ancestral concepts present in at least half of one 

or more cohorts (Table 2). The most commonly documented ancestral concepts across all 

cohorts were: “developmental disorder, 5294002”; “seizure, 91175000”; “altered bowel function, 

88111009”; “hypotonia, 398152000”; and “gastroesophageal reflux disease, 235595009”. Even 

amongst these “common” phenotypes, we observed emerging cohort-specific patterns. For 

example, the ancestral concepts “movement disorder, 60342002”, “communication disorder, 

278919001”, and “gastroesophageal reflux disease, 235595009” were documented at 

significantly lower frequencies in individuals with SYNGAP1 variants compared to the remaining 

cohorts; similarly, “dependency on feeding tube, 12991000224107” was observed at 

significantly lower frequencies in those with STXBP1 or SYNGAP1 variants. We also observed 

that “seizure free, 370994008” was documented at significantly higher frequencies in individuals 

with a KCNQ2-related disorder, reflecting established disease trajectory.27 
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Figure 1. Age of onset of common ancestral clinical concepts across the six DEE cohorts 

To illustrate respective patient journeys, age of onset for phenotypes present in ≥50% of one of 

the cohorts are shown for FOXG1 (A), KCNQ2 (B), SCN2A (C), SCN8A (D), STXBP1 (E), and 

SYNGAP1 (F). Individual concepts have been propagated to the least specific ancestral concept 

present in the cohort. Boxes indicate the interquartile range (IQR), including the median line, by 

which phenotypes are sorted. Whiskers represent remaining data points up to a maximum 

length of 1.5x IQR; outliers beyond this point are not presented.  
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The Ciitizen platform enables collection of longitudinal data sourced from medical records, 

allowing for detailed mapping of symptom onset and evolution with disease progression. We 

visualized age at onset for the common ancestral clinical concepts highlighted above, as well as 

age of genetic diagnosis (Figure 1). In ordering ancestral concepts by median age of onset, 

cohort-specific sequencing of phenotypes becomes apparent. For cohorts KCNQ2, SCN2A, 

SCN8A, and STXBP1, the presenting ancestral clinical concept for most participants was 

“seizure, 91175000”, with onset in early infancy. Conversely, median age at seizure onset for 

individuals with variants in SYNGAP1 was in early childhood (median = 2.71 years). “Feeding 

problem, 78164000” and “gastroesophageal reflux disease, 235595009” were other common 

presenting diagnoses, with “dependency on feeding tube, 12991000224107'' documented early 

for KCNQ2. In aggregate, by mapping the patient journey in this manner, we effectively illustrate 

high disease burden in early childhood for the six DEEs evaluated.  

  

Relative enrichment of clinical phenotypes, physical exam findings, and seizure types 

reliably discriminates between DEE cohorts 

With a growing number of precision therapies available for genetic epilepsies, early diagnosis is 

critical in maximizing treatment success.28 We identified clinical phenotypes enriched at least 

2.5-fold in each DEE cohort to support differentiation in the first year of life (Table 3). To 

leverage the specificity afforded by annotation, only non-propagated SNOMED CT concepts 

were analyzed. As illustrated in Figure 1, presence of “epilepsy, 84757009” and/or “neonatal 

seizures, 87476004” was enriched in three cohorts in infancy: KCNQ2, SCN8A, and STXBP1. In 

addition, presence of “infantile spasms, 723437000” was enriched in individuals with variants in 

KCNQ2. The FOXG1 cohort was differentiated at this early time point by enrichment of 

“microcephaly, 1148757008”, “strabismus, 22066006”, “cortical visual impairment, 413924001”, 

and “chronic constipation, 236069009”.  
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Table 3. X-fold enrichment of clinical phenotypes in the first year of life 

diagnosis Code FOXG1 KCNQ2 SCN2A SCN8A STXBP1 SYNGAP1 

microcephaly 1148757008 23.396      

epilepsy 84757009  2.952  2.799   

feeding difficulty 299698007  2.708     

dependency on feeding tube 12991000224107  6.029     

esotropia 16596007 5.670      

failure to thrive 54840006 3.064      

cortical visual impairment 413924001 4.642      

chronic constipation 236069009 2.639      

strabismus 22066006 6.963      

appendicular hypertonia 13291000224105  5.047     

decreased muscle tone 398151007  4.977  2.552   

dependence on supplemental oxygen 931000119107  6.298     

infantile spasms 723437000  2.678     

apnea 1023001    6.451   

tremor 26079004     2.637  

neonatal seizures 87476004     5.603  

Clinical concepts shown here represent those enriched ≥2.5-fold in at least one of the six DEE 

cohorts, during the first year of life.  

 

Both SCN8A and KCNQ2 were associated with respiratory challenges, with “apnea, 1023001” 

and “dependence on supplemental oxygen, 931000119107” enriched, respectively. Although 

similar trends persisted throughout the first six years of life, further differentiation was noted to 

reflect onset or physician recognition of symptoms in childhood (Table S4). Notably, emergence 

of the previously described hyperkinetic-dyskinetic movement disorder associated with FOXG1 

syndrome29–31 was demonstrated by enrichment of concepts “dystonia, 15802004”, “chorea, 

271700006”, and “choreoathetosis, 43105007”. Characteristic features of SYNGAP1-related 

disorder are also enriched for during this time, including concepts related to neuropsychological 
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features (“aggressive behavior, 61372001”; “autism suspected, 401204006”; and “sensory 

integration disorder, 425988004'') as well as “generalized epilepsy, 19598007”. These clinical 

features may also represent viable endpoints for use in clinical trials.  

 

We performed a similar assessment of physical exam findings within the first six years of life 

(Table 4). The number of documented neurology exams ranged from an average of 4.5 

(SYNGAP1) to 15.0 (SCN8A) per participant, representing a total of 3,458 reviewed exams. 

Individuals with variants in FOXG1 had the greatest number of enriched exam findings, and 

those findings were consistent with observed clinical phenotypes of strabismus, a hyperkinetic 

movement disorder, and limited functional hand use. Further, enrichment for the combination of 

“truncal hypotonia, 13421000224108” and “appendicular hypertonia, 13291000224105” was 

observed; this pattern emerged in the first year of life and persisted through the first six years. 

Physical exam findings associated with impaired coordination were notably enriched for in those 

with STXBP1 variants, including “dysmetria, 32566006”, “titubation, 14981000224100”, “ataxia, 

20262006”, “tremor, 26079004”, and “intention tremor, 30721006”. Concepts describing gait 

abnormalities were enriched for in the SYNGAP1 cohort, including “abnormal gait, 22325002” 

and “unsteady gait, 22631008”.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 28, 2023. ; https://doi.org/10.1101/2023.03.02.23286645doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.02.23286645
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 

Table 4. X-fold enrichment of physical exam finding concepts in the first six years of life 

exam finding Code FOXG1 KCNQ2 SCN2A SCN8A STXBP1 SYNGAP1 

appendicular hypertonia 13291000224105 3.188 2.577     

esotropia 16596007 7.311      

chorea 271700006 6.963      

reduction of muscle bulk 300043006 3.053      

truncal hypotonia 13421000224108 2.611      

choreoathetosis 43105007 6.789      

strabismus 22066006 6.457      

able to move all four limbs 284135007  7.402     

dysconjugate gaze 103263007 2.611      

symmetric face 248172007   2.760    

perrl 386666001   3.004    

hyperkinesis 13141000224105 8.356      

hyperreflexia 86854008    2.526   

does not perform hand functions 284248000 4.642      

hypotonia 398152000     3.857  

increased muscle tone 56731001  3.645     

non-weight-bearing 261999007    3.573   

extensor plantar response 246586009    3.811   

dysmetria 32566006     2.637  

abnormal gait 22325002      3.087 

myoclonus 17450006    6.451   

titubation 14981000224100     3.082  

unsteady gait 22631008      5.704 

ataxia 20262006     3.842  

tremor 26079004    2.581 3.549  

normal reflex 420061009    107.194   

intention tremor 30721006     10.758  

Clinical concepts shown here represent those enriched ≥2.5-fold in at least one of the six DEE 

cohorts, in the first six years of life.  
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Figure 2. Relative frequency of indications for medicinal intervention 

Relative proportion of medication use for common indications is shown for FOXG1 (A), KCNQ2 

(B), SCN2A (C), SCN8A (D), STXBP1 (E), SYNGAP1 (F) across ages 0-15 years. Each 

individual medication was mapped to one of 11 indications. The percentage denoted on the y-

axis reflects the proportion of medications grouped by indication, for each year of age assessed.   
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To determine whether specific seizure types were more common in any of the six DEE cohorts, 

we performed enrichment analysis for annotated seizures in the first six years of life. We 

observed enrichment of “prolonged seizure (>5 minutes), 13961000224109” and “status 

epilepticus, 230456007” in the SCN8A cohort. For individuals with a SYNGAP1 variant, 

concepts representing generalized seizures were enriched for, including: “absence seizure, 

79631006”, “atypical absence seizure, 23374007”, and “atonic seizure, 42365007”. No specific 

seizure types were enriched for in the other DEE cohorts, reflecting both overlap and variability 

in the associated epilepsy phenotypes.          

 

Annotated medication use reflects onset and evolution of clinical phenotypes 

To complement and validate clinical phenotype mapping, we reviewed annotated medication 

use and the indication for use within the six cohorts. Individual medications were mapped to one 

of 11 indications, including behavioral differences, gastrointestinal problems, movement 

disorder, neuropsychological diagnoses, seizures, and sleep (Figure 2). As would be expected, 

we observed expansion in the proportion of medications used for a given indication with 

expected age of onset for the target symptom. For example, in the SYNGAP1 cohort, the 

relative proportion of medications used for a neuropsychological indication or seizures increases 

outside of infancy. Conversely, use of medications for seizure management represents a 

significant relative proportion of medications documented early in life for KCNQ2 and SCN8A. 

The observed patterns in medication use are consistent with the emergence of their associated 

symptoms as documented by clinical phenotype annotation. With age, the indication for 

medication use remains relatively stable.    

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 28, 2023. ; https://doi.org/10.1101/2023.03.02.23286645doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.02.23286645
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 

 

Figure 3. Evaluation of intra- and inter-cohort phenotypic similarity 

To quantify phenotypic similarity amongst individuals within DEE cohorts, we employed a 

semantic similarity algorithm and showed the distribution of similarity scores at three timepoints: 
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<1 year (A), <3 years (B), and <6 years (C). Average similarity score by year of age is shown in 

(D). Higher scores indicate greater intracohort similarity. To evaluate intercohort phenotypic 

similarity, the same semantic similarity algorithm was performed with permutations of paired 

patients from distinct cohorts (E). Greater sim_max scores are associated with increased 

similarity.  

 

 

We observed that clinical phenotypes and physical exam findings describing features of a 

movement disorder were enriched for in participants with variants in FOXG1 and STXBP1. 

However, the documentation of medications for this indication is discordant, demonstrating 

relatively limited medical management. As a prominent phenotype that impacts function, we 

highlight treatment of movement disorders as an unmet need in these two populations.   

 

Greatest intra- and inter-cohort phenotypic similarity observed for FOXG1 and KCNQ2 

Semantic similarity algorithms can be used to measure the degree of similarity between two 

individuals or cohorts of interest. To characterize phenotypic heterogeneity, we first sought to 

understand how similar individuals with the same genetic diagnoses (i.e., intracohort) were to 

each other at <1 year (Figure 3A), <3 years (Figure 3B), and <6 years (Figure 3C). The 

greatest intracohort similarity (high sim_mica scores) was observed in individuals with a variant 

in FOXG1, emerging at <3 years and persisting. This suggests that early in life, FOXG1 

syndrome is associated with a recognizable phenotypic gestalt that distinguishes it from the 

other DEEs studied here. In contrast, more limited phenotypic similarity was observed in the 

STXBP1 and SYNGAP1 cohorts at all three timepoints. In fact, the majority of individuals with 

SYNGAP1 variants show a similarity score that is close to zero when compared to others in that 

cohort at <1 year. This is consistent with the high variability in onset of phenotypes shown in 
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Figures 1E and 1F. Over time, individuals within the same genetic cohort appear more similar 

to each other, reflecting accumulation of shared phenotypes with age (Figure 3D).  

 

We applied the same approach to determine similarity between DEE cohorts (i.e., intercohort). 

Greatest phenotypic similarity was observed between the FOXG1 and KCNQ2 cohorts (Figure 

3E). Conversely, the lowest phenotypic similarity between cohorts was observed for STXBP1 

and SYNGAP1. Both cohorts also demonstrated more limited phenotypic similarity to the 

remaining four cohorts, which was most notable for SYNGAP1. Of the other five DEE cohorts, 

the greatest phenotypic similarity for the SYNGAP1 cohort was observed with SCN2A. This may 

reflect the relative enrichment in both cohorts for concepts related to neuropsychological 

diagnoses, including suspicion for autism spectrum disorder and sensory integration disorder.   

 

A novel composite metric differentiates longitudinal epilepsy severity 

Reduction in seizure frequency is a common primary endpoint for interventional trials in genetic 

epilepsies. However, evolution of the epilepsy phenotype has not been well characterized for 

many DEEs. This poses challenges for optimizing clinical trial design, particularly in establishing 

inclusion and exclusion criteria. Further, restricting an endpoint to seizure frequency may 

minimize the negative impact of additional variables, including adverse effects associated with 

anti-seizure medications (ASMs) and hospitalizations. To address these limitations, we 

developed a composite measure of epilepsy burden to characterize the epilepsy phenotype in 

FOXG1-, KCNQ2-, SCN2A-, SCN8A-, STXBP1-, and SYNGAP1-related disorders. In addition to 

seizure frequency, which is often considered in isolation, the composite measure also takes into 

account the number of concurrent ASMs used, incidence of prolonged seizures, and the number 

of hospital admissions for poor seizure control (Table S2). Compared to evaluation of seizure 

frequency only using a score developed by Fitzgerald et al.,26 we observed that this composite 

measure allowed for broader distribution of scores between cohorts (Figures S3A, S3B), as 
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well as improved robustness to change in scores over time (Figures S3C, S3D). Expanding the 

range and contributors to the composite seizure severity score allowed for increased sensitivity 

to data omissions (Table S5), with relatively smaller magnitudes of change in scores (Tables 

S5).  

 

 

Figure 4. Longitudinal characterization of epilepsy severity using a composite measure 

The distribution of seizure severity scores is shown by year of age for FOXG1 (A), KCNQ2 (B), 

SCN2A (C), SCN8A (D), STXBP1 (E), and SYNGAP1 (F). The color scale represents the 

number of individuals documented with a given seizure severity score at the noted age. Higher 

seizure severity scores correspond to greater burden of disease, as measured by seizure 

frequency, concomitant use of ASMs, hospitalizations for epilepsy, and occurrence of prolonged 

seizures.    
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Across the six cohorts, average seizure severity scores ranged from 5.7 ± 3.7 SD in SYNGAP1 

to 11.8 ± 4.7 SD in SCN8A (Figure S3A). The distribution of seizure severity scores by year of 

age is visualized as a heatmap to characterize evolution of the epilepsy phenotype over time 

(Figure 4). Consistent with findings from the enrichment analysis of clinical diagnoses, high 

seizure severity scores are observed in the first year of life for KCNQ2, SCN8A, and STXBP1. 

Notably, no individuals with a KCNQ2 variant were assigned a score of 0 in the first year of life. 

Rapid improvement in seizure severity scores for this cohort are observed after the first year of 

life, again consistent with the epilepsy phenotype described for KCNQ227 and findings from our 

enrichment analysis. Similarly, most individuals with a SYNGAP1 variant for whom a score can 

be determined have low seizure severity scores in the first two years of life, consistent with the 

median age of seizure onset at 2.7 years. Interestingly, a bimodal distribution of seizure severity 

is observed for a subset of cohorts in the first year of life, most prominent in the SCN2A and 

STXBP1 cohorts. This finding may reflect established genotype-phenotype correlations,32 or 

highlights opportunities to identify novel contributors to variability in the epilepsy phenotype.      

 

Attainment of developmental milestones is negatively correlated with seizure severity 

The DEEs are in part defined by the contribution of epileptic activity to atypical development, 

beyond what would be expected of the genetic etiology alone.1 For all cohorts, we documented 

whether a participant was described as having achieved a developmental milestone, as well as 

the age of attainment, where relevant. We limited analyses to developmental milestones 

commonly referenced in medical records as part of the developmental history, including ability 

to sit independently, walk independently, and use at least one word. We grouped individual 

composite seizure scores into one of three severities: (i) low (score = 0-5), (ii) medium (score = 

6-11), and (iii) high (score = 12-17) (Figure 5). The score used to assign a grouping represents 

the maximum score for the year the specified milestone was achieved. Greatest attainment of 

developmental milestones was observed in those categorized with low epilepsy severity. With 
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increasing epilepsy burden, we observed corresponding reduction in the frequency of milestone 

attainment as well as increased time to milestone attainment. A consistent trend was observed 

when individual gene cohorts were stratified as well. The gross motor milestones, “ability to 

walk” and “ability to sit unsupported” were most prominently affected.  

 

 

Figure 5. Epilepsy severity is associated with developmental outcomes  

The proportion and rate of attainment for commonly reported developmental milestones is 

compared in individuals with low (A, scores 0-5), medium (B, scores 6-11), or high (C, scores 

12-17) seizure severity scores. 

 

To evaluate the contribution of seizure severity score to the predicted age of milestone 

attainment, we applied an OLS regression model that included the gene cohort and the specific 

milestone as covariates. The resulting correlation coefficient was indicative of a weak fit (R2 = 

0.396). Therefore, seizure severity score explains some, but not all, of the variability observed in 

milestone attainment.  

      

Discussion 

In this study, we demonstrated the utility of RWD in constructing robust phenotypic histories that 

describe disease course in detail. As access to genetic testing grows, novel solutions are 

required to ensure clinical characterization keeps pace. This is particularly true for early-onset 
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epilepsies where high diagnostic yields for clinical genetic testing are well-described.33,34 For 

example, despite its discovery as a disease-associated gene almost 20 years ago,35 literature 

describing the phenotype associated with FOXG1 is largely limited to a handful of cross-

sectional case series.29,31,36,37 In using a novel platform for rare disorders, we describe and 

compare the natural history for individuals with variants in FOXG1, KCNQ2, SCN2A, SCN8A, 

STXBP1, and SYNGAP1. To support exploration of their unique trajectories and outcomes, we 

generated annotated datasets encompassing 97,256 annotated clinical concepts representing 

3,424 years of patient data distributed across 466 individuals.  

 

Longitudinal phenotypes derived from RWD replicate established disease trajectories 

Given the importance of early recognition and work-up by clinicians in shortening the diagnostic 

odyssey, we employed enrichment analysis of annotated clinical concepts to differentiate 

between the six DEEs in infancy and childhood. A distinct phenotypic gestalt was observed for 

FOXG1 syndrome, emerging within the first year of life. Individuals showed enrichment for core 

features of FOXG1 syndrome, including microcephaly, failure to thrive, and strabismus. By six 

years of age, clinical concepts representing the previously described hyperkinetic-dyskinetic 

movement disorder were enriched for, including dystonia and chorea.30 In individuals with 

variants in KCNQ2, SCN8A, and STXBP1, an early-onset epilepsy phenotype is apparent. This 

finding is consistent with what has been described previously,27,38,39 and is further supported 

through our evaluation of epilepsy burden using a novel composite severity metric.  

 

More recently, the epilepsy phenotype for STXBP1-related disorder has been well 

characterized, with authors highlighting variability in seizure onset and semiology, as well as in 

observed electroencephalogram abnormalities.17,39 Our findings modeling the seizure trajectory 

in a larger cohort of 85 individuals replicate those reported by Xian et al. (n=62), where seizure 

burden is highest in the first year of life with marked improvement observed in early childhood.17 
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Further, no single seizure type was enriched for in this cohort; occurrence of both focal and 

generalized seizure types were documented, providing additional support for phenotypic 

heterogeneity. We also identified enrichment for tremor and dysmetria in early life; coordination 

problems have been previously described in STXBP1-related disorder.17,39 By replicating 

previously described phenotypes across the six DEEs evaluated here, we provide support for 

the validity of our approach in generating insights from RWD for rare disorders.  

 

Semantic similarity analysis highlights phenotypic homogeneity or heterogeneity 

In this study, we relied on annotation of clinical concepts using a controlled ontology under the 

guidance of a consistent data modeling framework. In doing so, we enable computational 

analyses to manipulate large datasets in order to identify patterns within and between cohorts. 

For clinical trial designs that rely on use of retrospective natural history data for an external 

control, predictability in disease presentation and progression has been highlighted as a 

prerequisite.40 To investigate consistency within cohorts, we employed semantic similarity 

analysis to generate scores proportional to phenotypic similarity. The greatest scores amongst 

individuals with the same genetic etiology were observed for FOXG1 and KCNQ2, whereas the 

lowest scores were observed for STXBP1. In support, Lewis-Smith et al. highlighted KCNQ2 

(n=8) as a gene with significant phenotypic homogeneity,12 which is in contrast to earlier work 

where STXBP1 (n=14) was noted to have significant phenotypic similarity, and KCNQ2 (n=9) 

was associated with relatively limited phenotypic similarity.16 These discrepancies may reflect 

improved ability to characterize cohorts as a result of increased sample size and consistent data 

capture. Our findings suggest that FOXG1 syndrome and KCNQ2-related disorder may be well-

suited for externally-controlled clinical trials, given the importance of limiting cohort variability.40  
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Technical and operational protocols can address RWD quality concerns 

The RWD platform described here was developed to accelerate collection of longitudinal 

phenotypic data to inform and optimize clinical trial design in rare disorders. Patient-mediated 

platforms can facilitate comprehensive data generation through longitudinal collection of medical 

records across all sites of care. In our approach, we further prepare clinical data for research 

through systematic annotation performed by a centralized team. Annotated data are fit to a data 

model which was designed to support endpoint identification and characterization. The scope of 

data capture spans 18 clinical data entities, including physical exam findings, hospitalizations, 

seizure frequency, developmental outcomes, and medications, and represents an expansion 

beyond prior efforts.12,13,16 This allows for increased granularity and richness of the resulting 

dataset. In addition, by establishing a remote design that is agnostic to clinical sites, we 

increased patient access to research and reduced likelihood of attrition by minimizing burden to 

participants. In aggregate, we demonstrate the platform’s ability to generate rich longitudinal 

datasets for representative cohorts to improve understanding of the phenotypic spectrum in rare 

disorders. As further validation, a subset of the data presented here for SCN2A was used to 

support an Investigational New Drug application for an antisense oligonucleotide targeting gain-

of-function variants.41      

  

The use of RWD to describe natural history, particularly that derived from EHRs, represents a 

secondary application of medical information that is not systematically generated for research 

purposes. These concerns are further compounded by variability in data sources and a lack of 

standardization for the documentation or evaluation of data quality. In response to these 

concerns, the Data Quality Harmonization Framework (DQHF) was developed to define axes by 

which the quality of EHR-based datasets can be measured.42 This framework has been 

successfully employed by the ‘All of Us’ Research Program Clinical Data Research Network, 

where data from multiple clinical sites are centralized.43 The axes defined by DQHF include 
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conformance, completeness, and plausibility. We have implemented technical and operational 

processes to maximize quality across each of the three axes. Conformance measures a 

dataset’s compliance with internal and/or external formatting requirements; data generated via 

the Ciitizen platform is constrained by a data model and by the use of standard ontologies. 

Where appropriate, validation checkpoints have been implemented to further restrict generation 

of non-conforming data. To address data completeness, we use a combined approach: (i) 

collected medical records are systematically reviewed for completeness against a standard 

definition, (ii) the data model supports redundant annotation to highlight and supplement 

possible missingness, and (iii) generated data undergoes review by advanced practice 

providers with relevant training and clinical experience. To achieve plausibility, a measure of 

data accuracy or fidelity, extraction from high quality sources is prioritized and where indicated, 

multiple pieces of evidence are used to support annotated data elements. In support, the data 

presented here reflect established disease trajectories where available, and age-dependent 

phenotypes emerge at appropriate times, which represents a previously proposed quality 

control measure.13  

 

Application of RWD to clinical trial development and design for DEEs 

The detailed phenotyping performed here across large populations supports identification and 

characterization of primary and secondary endpoints. For example, by combining enrichment 

analysis with relative frequency of propagated clinical concepts, we highlight candidate 

phenotypes by which to measure treatment efficacy in a trial setting. For individuals with a 

variant in SYNGAP1, both communication disorder and speech delay are enriched for and are 

frequently diagnosed. Therefore, use of a validated measure of communication, like the 

Observer-Reported Communication Ability (ORCA) measure, may represent an appropriate 

candidate endpoint. Similarly, enrichment was observed for behavioral challenges and 

neuropsychological diagnoses in the setting of universal developmental differences. 
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Standardized assessments or historical data describing neurodevelopmental outcomes may be 

successful measures of efficacy. Finally, seizures were frequently reported in the cohort (83.1%) 

with specific enrichment for generalized seizure types, like absence and atonic seizures. By 

overlaying findings from the novel seizure severity score presented here, use of generalized 

seizures as an endpoint would be most successful in participants aged 2-6 years where 

epilepsy disease burden is highest.    

 

With established frameworks by which to evaluate RWD quality, and demonstrated efficacy in 

describing longitudinal phenotypes, opportunities arise to expand the application of RWD 

beyond preclinical studies. Although prospective natural history studies remain a gold standard 

in rare disorders, the FDA and other regulatory agencies acknowledge that these studies are 

not always feasible or ethical; this is particularly true for rare disorders associated with 

significant morbidity or mortality,44 and is exacerbated in small, geographically distributed 

populations. The FDA has accepted a variety of data sources as supporting evidence or 

external controls in clinical trials for rare disorders, including data sourced from patient medical 

records.40 In the appropriate settings, RWD can improve efficiency and cost-effectiveness in 

developing and implementing clinical trials.45 The platform described here highlights a scalable 

approach to maximize quality and versatility of RWD in the characterization of rare disorders.  

 

Ongoing expansion and harmonization of RWD sources can further enable drug development 

for rare disorders. For example, pairing retrospective EHR data with patient-generated health 

data prospectively collected via surveys or validated measures can strengthen understanding of 

the lived experience for patients and caregivers. Collection of electrophysiology and imaging 

studies allows for systematic characterization by a central reviewer, as well as identification of 

putative biomarkers. Further, additional data sources can be used to validate events described 

in medical records. Tokenization, the process of substituting sensitive descriptors with non-
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sensitive surrogates, can link participants enrolled in Ciitizen with claims databases to verify use 

of medications, or evaluate the potential for missing data. With the appropriate consents and/or 

protocols in place, tokenization also enables sharing across platforms, addressing the siloing of 

data that can impede research progress for rare disorders. Most notably, the generation and 

application of RWD for rare disorders research is growing. As an example, since Ciitizen 

launched support for rare disorders in late 2020, we have connected with >3000 institutions and 

providers in the United States, annotated >400,000 clinical concepts, and generated data 

representing >10,000 patient years.          

 

Limitations 

The primary limitation of our study lies in the use of EHR data which is generated for the 

purposes of documenting clinical care. Although we employed several measures to address 

data quality concerns, this represents an opportunistic data source that may include imperfect 

and inconsistent documentation. For example, although documentation of physical exam 

findings are often structured and systematic, clinical phenotypes and diagnoses are less so. In 

this work, absence of documentation of a clinical phenotype was interpreted to mean the 

phenotype was not present in the participant. Although comprehensiveness and redundancy of 

data capture are intended to reduce its likelihood, it is possible that a phenotype may exist for a 

participant who was not screened or described accordingly.   

 

Conclusion 

As the promise of precision medicine becomes reality for a subset of rare disorders, scalable 

approaches to phenotypic characterization are critical in supporting clinical trial design and 

implementation. In this work, we describe the capabilities of a patient-mediated RWD platform in 

identifying candidate endpoints for use in clinical trials for six DEEs. By employing 

computational approaches that leverage the data’s structure and quality, we enable detailed 
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characterization of phenotypes throughout development, highlighting the ability to differentiate 

between patients and cohorts. With appropriate study design and protocols to maximize data 

quality, RWD represents an opportunity to increase efficiency and cost-effectiveness of natural 

history data collection, particularly in rare disorder populations with high unmet needs.    
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