1	
2	
3	
4	Genomewide association study of epiretinal membrane: discovery of significant risk loci in each of
5	three American populations
6	
7	Short title: GWAS of Epiretinal Membrane in Multiple Populations
8	
9	
10	Joel Gelernter (1,2,3, *), Daniel Levey (1,2), Marco Galimberti (1,2), Kelly Harrington (4,5), Hang Zhou
11	(1,2), Keyrun Adhikari (1,2), J. Michael Gaziano (6,7), Dean Eliott (8), and Murray B. Stein (9,10)
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	1. Department of Psychiatry, Yale School of Medicine, New Haven, CT.
25	Department of Psychiatry, VA Connecticut Healthcare Center, West Haven, CT.
26	3. Departments of Genetics and Neuroscience, Yale School of Medicine, New Haven, CT.
27	4. Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston
28	Healthcare System, Boston, MA.
29	5. Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, , Boston,
30	MA.
31	6. Department of Medicine, Harvard Medical School, Boston, MA.
32	7. Department of Medicine, Divisions of Aging and Preventative Medicine, Brigham and Women's
33	Hospital, Boston, MA.
34	8. Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA.
35	9. University of California, San Diego, La Jolia, CA.
30	IU. VA San Diego Healthcare System, San Diego, CA.
37	*C
38	"Correspondence
39	Joel Gelernter,
40 41	Department of Psychiatry,
41 10	Vale University School of Medicine
42 12	VA CT Healthcare Center
45 AA	West Haven CT 06516
44 45	icel gelernter@vale.edu
-1-5	Joengelermer er yweleieuw.

46 Abstract

- 47 **IMPORTANCE:** Epiretinal membrane (ERM) is a common retinal condition characterized by the presence
- 48 of fibrocellular tissue on the retinal surface, often with consequent loss of vision and visual distortion.
- 49 **OBJECTIVE:** Genomewide association studies (GWAS) can reveal the biology underlying complex genetic
- 50 traits like ERM; there have been no previous large-scale GWAS of this trait.
- 51 **DESIGN:** We used electronic health record diagnosis to identify Million Veteran Program (MVP)
- 52 participants with ERM in three populations for genomewide association analysis and further statistical
- 53 investigation of the results.
- 54 **SETTING:** Veterans who volunteered for the nationwide Department of Veterans Affairs MVP study,
- 55 eligible because they have used Veterans Health Administration facilities
- 56 PARTICIPANTS: 31,374 European-American (EUR) cases and 414,052 EUR controls, 4,739 African-
- 57 American (AFR) cases and 107,773 AFR controls, and 2,119 Latino (Admixed American, AMR) cases and
- 58 36,163 AMR controls a total of 38,232 cases and 557,988 controls.
- 59 METHODS: We completed GWAS in each population separately, then results were meta-analyzed. We
- also evaluated genetic correlation with other traits in external samples, and completed pathway
- 61 enrichment analyses.
- 62 **MAIN OUTCOME MEASURES:** Genomewide-significant association with ERM.
- 63 **RESULTS:** Genomewide significant associations were observed in all three populations studied: 31 risk
- 64 loci in EUR subjects, 3 in AFR, and 2 in AMR, with 48 identified in trans-ancestry meta-analysis. The most
- 65 strongly associated locus in both EUR (rs9823832, p=9.06x10⁻³⁷) and the meta-analysis (rs28630834,
- 66 p=2.90x10⁻³⁷) was DHX36 (DEAH-Box Helicase 36). We investigated expression quantitative trait locus
- 67 associations for eye related function and found several GWS variants associate to alterations in gene
- expression in the macula, including DHX36*rs9438. ERM showed significant genetic correlation to

- 69 depression and to disorders of the vitreous. Pathway enrichment analyses implicated collagen and
- 70 collagen-adjacent mechanisms, among others.
- 71 CONCLUSIONS AND RELEVANCE: This well-powered ERM GWAS has identified novel genetic
- 72 associations, some very strong, that point to biological mechanisms for ERM and merit further
- 73 investigation.
- 74
- 75 Keywords: Million Veteran Program (MVP), genomewide association study (GWAS), epiretinal
- 76 membrane (ERM), macular pucker, multi-ancestry study, transcriptome wide association study (TWAS),
- 77 pleiotropy
- 78
- 79

80 Introduction

81 Epiretinal membrane (ERM), sometimes called macular pucker, is characterized by the proliferation of 82 cells on the retinal surface. These cells adhere to the retina, produce extracellular matrix, and develop 83 contractile properties, resulting in tangential retinal traction and distortion of the retinal architecture. 84 Symptoms can be severe and require surgery; patients may complain of loss of central vision and/or 85 visual distortion (metamorphopsia, "wavy vision"). Diagnosis can be established by ophthalmoscopy, 86 fundus photography, and optical coherence tomography (OCT). It is common, with prevalence of 2% in 87 patients age >50 and 20% age >75. Age is associated with increased risk, and smoking may be associated with decreased risk¹. The most common cause is posterior vitreous detachment, an age-related 88 89 separation of the vitreous from the retina. Most patients do not require intervention; for those with 90 symptomatic ERM, vitrectomy with epiretinal membrane peeling is the typical treatment and results are 91 variable; there is no nonsurgical treatment. While many of the pathophysiological processes that lead to 92 ERM are known and there is considerable knowledge of its biology², the underlying molecular genetic 93 risk factors are not understood. 94

95 Genomewide association studies (GWAS) are presently the most useful, and most universally applicable, 96 tools to understand the biology underlying genetically complex traits such as ERM. Large GWAS have 97 been previously performed to identify common variant associations with defects related to the macula, but these have focused mostly on age-related macular degeneration (AMD)³ (including the first major 98 99 GWAS⁴.) A GWAS study in the UK Biobank considered AMD, diabetic retinopathy, retinal detachment, 100 glaucoma, and myopia, with risk loci mapped for each trait and pleiotropy between them⁵. A large 101 GWAS of cataract in UK Biobank⁶, Genetic Epidemiology Research on Adult Health and Aging (GERA)⁷, 102 and 23andme (a personal genomics company) reported 54 genomewide significant (GWS) risk loci. ERM,

though, has, to our knowledge, not been studied with respect to genetics using any genomewideapproach.

106	To identify a large	e number of risk gene	s, novel biology, ar	nd phenotypic subtype:	s, GWAS with large
					,

- sample size are necessary. The Department of Veterans Affairs (VA) Million Veteran Program (MVP) is
- 108 one of the world's largest biobanks including genetic, environmental, and medical information, based on
- data from United States military veterans.⁸⁻¹¹. The MVP has enrolled >900,000 participants, with
- 110 excellent representation from non-European-ancestry participants. Genotype data are currently
- available for >650,000 participants. The MVP sample is relatively old (55% are between ages 50-69¹⁰)
- and ill subjects are enrolled based on their use of the US Veterans Health Administration system. We
- 113 conducted a GWAS of ERM in the MVP sample, using diagnoses based on the electronic health record
- 114 (EHR).
- 115
- 116

117 Subjects and Methods

118 MVP: Primary analyses

- 119 We used data release version 4 of the MVP.¹² Linked and de-identified EHRs were queried using the
- 120 Veterans Affairs Informatics and Computing Infrastructure to identify individuals with International
- 121 Classification of Disease (ICD) codes for ERM, specified in the Supplementary Methods. These codes
- identified 31,374 European-American (EUR) cases and 414,052 EUR controls, 4,739 African-American
- 123 (AFR) cases and 107,773 AFR controls, and 2,119 AMR (Admixed American or Latino) cases and 36,163
- 124 AMR controls; more detail is provided in Table 1. Research involving the MVP in general is approved by
- 125 the VA Central Institutional Review Board. All participants provided written informed consent.
- 126

127 FinnGen: Phenotypes for pleiotropy analyses

- 128 We accessed GWAS summary statistics from FinnGen¹³, a Finnish nationwide biobank collection, data
- 129 freeze version 7, for two traits potentially relating to ERM, "diseases of the vitreous body" and
- 130 "glaucoma". ICD-10 codes used for diagnosis definition, Supplementary Methods.
- 131

132 Genotyping, Imputation, Quality Control (QC), and GWAS

- 133 Genotyping and imputation of MVP subjects has been described previously.^{10,14} Briefly, a customized
- 134 Affymetrix Axiom Array was used for genotyping. MVP genotype data for biallelic SNPs were imputed
- using Minimac4 and a reference panel from the African Genome Resources (AGR) by the Sanger
- 136 Institute. Details, Supplement.

- 138 For the FinnGen dataset¹³, results were downloaded from the FinnGen website after registration
- 139 (https://www.finngen.fi/en/access_results). Analyses details are given in the Supplement.
- 140

1	Л	1
<u>т</u>	+	т

142 *Heritability and Genetic correlations*

- 143 Linkage disequilibrium score regression (LDSC)¹⁵ was used to calculate liability scale SNP-heritability for
- 144 EUR, AFR and AMR ancestry of MVP data for ERM. We used a value of 0.091 for the population
- 145 prevalence¹. For EUR, this was calculated directly with LDSC. To estimate liability scale SNP-heritability
- 146 for AFR and AMR cohorts, we calculated LD scores with cov-LDSC ¹⁶ from 10,000 random independent
- 147 individuals for the SNPs identified in the HapMap Project ¹⁷. LDSC was also used to calculate genetic
- 148 correlation¹⁸ between the EUR MVP data for ERM and four other traits: two ophthalmologic traits,
- 149 glaucoma¹⁹ and disorders of the vitreous body¹³; and two psychiatric traits, posttraumatic stress
- 150 disorder (PTSD)²⁰ and depression²¹.
- 151

152 <u>Cross-ancestry Fine-mapping</u>

We did fine-mapping leveraging LD information from multiple ancestries to identify potential causal
 variants using MsCAVIAR²². Details, Supplement.

155

156 Expression QTLs (eQTL)

157 GWAS significant loci were investigated to determine whether they were eQTLs using an eye tissue

158 specific database ²³. Lead variants from the EUR ancestry GWAS were looked up first; if lead variants

159 were not available proxy SNPs were selected from genomewide significant (GWS) variants in the same

160 locus.

161

162 <u>Transcriptome-Wide Association Study (TWAS) and Fine-mapping</u>

163 We performed TWAS using FUSION²⁴ for the EUR GWAS statistics. Details, Supplement.

165 MAGMA gene-based and gene set analyses

- 166 We used MAGMA²⁵ implemented in FUMA²⁶ for gene-based and gene-set analyses. Details,
- 167 Supplement.
- 168
- 169

170 Results

171 MVP analyses

172 GWS associations were observed in all three populations studied. 31 risk loci were identified in EUR

- subjects, 3 in AFR, and 2 in AMR, reflecting the greater power of the analysis in EUR compared to the
- 174 other two populations presumably due to difference in sample sizes (Table 2a-c; Figures S1-S3).

175

176 In EUR, of the 31 GWS loci, 14 were associated with a p-value <10⁻¹⁰. The most strongly supported

- 177 variant was rs9823832 (p=9.06x10⁻³⁷) which maps to *DHX36* (DEAH-Box Helicase 36). Other associated
- 178 variants highlighted for biological interest (Discussion) include CPLX4 (rs7244528 associated at 2.84x10⁻
- 179 ²²), *ROBO3*, to which variant rs10893291 maps (associated at 6.12x10⁻¹⁷), and rs1011400 at locus *ABLIM3*

180 (p=2.87x10⁻¹⁴). Additional associated loci include *FTO**rs17817964 (p=3.04x10⁻¹¹) (FTO Alpha-

- 181 Ketoglutarate Dependent Dioxygenase) and *RARB**rs57281891 (p=1.13x10⁻¹⁰) (Retinoic Acid Receptor
- Beta). Other associated variants map to *CDKN2B-AS1* (rs10120688, p=8.35x10-19) and *ACOXL* two

183 independent variants >115,000 basepairs apart, rs6731210 (p=5.93x10⁻¹⁸) and rs114671763 (p=1.13x10⁻¹⁸)

¹¹). In AMR, the most strongly associated locus (p=2.21x10⁻⁹) was *CHRM2**rs7801770, which encodes

185 Cholinergic Receptor Muscarinic 2. (This *CHRM2* SNP is not polymorphic in EUR and non-significant in

186 AFR (p=0.44).)

187

The trans-ancestry meta-analysis identified 48 GWS variants (Figure 1, Table 3); many were not significant (at $p \le 5 \times 10^{-8}$) in any of the population-specific analyses. Of these 48 variants, 27 regions had p-value stronger than 10^{-10} . In numerous cases, the same gene was implicated in the meta-analysis as for EUR but with a different lead variant; the same variant as for EUR-only and meta-analysis was implicated in 15 instances (Table 3). In the trans-ancestry meta-analysis, the most strongly supported variant maps to *DHX36* as for EUR – a different variant at the same risk locus, rs28630834 (p=2.90x10⁻³⁷).

194	The only variant that was GWS in more than one population was <i>RNU6ATAC21P</i> *rs34825161 (RNA,
195	U6atac Small Nuclear 21, Pseudogene), significant in EUR (p=2.15x10 ⁻¹⁸), AFR (p=1.84x10 ⁻⁸), and also the
196	trans-ancestry meta ($p=3.88x10^{-24}$). The other variants identified in AFR and AMR may be population-
197	specific.
198	
199	Heritability and Genetic correlations
200	The LDSC analysis showed significant heritability for EUR ERM (h^2 =0.050±0.006; p=3.41×10 ⁻¹⁵) and
201	demonstrated significant positive genetic correlation (r_g) between ERM and disorders of the vitreous
202	body (r_g =0.25±0.087; p=0.39×10 ⁻²), and depression (r_g =0.14±0.039; p=0.04×10 ⁻²), whereas the genetic
203	correlations between ERM and glaucoma and PTSD were not significant (rg= 0.007 ± 0.063 , p= 0.92 ;
204	r_g =0.080±0.057; p=0.16). The Manhattan plot for the GWAS on "disorders of the vitreous body" is
205	provided in Figure S4. We also observed significant heritability in AFR (h^2 =0.064±0.031; p=0.039) but we
206	obtained a non-significant heritability for AMR (h^2 =0.021±0.050; p=0.67). Due to lack of power and
207	comparators, it was not possible to examine genetic correlations in these latter two populations.
208	
209	Cross-ancestry Fine-mapping for potential causal variants
210	We performed fine-mapping to identify potential causal variants in 33 loci identified by the cross-
211	ancestry meta-analysis (Table S1). The median number of SNPs in the credible sets was 7. Six credible
212	sets contain only a single variant with PIP ≥99% which could be targets for follow-up studies, including
213	rs114671763, rs34825161, rs76152172, rs6477779, rs8094635 and rs117896793. There are 18 credible
214	sets with \leq 5 variants.
215	
216	Associated variants' influence on gene expression

217	Two lead variants from the EUR GWAS were significantly associated with gene expression changes in the
218	eye, rs1011400 and rs4245808 (Figure 2). Rs1011400 was significantly associated with changes in
219	antisense RNA transcript AC012613.2 in both macula (p=5.43x10 ⁻¹⁶ , FDR=2.78x10 ⁻¹²) and non-macula
220	retinal tissue ($p=6.48 \times 10^{-12}$, FDR=1.75 $\times 10^{-8}$). Rs1011400 was also significantly associated with changes in
221	macula ABLIM3 (p=1.22x10 ⁻⁴ , FDR=0.036) expression. Rs4245808 was significantly associated with non-
222	macular retinal pigment epithelium expression of AC073283.1 (p= 2.86×10^{-5} , FDR= 0.017). Three
223	additional GWS proxy variants were associated with eye gene expression changes: rs2416908 (proxy for
224	rs4838069) was associated with expression changes in <i>DENND1A</i> (the gene encoding DENN Domain
225	Containing 1A) in macular retinal pigment epithelium (p=6.24x10 ⁻⁵ , FDR=0.036), rs803141 (proxy for
226	rs2277066) with CCNI2 (encoding Cyclin I Family Member 2; p=1.14x10 ⁻⁸ , FDR=2.26x10 ⁻⁵) and SEPT8
227	(encoding Septin 8; $p=3.00x10^{-5}$, FDR=0.018) in non-macular retinal pigment epithelium, and rs9438
228	(proxy for rs9823832) with <i>DHX36</i> in the macula (p= 2.80×10^{-5} , FDR= 0.011).
229 230 231	
232	Transcriptome-Wide Association Study (TWAS) and Fine-mapping
233	TWAS identified 28 independent associated genes (Table S2). The most significant gene was DDX50P2 in
234	testis (p= 0.92×10^{-24}), a pseudogene, followed by <i>CDKN2A</i> (p= 0.29×10^{-17}) in the brain cortex.
235	
236	For TWAS fine-mapping, we obtained 12 genes with posterior inclusion probability (PIP) \ge 0.9, and 7
237	more genes with PIP \geq 0.7 (Table S3). Four genes had the highest PIP value (PIP=1): CRIPT, MUSK,
238	DDX50P2, and MALT1.
239	
240	MAGMA gene-based and gene set analyses
241	MAGMA gene-based analysis provided a list of 25 significant genes which survived Bonferroni correction

242 (p<2.62x10⁻⁶); these were provided as input for the gene set enrichment analysis (Table S4).

- 243 We obtained one significant term, the curated gene set of vitamin C in brain (Beta=1.296, STD=0.027,
- 244 SE=0.282, p=2.12×10⁻⁶, P_{bon}=0.033).
- 245
- 246 <u>Functional Enrichment Analysis</u>
- 247 There were significant enrichment results with six GO pathways (cyclin-dependent protein
- 248 serine/threonine kinase inhibitor activity, collagen type IV trimer, networking-forming collagen trimer,
- 249 collagen network, basement membrane collagen trimer, and complex of collagen trimers), and two
- significant protein complexes (CycD–Cdk4 and IL4-IL4R) (Table S4).
- 251
- 252

253 Discussion

In this first well-powered GWAS of ERM conducted in the MVP, we identified 31 independent GWS risk
loci in EUR participants, 3 independent loci in AFR, and 2 in AMR. In the trans-ancestry meta-analysis, 48
independent risk loci were identified. This trait is very important clinically – it is the most common
retinal disease in adults²⁷ -- and it causes substantial morbidity.

258

The most strongly supported variant in EUR was rs9823832 (p=9.06x10⁻³⁷), at DHX36 (DEAH-Box Helicase 259 260 36). In the trans-ancestry meta-analysis, the most strongly supported variant also maps to DHX36 – a different variant at the same locus, rs28630834 ($p=2.90x10^{-37}$). We did not identify any previous 261 262 association of this locus to an ocular phenotype, but its relevance is supported by follow-up analysis that found that a GWS SNP in this locus (rs9438, p=6.38x10⁻¹³) alters expression of DHX36 in macula (Figure 263 264 2). Considering some of the other associated variants of immediate biological interest in EUR, the protein product of CPLX4 (rs7244528, $p=2.84x10^{-22}$) plays a role in photoreceptor ribbon synapses^{28,29}. 265 266 ROBO3, to which variant rs10893291 maps (p=6.12x10⁻¹⁷), encodes Roundabout Guidance Receptor 3, involved in axonal navigation³⁰. Rs1011400 maps to ABLIM3 ($p=2.87 \times 10^{-14}$), which encodes an actin-267 binding protein related to nervous system development, previously reported to be associated to 268 macular thickness³¹. We noted that variation at this locus alters expression in the macula of *ABLIM3* and 269 AC012613.2. FTO*rs17817964 (p=3.04x10⁻¹¹) represents a locus well known for associations to body 270 mass index-related traits. RARB*rs57281891 (p=1.13x10⁻¹⁰) maps to the locus that encodes Retinoic Acid 271 272 Receptor Beta, which binds retinoic acid. This locus has been previously associated to optic disc area³². 273 Rs10120688 (CDKN2B-AS1) has been associated to primary open-angle glaucoma (POAG)³³. LPAR1, the second-most-strongly associated locus both in EUR (p=1.81x10⁻²⁶) and in the trans-ancestry meta-274 analysis (p=2.34x10⁻²⁶) (different SNPs) encodes lysophosphatidic acid receptor 1. The protein product is 275

- a G-protein coupled receptor with a range of biological functions implicated in several traits with
 variants associated to eosinophil count³⁴, and central corneal thickness³⁵.
- 278
- 279
- 280 Other associated variants are linked to a range of different biological functions, e.g. two independent

variants map to ACOXL (Acyl-Coenzyme A Oxidase-Like Protein), (rs6731210, p=5.93x10⁻¹⁸; rs114671763,

- p=1.13x10⁻¹¹; fine-mapping revealed it is a potential causal variant with PIP >0.99) this locus was
- 283 previously associated to chronic lymphocytic leukemia³⁶.
- 284

In AMR, the most strongly associated locus (p=2.21x10⁻⁹) was CHRM2, which encodes Cholinergic 285 286 Receptor Muscarinic 2. Atropine, a mydriatic, is an agonist at the protein product of CHRM2, as is 287 carbamoylcholine, an anti-glaucoma agent. Different variants at this locus have been shown to be associated to resting heart rate response to recovery after exercise³⁷ and to risk-taking behavior³⁸, 288 289 among other phenotypes. Considering the association with ERM and CHRM2 observed in AMR as well as CDKN2B-AS1 (previously POAG-associated) in EUR, we explored the relationship of ERM and glaucoma 290 291 further, but the genetic correlation between ERM and glaucoma was not significant; clinically, these 292 traits (ERM and glaucoma) are not considered to be associated. LDSC was feasible only in EUR, and it is 293 possible that this lack of a significant genetic correlation between these traits reflects an AMR-specific 294 genetic relationship -- the lead CHRM2 variant was monomorphic in EUR and not significant in AFR. 295 However, there were significant genetic correlations between ERM and two other traits evaluated, 296 depression and disorders of the vitreous (the latter from a FinnGen analysis). Visual impairment has been reported previously to be associated with increases in depression^{39,40}. ERM is related to vitreous 297 pathology, and risk is increased by vitreous detachment²⁷. 298

300	The trans-ancestry meta-analysis identified 48 GWS variants, many not observed in any of the
301	population-specific analyses. In numerous cases, the same gene was implicated but with a different lead
302	variant, supporting shared biology between populations (Table 3). The only variant that was GWS in
303	more than one population was <i>RNU6ATAC21P</i> *rs34825161 (RNA, U6atac Small Nuclear 21,
304	Pseudogene), significant in EUR, AFR, and the trans-ancestry meta-analysis. The other variants identified
305	in AFR and AMR were not GWS in the meta-analysis, and these associations may be population-specific.
306	
307	CRIPT, one of the genes identified by TWAS, encodes the Cysteine-Rich PDZ-Binding Protein, and high
308	myopia is among several clinical traits associated with variants at this locus in a patient with an exon 1
309	deletion ⁴¹ . Another TWAS-associated gene, <i>CDKN2B-AS1</i> , which encodes Cyclin Dependent Kinase
310	Inhibitor 2A, is associated with POAG, as noted above, and with several melanoma subtypes ⁴² . The
311	protein product of MUSK, Muscle Associated Receptor Tyrosine Kinase, has been implicated in clustering
312	of postsynaptic acetylcholine receptors in neuromuscular junction ⁴³ – interesting in the context of the
313	CHRM2 (Cholinergic Receptor Muscarinic 2) SNP-based association discussed above.
314	
315	Pathway enrichment analysis using two different approaches revealed significant findings for collagen
316	and for the collagen-adjacent vitamin C pathway. Vitamin C (ascorbic acid) is necessary for the
317	hydroxylation of the proline residue in collagen, necessary to stabilize collagen fibers 44 ; MAGMA gene
318	set enrichment analysis implicated vitamin C brain pathways. Collagen is a major constituent of
319	epiretinal membranes, varying depending on the kind of membrane ⁴⁵ and a proteomic study has
320	demonstrated that some collagens are upregulated in ERM 46 . Collagen type I and type IV are the two
321	primary collagens founded in corneal and lens tissues; ⁴⁷ g:profiler implicated collagen type IV trimer,
322	network-forming collagen trimer, collagen network, basement membrane collagen trimer, and complex
323	of collagen trimer (Table S4).

325	Above we highlight biology mostly consistent with prior knowledge, but our results also implicate more
326	peripherally-connected biology. FOXL1, for example, encodes forkhead box L1. The same variant at this
327	locus (rs1019574) is strongly associated to ERM in both EUR and the trans-population meta-analysis.
328	Prior associations at this locus relate to, for example, bone mineral density ⁴⁸ and height ⁴⁹ . It is also
329	involved in eye development ⁵⁰ , but may implicate a novel mechanism in the context of ERM.
330	
331	Non-European populations are generally understudied with respect to GWAS. Since many genetic
332	findings are at least to some extent population-specific, this is a major limitation that needs to be
333	addressed by the research field as a whole ⁵¹ . For personalized medicine to become an effective strategy,
334	population-specific polygenic risk scores will generally need to be available for each clinical population
335	where a need for risk prediction is anticipated. This study demonstrates the strength of the MVP sample
336	in addressing this issue, as we were able to study reasonable sample sizes of three major populations.
337	Our findings contain a suggestion of some population-specific biology for ERM.
338	
339	Our work has several limitations. ERM is diagnosed reliably via optical coherence tomography ⁵² (OCT).
340	Diagnoses recorded in the electronic health record (EHR) may reflect clinical or OCT diagnosis, but with
341	large sample sizes signal overwhelms noise, tending to compensate for diagnosis imprecision. It is a
342	limitation that we relied on EHR-based diagnosis and might have included secondary ERM cases. In
343	relying on chart diagnosis that reflect the skills of a wide range of individual clinicians, it is likely that we
344	included some false-positive amongst the cases with non-ERM pathology. However EHR diagnoses have
345	been used widely and with great success previously for diagnosis of complex genetic traits (such as, for
346	example, major depressive disorder 53 and opioid use disorder 54 specifically in the MVP), and the
347	convergence of the identified risk loci identified with what is known about the pathophysiology of the

- disorder, supports that they are likely to be relevant to ERM. A further limitation is the mostly-male
- composition of the MVP sample; there may be sex-specific risk factors that we could not evaluate.

350

- 351 We identified GWS-significant associations to ERM in EUR, AFR, and AMR each taken individually, and
- 352 many more GWS-associations in the trans-ancestry meta-analysis. Results from pathway enrichment
- analyses were consistent with known ERM pathophysiology. Availability of these genomewide results
- will enable the creation of polygenic risk scores (PRS) expected to be predictive of genetic risk for ERM.
- 355 These findings should lead to improved understanding of the pathophysiology of ERM and, ideally,
- 356 identifications of new targets for nonsurgical treatment interventions.

358 Competing Interests

359	Dr. Gelernter is named as an inventor on PCT patent application #15/878,640 entitled: "Genotype-
360	guided dosing of opioid agonists," filed January 24, 2018 and issued on January 26, 2021 as U.S. Patent
361	No. 10,900,082. Dr. Gelernter is paid for editorial work for the journal "Complex Psychiatry" (Karger).
362	Dr. Eliot is ad hoc consultant for Alcon, Dutch Ophthalmic, GelMEDIX, and Genentech; reports research
363	funding from Neurotech and Unity Biotechnology; is a member of the Advisory Board & Stockholder for
364	InGel Therapeutics, Pykus Therapeutics, and RetMap; reports being Advisor, Patents, Royalties, and
365	Stockholder in Aldeyra Therapeutics; and is a member of the Data Safety Monitoring Board (DSMB) for
366	Asclepix
367	
368	Dr. Stein has in the past 3 years received consulting income from Acadia Pharmaceuticals, Aptinyx, atai
369	Life Sciences, BigHealth, Bionomics, BioXcel Therapeutics, Boehringer Ingelheim, Clexio, Eisai,
370	EmpowerPharm, Engrail Therapeutics, Janssen, Jazz Pharmaceuticals, NeuroTrauma Sciences, PureTech
371	Health, Sumitomo Pharma, and Roche/Genentech. Dr. Stein has stock options in Oxeia
372	Biopharmaceuticals and EpiVario. He has been paid for his editorial work on Depression and Anxiety
373	(Editor-in-Chief), Biological Psychiatry (Deputy Editor), and UpToDate (Co-Editor-in-Chief for Psychiatry).
374	He is on the scientific advisory board for the Brain and Behavior Research Foundation and the Anxiety
375	and Depression Association of America.
376	

378

377

379

18

The other authors all report that they have no competing interests.

380 Acknowledgments

381	This research is based on data from the Million Veteran Program (MVP), Office of Research and
382	Development, Veterans Health Administration, and was supported by the MVP and the Veterans Affairs
383	Cooperative Studies Program study No. 575B. This work was also supported funding from the
384	Department of Veterans Affairs Office of Research and Development grants I01CX001849 – MVP025.
385	D.F.L. was supported by a was supported by an NARSAD Young Investigator Grant from the Brain $\&$
386	Behavior Research Foundation and a Career Development Award CDA-2 from the Veterans Affairs Office
387	of Research and Development (1IK2BX005058-01A2) and is Aimee Mann Fellow of Psychiatric Genetics.
388	This publication does not represent the views of the Department of Veterans Affairs or the United States
389	Government. We also acknowledge the participants and investigators of the FinnGen study.
390	
391	Author contributions
391 392	Author contributions JG conceived the study, drafted the article, and supervised the work. DL and MG analyzed the data and
391 392 393	Author contributions JG conceived the study, drafted the article, and supervised the work. DL and MG analyzed the data and contributed to drafting the article. HZ and KA contributed to the data analysis. KH contributed to the
391 392 393 394	Author contributions JG conceived the study, drafted the article, and supervised the work. DL and MG analyzed the data and contributed to drafting the article. HZ and KA contributed to the data analysis. KH contributed to the phenotyping effort in the MVP sample. JG, MBS, and JMG provided administrative support. Additionally,
391 392 393 394 395	Author contributions JG conceived the study, drafted the article, and supervised the work. DL and MG analyzed the data and contributed to drafting the article. HZ and KA contributed to the data analysis. KH contributed to the phenotyping effort in the MVP sample. JG, MBS, and JMG provided administrative support. Additionally, all authors (DL, MG, KH, HZ, KA, JMG, DE, and MBS) reviewed the article and provided critical comments.
391 392 393 394 395 396	Author contributions JG conceived the study, drafted the article, and supervised the work. DL and MG analyzed the data and contributed to drafting the article. HZ and KA contributed to the data analysis. KH contributed to the phenotyping effort in the MVP sample. JG, MBS, and JMG provided administrative support. Additionally, all authors (DL, MG, KH, HZ, KA, JMG, DE, and MBS) reviewed the article and provided critical comments.
391 392 393 394 395 396 397	Author contributions JG conceived the study, drafted the article, and supervised the work. DL and MG analyzed the data and contributed to drafting the article. HZ and KA contributed to the data analysis. KH contributed to the phenotyping effort in the MVP sample. JG, MBS, and JMG provided administrative support. Additionally, all authors (DL, MG, KH, HZ, KA, JMG, DE, and MBS) reviewed the article and provided critical comments. Data Availability
 391 392 393 394 395 396 397 398 	Author contributions JG conceived the study, drafted the article, and supervised the work. DL and MG analyzed the data and contributed to drafting the article. HZ and KA contributed to the data analysis. KH contributed to the phenotyping effort in the MVP sample. JG, MBS, and JMG provided administrative support. Additionally, all authors (DL, MG, KH, HZ, KA, JMG, DE, and MBS) reviewed the article and provided critical comments. Data Availability Summary statistics will be made available in dbGAP (accession number phs001672) by the Million
 391 392 393 394 395 396 397 398 399 	Author contributions JG conceived the study, drafted the article, and supervised the work. DL and MG analyzed the data and contributed to drafting the article. HZ and KA contributed to the data analysis. KH contributed to the phenotyping effort in the MVP sample. JG, MBS, and JMG provided administrative support. Additionally, all authors (DL, MG, KH, HZ, KA, JMG, DE, and MBS) reviewed the article and provided critical comments. Data Availability Summary statistics will be made available in dbGAP (accession number phs001672) by the Million Veteran Program following publication.
 391 392 393 394 395 396 397 398 399 400 	Author contributions JG conceived the study, drafted the article, and supervised the work. DL and MG analyzed the data and contributed to drafting the article. HZ and KA contributed to the data analysis. KH contributed to the phenotyping effort in the MVP sample. JG, MBS, and JMG provided administrative support. Additionally, all authors (DL, MG, KH, HZ, KA, JMG, DE, and MBS) reviewed the article and provided critical comments. Data Availability Summary statistics will be made available in dbGAP (accession number phs001672) by the Million Veteran Program following publication.

401

402

403		REFERENCES
404	4	
405	1.	Xiao W, Chen X, Yan W, Zhu Z, He W. Prevalence and risk factors of epiretinal membranes: a
406		systematic review and meta-analysis of population-based studies. <i>Bivit Open.</i>
407	2	2017;7(9):e014044. Bianchi L. Altora A. Barono V. et al. Untangling the Extracollular Matrix of Idionathic Enjrotinal
408	Ζ.	Membrane: A Dath Winding among Structure. Interactomics and Translational Medicine. <i>Calls</i>
409		2022-11/16)
410 411	з	Eritsche I.G. Jøl W. Bailey INC. et al. A large genome-wide association study of age-related
412	5.	macular degeneration highlights contributions of rare and common variants. <i>Nature genetics</i>
413		
414	4	Klein RL Zeiss C. Chew FY, et al. Complement factor H polymorphism in age-related macular
415	••	degeneration. Science (New York, N.Y.). 2005:308(5720):385-389.
416	5.	Xue Z. Yuan J. Chen F. et al. Genome-wide association meta-analysis of 88.250 individuals
417		highlights pleiotropic mechanisms of five ocular diseases in UK Biobank. <i>EBioMedicine.</i>
418		2022;82:104161.
419	6.	Collins R. What makes UK Biobank special? <i>Lancet.</i> 2012;379(9822):1173-1174.
420	7.	Kvale MN, Hesselson S, Hoffmann TJ, et al. Genotyping Informatics and Quality Control for
421		100,000 Subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA)
422		Cohort. <i>Genetics.</i> 2015;200(4):1051-1060.
423	8.	Gelernter J, Sun N, Polimanti R, et al. Genome-wide association study of post-traumatic stress
424		disorder reexperiencing symptoms in >165,000 US veterans. Nat Neurosci. 2019;22(9):1394-
425		1401.
426	9.	Klarin D, Damrauer SM, Cho K, et al. Genetics of blood lipids among ~300,000 multi-ethnic
427		participants of the Million Veteran Program. <i>Nature genetics</i> . 2018.
428	10.	Gaziano JM, Concato J, Brophy M, et al. Million Veteran Program: A mega-biobank to study
429		genetic influences on health and disease. <i>Journal of clinical epidemiology</i> . 2016;70:214-223.
430	11.	Gaziano JM, Concato J, Galea S, Smith NL, Provenzale D. Epidemiologic approaches to veterans'
431		health. Epidemiologic reviews. 2015;37:1-6.
432	12.	Levey DF, Gelernter J, Polimanti R, et al. Reproducible Genetic Risk Loci for Anxiety: Results From
433		approximately 200,000 Participants in the Million Veteran Program. <i>Am J Psychiatry.</i>
434	4.0	2020;177(3):223-232.
435	13.	Kurki MI, Karjalainen J, Palta P, et al. FinnGen: Unique genetic insights from combining isolated
436	1 4	population and national health register data. <i>medRXIV.</i> 2022;2022.2003.2003.22271360.
437	14.	Hunter-Zinck H, Sni Y, Li M, et al. Genotyping Array Design and Data Quality Control in the
430	1 5	Willion Veteran Program. American journal of numun genetics. 2020;106(4):555-548.
439	15.	bulk-Sullvan BK, Lon PK, Finucate HK, et al. LD Score regression distinguisties comounding from
440	16	polygenicity in genome-wide association studies. <i>Nature genetics</i> . 2015;47(5):291-295.
441	10.	admixed populations. Hum Mol Genet. 2021;30(16):1521-1534
442	17	Erazer KA Ballinger DG Cox DR et al. A second generation human hanlotyne man of over 3.1
443	17.	million SNPs Nature 2007:449(7164):851-861
445	18	Bulik-Sullivan B. Finucane HK. Anttila V. et al. An atlas of genetic correlations across human
446		diseases and traits. <i>Nature genetics</i> . 2015;47(11):1236-1241.
447	19.	Gharahkhani P, Jorgenson E, Hysi P, et al. Genome-wide meta-analysis identifies 127 open-angle
448		glaucoma loci with consistent effect across ancestries. <i>Nature communications.</i>
449		2021;12(1):1258.

450 451	20.	Stein MB, Levey DF, Cheng Z, et al. Genome-wide association analyses of post-traumatic stress disorder and its symptom subdomains in the Million Veteran Program. <i>Nature genetics.</i>
452		2021;53(2):174-184.
453	21.	Levey DF, Stein MB, Wendt FR, et al. Bi-ancestral depression GWAS in the Million Veteran
454 455		Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. <i>Nat Neurosci.</i> 2021;24(7):954-963.
456 457	22.	LaPierre N, Taraszka K, Huang H, He R, Hormozdiari F, Eskin E. Identifying causal variants by fine mapping across multiple studies. <i>PLoS genetics</i> . 2021;17(9):e1009733.
458 459 460	23.	Orozco LD, Chen HH, Cox C, et al. Integration of eQTL and a Single-Cell Atlas in the Human Eye Identifies Causal Genes for Age-Related Macular Degeneration. <i>Cell reports</i> . 2020;30(4):1246-1350.01246
460	24.	Gusev A, Ko A, Shi H, et al. Integrative approaches for large-scale transcriptome-wide association
462	2 5	studies. Nature genetics. 2016;48(3):245-252.
463 464	25.	de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: Generalized Gene-Set Analysis of GWAS Data. <i>PLOS Computational Biology.</i> 2015;11(4):e1004219.
465	26.	Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of
466		genetic associations with FUMA. Nature Communications. 2017;8(1):1826.
467	27.	Ota A, Tanaka Y, Toyoda F, et al. Relationship between variations in posterior vitreous
468		detachment and visual prognosis in idiopathic epiretinal membranes. Clin Ophthalmol.
469		2016;10:7-11.
470	28.	Babai N, Sendelbeck A, Regus-Leidig H, et al. Functional Roles of Complexin 3 and Complexin 4 at
471		Mouse Photoreceptor Ribbon Synapses. The Journal of neuroscience : the official journal of the
472		Society for Neuroscience. 2016;36(25):6651-6667.
473	29.	Vaithianathan T, Henry D, Akmentin W, Matthews G. Functional roles of complexin in
474		neurotransmitter release at ribbon synapses of mouse retinal bipolar neurons. <i>The Journal of</i>
475		neuroscience : the official journal of the Society for Neuroscience. 2015;35(9):4065-4070.
476	30.	Jen JC, Chan WM, Bosley TM, et al. Mutations in a human ROBO gene disrupt hindbrain axon
4//		pathway crossing and morphogenesis. <i>Science (New York, N.Y.).</i> 2004;304(5676):1509-1513.
478	31.	Gao XR, Huang H, Kim H. Genome-wide association analyses identity 139 loci associated with
479	22	macular thickness in the UK Biobank cohort. <i>Human molecular genetics</i> . 2019;28(7):1162-1172.
480	32.	Springelkamp H, Mishra A, Hysi PG, et al. Meta-analysis of Genome-Wide Association Studies
481		Identifies Novel Loci Associated with Optic Disc Morphology. Genetic epidemiology.
482	22	2015;39(3):207-216.
483 101	33.	LIU S, Chen S, NIU T. Genetic association between CDKN2B-AST polymorphisms and the
404		Med Sci 2022/101/51/2385 2302
405	31	Webovic D. Bao El. Akhari P. et al. The Polygenic and Monogenic Basis of Blood Traits and
480	54.	Diseases Cell 2020-182(5)-1214-1231 e1211
488	35	Iglesias Al Mishra A Vitart V et al Cross-ancestry genome-wide association analysis of corneal
489		thickness strengthens link between complex and Mendelian eve diseases. <i>Nature</i>
490		communications. 2018:9(1):1864.
491	36.	Berndt Sl. Skibola CF. Joseph V. et al. Genome-wide association study identifies multiple risk loci
492		for chronic lymphocytic leukemia. <i>Nature genetics.</i> 2013:45(8):868-876.
493	37.	Verweij N. van de Vegte YJ. van der Harst P. Genetic study links components of the autonomous
494		nervous system to heart-rate profile during exercise. <i>Nature communications.</i> 2018;9(1):898.
495	38.	Karlsson Linnér R, Biroli P, Kong E, et al. Genome-wide association analyses of risk tolerance and
496		risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic
497		influences. Nature genetics. 2019;51(2):245-257.

498	39.	Frank CR, Xiang X, Stagg BC, Ehrlich JR. Longitudinal Associations of Self-reported Vision
499		Impairment With Symptoms of Anxiety and Depression Among Older Adults in the United
500		States. JAMA Ophthalmol. 2019;137(7):793-800.
501	40.	Zhao X, Liu W, Lu B, Zhu X, Zhou M, Sun X. Visual impairment and depression in China: a 7-year
502		follow-up study from national longitudinal surveys. <i>BMJ Open.</i> 2022;12(4):e055563.
503	41.	Leduc MS, Niu Z, Bi W, et al. CRIPT exonic deletion and a novel missense mutation in a female
504		with short stature, dysmorphic features, microcephaly, and pigmentary abnormalities. Am J Med
505		Genet A. 2016;170(8):2206-2211.
506	42.	Rossi M, Pellegrini C, Cardelli L, Ciciarelli V, Di Nardo L, Fargnoli MC. Familial Melanoma:
507		Diagnostic and Management Implications. Dermatol Pract Concept. 2019;9(1):10-16.
508	43.	Tan-Sindhunata MB, Mathijssen IB, Smit M, et al. Identification of a Dutch founder mutation in
509		MUSK causing fetal akinesia deformation sequence. European journal of human genetics : EJHG.
510		2015;23(9):1151-1157.
511	44.	Rappu P, Salo AM, Myllyharju J, Heino J. Role of prolyl hydroxylation in the molecular
512		interactions of collagens. Essays Biochem. 2019;63(3):325-335.
513	45.	Kritzenberger M, Junglas B, Framme C, et al. Different collagen types define two types of
514		idiopathic epiretinal membranes. <i>Histopathology</i> . 2011;58(6):953-965.
515	46.	Sun C, Zou H, Yang Z, et al. Proteomics and phosphoproteomics analysis of vitreous in idiopathic
516		epiretinal membrane patients. Proteomics Clin Appl. 2022;16(5):e2100128.
517	47.	Song Y, Overmass M, Fan J, et al. Application of Collagen I and IV in Bioengineering Transparent
518		Ocular Tissues. Frontiers in Surgery. 2021;8.
519	48.	Kim SK. Identification of 613 new loci associated with heel bone mineral density and a polygenic
520		risk score for bone mineral density, osteoporosis and fracture. <i>PloS one</i> . 2018;13(7):e0200785.
521	49.	Kichaev G, Bhatia G, Loh PR, et al. Leveraging Polygenic Functional Enrichment to Improve GWAS
522		Power. American journal of human genetics. 2019;104(1):65-75.
523	50.	Nakada C, Satoh S, Tabata Y, Arai K, Watanabe S. Transcriptional repressor foxl1 regulates
524		central nervous system development by suppressing shh expression in zebra fish. Mol Cell Biol.
525		2006;26(19):7246-7257.
526	51.	Sirugo G, Williams SM, Tishkoff SA. The Missing Diversity in Human Genetic Studies. <i>Cell.</i>
527		2019;177(4):1080.
528	52.	Do DV, Cho M, Nguyen QD, et al. The impact of optical coherence tomography on surgical
529		decision making in epiretinal membrane and vitreomacular traction. Trans Am Ophthalmol Soc.
530		2006;104:161-166.
531	53.	Levey DF, Stein MB, Wendt FR, et al. Bi-ancestral depression GWAS in the Million Veteran
532		Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. <i>Nat</i>
533		Neurosci. 2021;24(7):954-963.
534	54.	Zhou H, Rentsch CT, Cheng Z, et al. Association of OPRM1 Functional Coding Variant With Opioid
535		Use Disorder: A Genome-Wide Association Study. JAMA Psychiatry. 2020.
536		
537		

538 Table 1: MVP sample demographic informatio	۶n.
--	-----

539

EUR	Case	Control	Total
Male	30176	382566	412742
Age (SEM)	71.15(0.05)	64.22(0.02)	
Female	1198	31486	32684
Age (SEM)	64.78(0.78)	52.10(0.08)	
Total (EUR)	31374	414052	445426
AFR	Case	Control	Total
Male	4398	92592	96990
Age (SEM)	66.63(0.13)	58.66(0.04)	
Female	341	15181	15522
Age (SEM)	59.59(0.51)	48.75(0.09)	
Total (AFR)	4739	107773	112512
AMR	Case	Control	Total
Male	2055	32611	34666
Age (SEM)	68.25(0.20)	55.44(0.09)	
Female	64	3552	3616
Age (SEM)	62.4(0.91)	43.29(0.218)	
Total (AMR)	2119	36163	38282
TOTAL (All)	38232	557988	596220

541 Table 2: Independent significant risk loci identified in EUR, AFR, and AMR. A1, risk allele; FREQ,

542 frequency of A1 (sorted by p-value)

543 EUR ancestry:

Gene	C HR	SNP	BP Hg19/GRCH37	A1	A2	FREQ	BETA	SE	Р
DHX36	3	rs9823832	154024897	с	т	0.343906	-0.114203	0.00901605	9.06E-37
LPAR1	9	rs6477803	113792417	т	С	0.80847	-0.117122	0.011001	1.81E-26
CPLX4	1 8	rs7244528	56948972	А	т	0.700518	-0.089765	0.00924817	2.84E-22
FOXL1	1 6	rs1019574	86725801	А	G	0.525586	0.0764702	0.00861526	6.90E-19
CDKN2B-AS1	9	rs10120688	22056499	А	G	0.478935	-0.0759819	0.00858045	8.35E-19
RNU6ATAC21P	6	rs34825161	10185413	А	G	0.275068	-0.0859338	0.00982183	2.15E-18
ACOXL	2	rs6731210	112270857	т	С	0.600165	-0.0731687	0.00847459	5.93E-18
ROBO3	1 1	rs10893291	124705053	G	А	0.323993	-0.0758934	0.00907502	6.12E-17
PLPP3	1	rs9970807	56965664	т	с	0.0913253	-0.121161	0.0150691	8.96E-16
ABLIM3	5	rs1011400	148611941	С	G	0.438558	-0.0659999	0.00867952	2.87E-14
HNF1B	1 7	rs12601991	36101633	т	G	0.405415	0.0614149	0.00850638	5.21E-13
ACOXL	2	rs114671763	112154449	т	С	0.0940899	-0.101641	0.0149702	1.13E-11
FTO	1 6	rs17817964	53828066	т	С	0.393599	0.0569945	0.00857814	3.04E-11
DENND1A	9	rs4838069	126316511	т	С	0.172974	0.0739937	0.0111857	3.71E-11
RARB	3	rs57281891	25581866	с	СТТ	0.133411	0.0803257	0.0124553	1.13E-10
COL4A4	2	rs6740108	227889559	С	А	0.414065	-0.0557971	0.00865244	1.13E-10
LPAR1	9	rs1279850	113972498	А	т	0.75331	-0.0613734	0.00957904	1.48E-10
TP53	1 7	rs78378222	7571752	G	т	0.0119663	0.221799	0.0354849	4.09E-10
FOLH1	1 1	rs10839258	49314465	G	А	0.229578	-0.0635619	0.0101969	4.56E-10
OSTM1	6	rs9480836	108458997	т	С	0.0729634	0.102286	0.0167332	9.81E-10
SPNS3	1 7	rs11285864	4354559	т	тс	0.603578	0.05319	0.00871949	1.06E-09
LPAR1	9	rs5899909	113410155	GAT	G	0.467903	-0.051705	0.00848558	1.11E-09
BCR	2	rs4822369	23516797	А	с	0.262917	0.0570984	0.00944604	1.50E-09
EPAS1/PRKCE	2	rs4245808	46456486	А	G	0.656504	0.0531805	0.00885061	1.87E-09
UFL1	6	rs530625467	96875349	G	С	0.0492389	0.145658	0.0252414	7.90E-09
SOX10	2	rs117896793	38381996	т	G	0.0269773	0.152644	0.0266889	1.07E-08
DPF3	1	rs4903064	73279420	С	т	0.240167	-0.0559642	0.00992863	1.73E-08

CCNI2	5	rs2277066	132072913	С	G	0.0839226	-0.0918094	0.0163619	2.01E-08
DLL1	6	rs7745573	170468193	С	A	0.426806	0.0477801	0.00860443	2.81E-08
EIF3E	8	rs7826090	109288442	G	А	0.233334	-0.0563344	0.0101514	2.87E-08
HAS2	8	rs279655	122803525	G	А	0.43985	-0.0472866	0.00853638	3.04E-08

546 AFR ancestry:

Gene	R	СН	SNP	BP Hg19/GRCH37	A1	A2	FREQ	BETA	SE	Р
RNU6ATAC21P		6	rs34825161	10185413	А	G	0.130225	-0.210674	0.0374443	1.84088E- 08
NYAP2		2	rs4675026	226889445	т	С	0.819976	-0.159703	0.0286954	2.61508E- 08
HSPA8		11	rs14686788 7	122932732	А	С	0.00256511	0.918612	0.165897	3.07234E- 08

550 AMR ancestry:

Gene	CH R	SNP	BP Hg19/GRCH37	A1	A2	FREQ	ВЕТА	SE	Р
CHRM2	7	rs7801770	136494060	А	G	0.00514367	1.10126	0.184118	2.21E-09
CAMTA1	1	rs150631130	7705819	CGGCA	С	0.00525359	1.13444	0.199554	1.31E-08

555 <u>Table 3. GWS variants identified in trans-ancestry meta.</u>

556 **Bolded variants** indicate cases where an identical variant was identified in the EUR only GWAS (15/34). 557

Gene	CHR	SNP	Position	A1	A2	Freq.	Beta	SE	p-value	Directic (EUR A AMR)
DHX36	3	rs28630834	154016838	А	G	0.6755	0.109	0.0085	2.90E-37	+++
LPAR1	9	rs4978978	113802433	С	G	0.1871	0.1077	0.0101	2.34E-26	+++
CPLX4	18	rs8094635	56948478	А	G	0.2823	0.0894	0.0086	3.56E-25	+++
RNU6ATAC21P	6	rs34825161	10185413	А	G	0.2625	-0.0943	0.0093	3.88E-24	
MIR4435-2HG	2	rs200436484	112274727	С	G	0.5843	-0.0793	0.0084	3.35E-21	-?-
FOXL1	16	rs1019574	86725801	А	G	0.543	0.0713	0.0079	1.18E-19	+++
CDKN2A-AS1	9	rs10811645	22049656	А	G	0.5195	-0.0695	0.0077	1.90E-19	
ROBO3	11	rs10893291	124705053	А	G	0.6821	0.0738	0.0083	4.83E-19	+++
PPAP2B	1	rs72664355	57007791	Т	С	0.9176	0.1254	0.0157	1.46E-15	+++
GPR149	3	rs60572329	154085132	CG	С	0.8278	-0.0897	0.0115	6.64E-15	-?+
ABLIM3	5	rs1011400	148611941	С	G	0.4326	-0.0634	0.0084	5.57E-14	-?-
HNF1B	17	rs12601991	36101633	Т	G	0.3906	0.0609	0.0083	2.42E-13	++?
FTO	16	rs17817964	53828066	Т	С	0.3712	0.0586	0.0082	6.56E-13	+++
ARHGEF26- AS1	3	rs7617276	153776826	т	С	0.6435	0.0587	0.0082	6.86E-13	+++
FOLH1	11	rs2866349	49314336	Т	G	0.7164	0.0633	0.009	2.00E-12	+++
CTXN2	15	rs2413887	48485926	Т	С	0.652	0.1628	0.0232	2.37E-12	?++
ACOXL	2	rs114671763	112154449	Т	С	0.0966	-0.0941	0.0136	4.00E-12	
COL4A4	2	rs13393894	227880543	А	G	0.5635	0.0529	0.0078	1.46E-11	+++
DENND1A	9	rs4838069	126316511	т	С	0.1808	0.0725	0.0107	1.48E-11	+?+
DPF3	14	rs4903064	73279420	Т	С	0.7632	0.0611	0.0091	1.98E-11	+++
BCR	22	rs5751598	23514450	А	G	0.7114	-0.0563	0.0084	2.05E-11	
TP53	17	rs78378222	7571752	Т	G	0.9885	-0.2296	0.0346	3.10E-11	
RARB	3	rs1286767	25592883	Т	С	0.8553	-0.073	0.011	3.16E-11	
OR2K2	9	rs2773533	113980884	Т	С	0.2802	0.0576	0.0087	3.17E-11	+++
FOXL1	16	rs71390846	86714715	С	G	0.1726	0.0687	0.0104	4.09E-11	+++
SPNS3	17	rs12601416	4357773	А	G	0.4094	-0.0526	0.008	4.33E-11	
LOC646813	11	rs140544819	50366307	т	С	0.8979	0.0981	0.0151	7.27E-11	+?+
EPAS1/PRKCE	2	rs4245808	46456486	А	G	0.6642	0.0512	0.0081	2.38E-10	+++
CCNI2	5	rs2277066	132072913	С	G	0.0973	-0.0965	0.0154	3.27E-10	-?-

OR4A5	11	rs11246551	51419389	т	С	0.1264	-0.0764	0.0124	7.46E-10	
MUSK	9	rs6477779	113392219	т	С	0.4991	-0.0476	0.0078	1.16E-09	+
OSTM1	6	rs9480836	108458997	Т	С	0.0724	0.0955	0.0157	1.27E-09	+-+
PTPRJ	11	rs7130876	48050995	А	G	0.7947	0.0592	0.0098	1.34E-09	+++
SOX10	22	rs117896793	38381996	Т	G	0.0265	0.1526	0.0255	2.10E-09	+++
EIF3E	8	rs7826090	109288442	А	G	0.7644	0.0569	0.0098	6.51E-09	+?+
LIG1	19	rs35844660	48655069	ССТ	С	0.4915	-0.0478	0.0083	9.84E-09	-?-
HAS2	8	rs2581482	122801173	А	G	0.5411	0.0444	0.0078	1.04E-08	+++
COL4A2	13	rs9521744	111054827	А	Т	0.3752	-0.0462	0.0081	1.16E-08	
DTWD1	15	rs1976551	49923026	С	G	0.7572	0.1352	0.0239	1.45E-08	?++
HNF1B	17	rs34080163	36151146	А	G	0.1219	0.0646	0.0114	1.52E-08	+++
TRIM48	11	rs113285600	54857903	Т	С	0.8795	0.0695	0.0124	2.15E-08	+++
SH3PXD2A	10	rs56149148	105508171	Т	С	0.1177	0.0652	0.0117	2.54E-08	+++
WWOX	16	rs12928261	79041944	А	Т	0.5727	-0.0446	0.008	2.74E-08	
SNAP23	15	rs4923947	42791703	А	G	0.2234	0.1007	0.0182	3.01E-08	+++
TPRX1	19	rs12462705	48304700	А	G	0.4419	-0.0434	0.0079	3.54E-08	
HAS2	8	rs529279493	122792069	Т	С	0.9949	-0.4191	0.0761	3.59E-08	-??
UFL1	6	rs76152172	96907225	А	G	0.9477	-0.1158	0.021	3.66E-08	-+-
CDKN2A	9	rs13288666	21973857	Т	С	0.9563	0.1121	0.0204	3.99E-08	++-

561 Figure 1. Trans-ancestry meta-analysis Manhattan Plot.

562 Lead loci not identified in the European GWAS are highlighted.

565 Figure 2. eQTL results.

566 Expression QTLs were investigated in an eye tissue specific database. Lead SNPs were first looked up for

567 each locus, with 2 significant results after multiple testing correction (FDR<0.05): rs4245808 and

rs1011400. GWS proxy SNPs were selected when results were not available for the lead SNP, with three

- additional SNPs showing significant eQTL (FDR<0.05): rs803141, rs2416908, and rs9438. Genotype is on
- 570 the X axis and Reads Per Kilobase Million (RPKM) is on the Y axis. Scale is variable and relative to the
- 571 transcript depicted in each figure.
- 572

