Supplementary materials

The relationship between pathological brain activity and functional network connectivity

in glioma patients

Mona LM Zimmermann^{1,2,3*}, Lucas C Breedt^{1,2}, Eduarda GZ Centeno¹, Jaap C Reijneveld⁷, Fernando AN Santos¹, Cornelis J Stam⁴, Marike R van Lingen^{1,3}, Menno M Schoonheim^{1,2,5}, Arjan Hillebrand^{4,5,6}, Linda Douw^{1,2,3,5,6}

1. Amsterdam UMC location Vrije Universiteit Amsterdam, Anatomy and Neurosciences, De Boelelaan 1117, Amsterdam, The Netherlands

2. Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, De

Boelelaan 1117, Amsterdam, The Netherlands

3. Amsterdam UMC location Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De

Boelelaan 1117, Amsterdam, The Netherlands

4. Amsterdam UMC location Vrije Universiteit Amsterdam, Clinical Neurophysiology and

MEG Center, De Boelelaan 1117, Amsterdam, The Netherlands

5. Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands

6. Amsterdam Neuroscience, Systems and Network Neurosciences, Amsterdam, The

Netherlands

7. Department of Neurology, Stichting Epilepsie Instellingen Nederland, Heemstede 2103 SW, The Netherlands

*Corresponding author:

De Boelelaan 1117, Amsterdam, The Netherlands

+31625694930

m.l.m.zimmermann@amsterdamumc.nl

Authors (Year)	Title
Douw et al. (2010) ¹	Epilepsy is related to theta band brain connectivity and
	network topology in brain tumor patients
van Dellen et al. (2012) ²	MEG Network Differences between Low- and High-Grade
	Glioma Related to Epilepsy and Cognition
van Dellen et al. (2012) ³	Connectivity in MEG resting-state networks increases after
	resective surgery for low-grade glioma and correlates with
	improved cognitive performance.
Carbo et al. (2017) ⁴	Dynamic hub load predicts cognitive decline after resective
	neurosurgery
Derks et al. (2018) ⁵	Oscillatory brain activity associates with neuroligin-3
	expression and predicts progression free survival in patients
	with diffuse glioma.
Derks et al. (2019) ⁶	Understanding cognitive functioning in glioma patients: The
	relevance of IDH-mutation status and functional connectivity
Belgers et al. (2020) ⁷	Postoperative oscillatory brain activity as an add-on prognostic
	marker in diffuse glioma.
Numan et al. (2021) ⁸	Non-invasively measured brain activity and radiological
	progression in diffuse glioma
Derks et al. (2021) ⁹	Understanding Global Brain Network Alterations in Glioma
	Patients
Röttgering et al. (2022) ¹⁰	Toward unravelling the correlates of fatigue in glioma
Röttgering et al. (2023) ¹¹	Symptom networks in glioma patients: understanding the
	multidimensionality of symptoms and quality of life
van Lingen et al. (2023) ¹²	The longitudinal relation between executive functioning and
	multilayer network topology in glioma patients
Note. Table adapted from Röt	ttgering et al. (2023) ¹¹

Table S1 Overview of studies that published on (partly) the same data as the current study

Frequency,	Variable	Coefficient [CI]	Ζ	р	p_{FDR}
Density Deritumoral Area				_	_
Delte	_				
	Intercent	1 572 [1 276 1 971]	10 259	< 0.005	
20%	EC	1.373[1.270, 1.871]	1 832	< 0.003	0.200
	EC_{dev}	0.073 [-0.003, 0.131]	1.052	0.007	0.200
200/	Intercent	0.022 [-0.037, 0.102] 1 546 [1 240 1 842]	10 102	0.385	0.777
30%	EC	1.340 [1.249, 1.643]	10.192	<0.001	0.200
	EC_{dev}	0.078 [-0.001, 0.150]	1.945	0.032	0.200
Thata	CC _{dev}	0.085 [0.005, 0.105]	2.022	0.045	0.200
20%	Intercent	1 501 [1 201 1 801]	10 307	<0.005	
2070	EC	1.391 [1.291, 1.091] 0.080 [0.007, 0.171]	2 121	<0.005	0.200
	CC.	0.089 [0.007, 0.171]	0.320	0.034	0.200
200/	Intercent	1.596 [1.296 1.996]	0.329	0.742 <0.005	0.815
30%	EC	1.380 [1.280, 1.880]	1 7 2 8	<0.003	0.201
	EC_{dev}	0.074 [-0.01, 0.137]	1.720	0.064	0.201
Lower Alpha	CC _{dev}	0.033 [-0.041, 0.11]	0.899	0.309	0.032
20%	_ Intercent	1 600 [1 301 1 9]	10 486	<0.005	
2070	FC.	0.011 [0.104] 0.0821	0.234	<0.005	0.815
	CC.	-0.011 [-0.104, 0.082]	-0.234	0.815	0.813
30%	Intercent	-0.029 [-0.112, 0.033] 1 588 [1 280, 1 887]	-0.098	<0.485	0.727
30%	EC	1.360 [1.269, 1.667]	10.413	< 0.003	0.584
	CC.	-0.049 [-0.139, 0.042]	-1.054	0.292	0.384
Contralatoral Homologue	CCdev	0.015 [-0.009, 0.095]	0.309	0.757	0.815
Area					
Delta	_				
20%	_ Intercent	0 398 [0 155 0 642]	3 203	0.001	
2070	ECday	-0.021[-0.087.0.044]	-0.633	0.527	0 584
		-0.038 [-0.097, 0.022]	-1.241	0.214	0.409
30%	Intercept	0.392 [0.148, 0.635]	3.155	0.002	01107
2070	ECdev	-0.03 [-0.095, 0.035]	-0.902	0.367	0.489
		-0.019 [-0.077, 0.04]	-0.62	0.535	0.584
Theta					
20%	Intercept	0.373 [0.135, 0.612]	3.064	0.002	
	ECdev	0.08 [0.018, 0.612]	2.532	0.011	0.045*
	CC _{dev}	0.032 [-0.025, 0.09]	1.097	0.273	0.409
30%	Intercept	0.379 [0.14, 0.618]	3.108	0.002	
	EC _{dev}	0.079 [0.018, 0.141]	2.537	0.011	0.045*
	CC _{dev}	0.009 [-0.05, 0.068]	0.303	0.762	0.540
Lower Alpha					
20%	Intercept	0.364 [0.119, 0.609]	2.915	0.004	
	ECdev	0.041 [-0.027, 0.109]	1.175	0.240	0.409
	CC _{dev}	0.053 [-0.008, 0.113]	1.711	0.087	0.260
30%	Intercept	0.353 [0.108, 0.598]	2.827	0.005	
-	ECdev	0.043 [-0.025, 0.111]	1.242	0.214	0.409
	CCday	0 084 [0 024 0 145]	2,736	0.006	0.045*

Table S2 Linear Mixed Model with offset_{dev} as dependent and EC_{dev} and CC_{dev} as independent variables for the peritumoral and contralateral homologue areas in patients

 $\frac{\text{CC}_{\text{dev}}}{\text{Note. * indicates p < 0.05, ** indicates p < 0.001; A random intercept was fitted for participants; CI = Confidence interval for coefficient; <math>p_{FDR}$ = False Discovery Rate adjusted p-value. The p-values were corrected for the different frequency bands and densities, separately for the two areas. Only the independent variables were included in this correction.

Tumor masks and area definitions

To define the peritumoral area, masks were either manually drawn in, slice by slice [LD], on post-gadolinium T1-weighted and FLAIR anatomical images,¹³ or automatically segmented using a neural network algorithm.¹⁴ Subsequently, for every subject, we calculated the volume overlap of the tumor masks with the regions of the BNA using FSL (version 6.0.5.1) to determine which BNA regions contained tumor. We then calculated the percentage overlap between the tumor and every region by dividing the normal volume of a region with the volume of the tumor mask within that region. Next, we plotted all percentage volume overlaps of all regions of all subjects in a histogram. This helped us to determine the percentage overlap that was the minimum overlap still commonly represented in patients. This minimum overlap was 12%. Therefore, regions were defined to be part of the peritumoral area when at least 12% of the region's volume overlapped with the tumor mask.

Functional network thresholding

There is no agreed standard pipeline to threshold functional networks as of yet. We decided to use a proportional threshold by keeping only the n% strongest links. We used multiple densities (20%, 30%) to investigate whether results would replicate across densities and therefore be robust. At first, we additionally calculated a threshold of 10%. However, networks only containing the 10% strongest links showed many unconnected, isolated nodes, not allowing us to investigate our graph theoretical measures of interest. Therefore, we decided not to go further with a 10% threshold in our final analysis. We used the same thresholding procedure for all subjects (patients and HCs) in the study.

Within-subject relationships using Pearson correlations

As a second approach to the within-subject analysis, we correlated regional offset_{dev} with CC_{dev} and EC_{dev} using Pearson's correlation in every participant. To obtain two grouplevel within-subject correlation values, we calculated the weighted mean of the correlations by first z-transforming the correlations using Fisher's z- transform and then weighting these by the number of regions that were used in the initial correlation and finally taking the

4

mean. To see whether this correlation was significant at the group-level, we used a Wilcoxon signed rank test against 0, in which we inputted each participant's Fisher z-transformed correlation value. To then test whether the relationship in patients differed from that in HCs, we used a Mann-Whitney U test with Fisher z-transformed correlations as input. Results from these analysis were similar to the LMM approach: offset_{dev} related negatively to lower alpha CC_{dev} in the rest of the brain of patients, but only for a 20% density after FDR correction (Table S10). This significantly differed from HCs for 30% density, who again did not show a relationship between offset_{dev} and CC_{dev} for the lower alpha band (Table S10). HCs again showed a positive relationship between delta offset_{dev} and CC_{dev}, but this did not differ significantly from patients.

The relationship between offset_{dev} and EC_{dev} for the lower alpha band was similar to the LMMs when using Pearson's correlations for patients with offset_{dev} relating negatively to EC_{dev} (Table S10). For HCs, the positive relationship between offset_{dev} and delta EC_{dev} , was similar as well and was now significantly different from that in patients (Table S10).

Measure, Area, Comparison	Delta		Th	ieta	Lower Alpha	
	20%	30%	20%	30%	20%	30%
Clustering Coefficient						
Peritumoral Area	0.370	0.364	0.257	0.246	0.129	0.155
(mean (SD))	(1.179)	(1.156)	(1.447)	(1.466)	(1.323)	(1.350)
Contralateral Homologue Area	0.276	0.335	0.289	0.297	0.233	0.225
(mean (SD))	(1.137)	(1.159)	(1.301)	(1.320)	(1.227)	(1.209)
Comparison Peritumoral and Contralateral Homologue	975	1134	1123	1132	862	955
Area $(U, (p, p_{FDR}))$	(0.306, 0.611)	(0.975, 0.975)	(0.920, 0.975)	(0.965, 0.975)	(0.084, 0.501)	(0.250, 0.611)
Eigenvector Centrality						
Peritumoral Area	0.139	0.128	-0.010	-0.017	-0.092	-0.036
(mean (SD))	(1.313)	(1.305)	(1.114)	(1.098)	(1.044)	(1.030)
Contralateral Homologue Area	0.037	0.035	0.058	0.072	-0.031	-0.025
(mean (SD))	(1.059)	(1.079)	(1.109)	(1.097)	(1.079)	(1.046)
Comparison Peritumoral and Contralateral Homologue	1075	1080	1100	1127	978	1043
Area $(U(n, n_{FDR}))$	(0.689, 0.940)	(0.712, 0.940)	(0.808, 0.940)	(0.940, 0.940)	(0.315, 0.940)	(0.549, 0.940)

Table S3 Network characteristics in the investigated areas of patients and the comparison between peritumoral and contralateral homologue areas

Note. * indicates p < 0.05, ** indicates p < 0.001; SD = Standard Deviation; U = U statistic of the Mann-Whitney U test; $p_{FDR} =$ False Discovery Rate adjusted p-value. P-values were corrected for the different frequency bands and densities. The means of the measures were calculated with the values standardized on the regional means and SD of HCs (dev).

Post-hoc subgroup analyses

In order to better understand the surprising relationship between CC_{dev} and offset_{dev}, we performed post-hoc analyses within patient subgroups according to molecular tumor types, namely IDH-wildtype glioblastoma, IDH-mutant, 1p/19q-codeleted, and IDH-mutant, 1p/19q non-codeleted glioma patients. All subgroups showed higher peritumoral activity in comparison to HCs (Table S4), while only patients with IDH-mutant, 1p/19q-codeleted and non-codeleted gliomas showed higher activity throughout the brain. Network characteristics per subgroup were similar to results from the entire group (Table S5, Table S6). The posthoc tests of within-subject analysis focused on the lower alpha band, based on the interesting relationships between CC_{dev} and offset_{dev} that we found in the group-level analyses of this study. The negative correlation between offset_{dev} and CC_{dev} was significant in patients with an IDH-wildtype glioblastoma (only for one density) for LMMs (Table S11), but not when performing the correlation analysis (Table S12). The relationship between offset_{dev} and EC_{dev} was negative for IDH-wildtype glioblastoma and IDH-mutant, 1p/19qcodeleted gliomas, in both the LMM and correlation analyses (Table S11, S12). Finally, we again did not find a significant relationship between peritumoral offset and these correlations for either of the molecular subtypes, further indicating that the observed effects are widespread and independent of activity differences directly around the tumor (Table S13).

Subtype	Peritumoral Area		Contralateral Homologue Area		Rest of the brain			Comparison Peritumoral Area to Homologue Area			
	mean (SD)	U	p (pFDR)	mean (SD)	U	p (pfdr)	mean (SD)	U	p (pFDR)	Ζ	р
IDH-wildtype glioblastoma	1.841 (1.579)	1309	<0.0001 (<0.001**)	0.292 (1.132)	864	0.199 (0.199)	0.339 (1.349)	1129	0.071 (0.071)	7	<0.001**
IDH- mutant, 1p/19q non-codeleted	1.666 (1.622)	1189	<0.0001 (<0.001**)	0.266 (1.166)	863	0.106 (0.106)	0.403 (1.174)	1125	0.002 (0.048*)	5	<0.001**
IDH-mutant, 1p/19q- codeleted	1.217 (1.302)	565	<0.001 (0.001*)	0.493 (1.020)	518	0.004 (0.013*)	0.409 (1.317)	696	0.032 (0.048*)	18	0.206

Table S4 Offset in the glioma subtypes for the investigated areas including comparison to HCs (whole brain) and between peritumoral and homologue areas

Note. * indicates p <0.05, ** indicates p<0.001; SD = Standard Deviation; U = U statistic of the Mann-Whitney U test; pFDR = False Discovery Rate adjusted p-value. P-values were corrected for the different areas.

Measure, Subgroup		Delta			Theta			Lower Alpha		
		20%			20%			20%		
	mean (SD)	U	$p \ (p_{FDR})$	mean (SD)	U	$p \ (p_{FDR})$	mean (SD)	U	$p \ (p_{FDR})$	
Clustering Coefficient										
IDH-wildtype glioblastoma	0.470 (1.269)	1523	<0.001 (<0.001**)	0.398 (1.557)	1292	0.001 (0.002*)	0.230 (1.242)	1164	0.036 (0.043*)	
IDH-mutant, 1p/19q non-codeleted	0.330 (1.199)	1325	<0.001 (<0.001**)	0.357 (1.380)	1325	<0.001 (<0.001**)	0.226 (1.204)	1135	0.013 (0.016*)	
IDH-mutant, 1p/19q codeleted	0.117 (1.176)	635	0.160 (0.160)	0.243 (1.296)	700	0.028 (0.074)	0.191 (1.250)	650	0.021 (0.074)	
HCs	0 (0.992)			0 (0.992)			0 (0.992)			
Eigenvector Centrality										
IDH-wildtype glioblastoma	-0.098 (1.111)	504	<0.001 (0.002*)	-0.043 (1.138)	673	0.041 (0.083)	-0.011 (1.116)	812	0.387 (0.464)	
IDH-mutant, 1p/19q non-codeleted	-0.050 (1.087)	551	0.008 (0.022*)	-0.023 (1.129)	772	0.471 (0.707)	-0.003 (1.101)	852	0.989 (0.989)	
IDH-mutant, 1p/19q codeleted	-0.047 (1.068)	379	0.093 (0.169)	-0.035 (1.089)	483	0.672 (0.735)	-0.042 (1.112)	379	0.093 (0.169)	
HCs	0 (0.992)			0 (0.992)			0 (0.992)			

Table S5 Network characteristics (for 20% density) in the rest of the brain of patients with different glioma subtypes including comparison to HCs (whole brain)

Note. * indicates p < 0.05, ** indicates p < 0.001; SD = Standard Deviation; U = U statistic of the Mann-Whitney U test; p_{FDR} = False Discovery Rate adjusted p-value. P-values were corrected for the different frequency bands and densities. The means of the measures were calculated with the values standardized on the regional means and SD of HCs (dev). Therefore, for HC the mean is 0 and SD around 1.

Measure, Subgroup	Delta				Theta			Lower Alpha		
		30%			30%			30%		
	mean (SD)	U	$p \ (p_{FDR})$	mean (SD)	U	$p \ (p_{FDR})$	mean (SD)	U	$p \ (p_{FDR})$	
Clustering Coefficient										
IDH-wildtype glioblastoma	0.579 (1.282)	1539	<0.001 (<0.001*)	0.431 (1.509)	1329	<0.001 (<0.001**)	0.207 (1.203)	1150	0.048 (0.048*)	
IDH-mutant, 1p/19q non-codeleted	0.372 (1.194)	1350	<0.001 (<0.001**)	0.374 (1.330)	1350	<0.001 (<0.001**)	0.213 (1.155)	1102	0.029 (0.029*)	
IDH-mutant, 1p/19q codeleted	0.230 (1.195)	709	0.021 (0.074)	0.269 (1.303)	691	0.037 (0.074)	0.191 (1.179)	655	0.099 (0.135)	
HCs	0 (0.992)			0 (0.992)			0 (0.992)			
Eigenvector Centrality										
IDH-wildtype glioblastoma	-0.089 (1.135)	481	<0.001 (0.002*)	-0.035 (1.143)	688	0.056 (0.084)	-0.003 (1.107)	907	0.949 (0.949)	
IDH-mutant, 1p/19q non-codeleted	-0.049 (1.098)	538	0.005 (0.022*)	-0.017 (1.133)	801	0.643 (0.771)	0.004 (1.087)	942	0.439 (0.707)	
IDH-mutant, 1p/19q codeleted	-0.046 (1.087)	344	0.035 (0.169)	-0.021 (1.090)	490	0.735 (0.735)	-0.026 (1.090)	387	0.113 (0.169)	
HCs	0 (0.992)			0 (0.992)			0 (0.992)			

Table S6 Network characteristics (for 30% densi	ty) in the rest of the brain of	patients with different gli	ioma subtypes including	comparison to HCs (whole brain)
	27		21 0	

Note. * indicates p < 0.05, ** indicates p < 0.001; SD = Standard Deviation; U = U statistic of the Mann-Whitney U test; p_{FDR} = False Discovery Rate adjusted p-value. P-values were corrected for the different frequency bands and densities. The means of the measures were calculated with the values standardized on the regional means and SD of HCs (dev). Therefore, for HC the mean is 0 and SD around 1.

Measure,	De	elta	Th	eta	Lower	Alpha
Group	20%	30%	20%	30%	20%	30%
CC and offset						
Patients (r [p _{binom}])	0.562 [0,<0.001]**	0.613 [0<0.001]**	0.598 [0, <0.001]**	0.629 [0, <0.001]**	0.579 [0, <0.001]**	0.608 [0, <0.001]**
HCs $(r [p_{binom}])$	0.757 [0, <0.001]**	0.769 [0, <0.001]**	0.705 [0, <0.001]**	0.715 [0, <0.001]**	0.653 [0, <0.001]**	0.703 [0, <0.001]**
EC and offset						
Patients (r [p _{binom}])	0.124 [0.522, 0.549]	0.099 [0.591, 0.618]	0.405 [0.028, 0.038]*	0.339 [0.061, 0.075]	0.212 [0.308, 0.333]	0.227 [0.269, 0.295]
HCs (r [p _{binom}])	0.145 [0.402, 0.429]	0.119 [0.481, 509]	0.353 [0.019, 0.027]*	0.326 [0.023, 0.033]*	0.293 [0.192, 0.214]	0.291 [0.190, 0.214]

Table S7 Spin-test results for patients and HCs

Note. * indicates p <0.05, ** indicates p<0.001; r = Pearson's correlation; p_{binom} = binomial confidence interval for the p-value.

Frequency, Density	Variable	Coefficient [CI]	Ζ	р	<i>p</i> _{FDR}
Delta					
20%	Intercept	0 [-0,171, 0.171]	0	1	
	EC_{dev}	0.048 [0.032, 0.065]	5.710	< 0.001	< 0.001**
	Group _{patients} x EC _{dev}	-0.043 [-0.064, -0.022]	-3.934	< 0.001	< 0.001**
	CC_{dev}	0.023 [0.005, 0.040]	2.588	0.009	0.023*
	Group _{patients} x CC _{dev}	-0.012 [-0.033, 0.01]	-1.075	0.282	0.424
30%	Intercept	0 [-0,171, 0.171]	0	1	
	EC_{dev}	0.047 [0.031, 0.063]	5.596	< 0.001	< 0.001**
	Group _{patients} x EC _{dev}	-0.048 [-0.07, -0.027]	-4.478	< 0.001	< 0.001**
	CC_{dev}	0.027 [0.010, 0.044]	3.115	0.002	0.006*
	Group _{patients} x CC _{dev}	-0.014 [-0.035, 0.007]	-1.284	0.199	0.319
Theta					
20%	Intercept	0 [-0,171, 0.171]	0	1	
	EC_{dev}	-0.008 [-0.025, 0.008]	-0.983	0.326	0.434
	Group _{patients} x EC _{dev}	0.022 [0, 0.043]	1.995	0.046	0.100
	CC_{dev}	0.005 [-0.012, 0.022]	0.553	0.581	0.682
	Group _{patients} x CC _{dev}	0.002 [-0.019, 0.023]	0.164	0.869	0.869
30%	Intercept	0 [-0,171, 0.171]	0	1	
	EC_{dev}	-0.008 [-0.025, 0.008]	-0.999	0.318	0.434
	Group _{patients} x EC _{dev}	0.019 [-0.002, 0.04]	1.77	0.076	0.141
	CC_{dev}	0.016 [-0.001, 0.033]	1.795	0.073	0.141
	Group _{patients} x CC _{dev}	-0.008 [-0.03, 0.013]	-0.745	0.456	0.576
Lower Alpha					
20%	Intercept	0 [-0,171, 0.171]	0	1	
	EC_{dev}	-0.004 [-0.020, 0.013]	-0.424	0.672	0.701
	Group _{patients} x EC _{dev}	-0.053 [-0.074, -0.032]	-5.436	< 0.001	< 0.001**
	CC_{dev}	0.005[-0.013, 0.022]	0.529	0.597	0.682
	Group _{patients} x CC _{dev}	-0.030 [-0.051, -0.008]	-2.717	0.007	0.018*
30%	Intercept	0 [-0,171, 0.171]	0	1	
	$\mathrm{EC}_{\mathrm{dev}}$	-0.004 [-0.020, 0.013]	-0.436	0.663	0.701
	Group _{patients} x EC _{dev}	-0.053 [-0.074, -0.032]	-4.883	< 0.001	<0.001**
	CC_{dev}	0.016 [-0,002, 0.033]	1.719	0.086	0.147
	Grouppotients x CCdev	-0.059[-0.0810.037]	-5 321	< 0.001	<0.001**

Table S8 Linear Mixed Model with offset_{dev} as dependent and EC_{dev} and CC_{dev} as independent variables including the interaction between patients and HCs to test potential differences

Note. * indicates p <0.05, ** indicates p<0.001; A random intercept was fitted for participants; CI = Confidence interval for coefficient; p_{FDR} = False Discovery Rate adjusted p-value. The p-values were corrected for the different frequency bands and densities. Only the independent variables were included in this correction.

Frequency, Density	Variable	Coefficient [CI]	Ζ	р	P FDR
Delta					
20%	Intercept	0 [-0,147, 0.147]	0	1	
	EC_{dev}	0.048 [0.034, 0.062]	6.677	< 0.001	< 0.001**
	CC_{dev}	0.023 [0.008, 0.037]	3.026	0.002	0.007*
30%	Intercept	0 [-0,147, 0.147]	0	1	
	EC_{dev}	0.047 [0.033, 0.061]	6.543	< 0.001	< 0.001**
	CC_{dev}	0.027 [0.013, 0.042]	3.642	< 0.001	0.001*
Theta					
20%	Intercept	0 [-0,147, 0.147]	0	1	
	EC_{dev}	-0.008 [-0.023, 0.006]	-1.148	0.251	0.377
	CC_{dev}	0.005 [-0.01, 0.02]	0.645	0.518	0.622
30%	Intercept	0 [-0,147, 0.147]	0	1	
	EC_{dev}	-0.008 [-0.023, 0.006]	-1.166	0.243	0.377
	CC_{dev}	0.016 [0.001, 0.031]	2.096	0.036	0.087
Lower Alpha					
20%	Intercept	0 [-0,147, 0.147]	0	1	
	EC_{dev}	-0.004 [-0.018, 0.011]	-0.494	0.622	0.622
	CC_{dev}	0.005 [-0.01, 0.02]	0.616	0.538	0.622
30%	Intercept	0 [-0,147, 0.147]	0	1	
	EC_{dev}	-0.004 [-0.018, 0.01]	-0.508	0.611	0.622
	CC_{dev}	0.016 [0, 0.031]	2.003	0.045	0.090

Table S9 Linear Mixed Model with offset _{dev} as dependent and EC _{dev} and CC _{dev} as independent variables for
the whole brain of HCs

Note. * indicates p <0.05, ** indicates p<0.001; A random intercept was fitted for participants; CI = Confidence interval for coefficient; p_{FDR} = False Discovery Rate adjusted p-value. The p-values were corrected for the different frequency bands and densities. Only the independent variables were included in this correction.

Measure, Group	De	elta	Th	ieta	Lower	Alpha
	20%	30%	20%	30%	20%	30%
CC_{dev} and $offset_{dev}$						
Patients rest of the brain $(r(p, p_{FDR}))$	0.032	0.006	0.022	0.019	-0.035	-0.049
	(0.789, 0.789)	(0.721, 0.789)	(0.099, 0.179)	(0.119, 0.179)	(0.043, 0.130)	(0.007, 0.046*)
HCs $(r(p, p_{FDR}))$	0.029	0.030	0.014	0.028	0.008	0.018
	(0.014, 0.037*)	(0.019, 0.037*)	(0.195, 0.233)	(0.017, 0.037*)	(0.419, 0.419)	(0.144, 0.216)
Group comparison ($U(p, p_{FDR})$)	2222 (0.174, 0.280)	2232 (0.187, 0.280)	2671 (0.664, 0.681)	$2459 \\ (0.681, 0.681)$	2072 (0.049, 0.149)	1818 (0.003, 0.017*)
EC_{dev} and $offset_{dev}$						
Patients rest of the brain $(r (p, p_{FDR}))$	0.002	-0.004	0.021	0.017	-0.065	-0.058
	(0.643, 0.643)	(0.489, 0.587)	(0.225, 0.397)	(0.265, 0.397)	(0.009, 0.041*)	(0.014, 0.041*)
HCs $(r(p, p_{FDR}))$	0.066	0.063	0.001	-0.001	-0.007	-0.008
	(<0.001, <0.001**)	(<0.001, <0.001**)	(0.653, 0.986)	(0.771, 0.986)	(0.986, 0.986)	(0.928, 0.986)
Group comparison ($U(p, p_{FDR})$)	1717	1756	2685	2714	2113	2128
	(<0.001, 0.004*)	(0.001, 0.003*)	(0.624, 0.624)	(0.544, 0.624)	(0.072, 0.124)	(0.082, 0.124)

Table S10 Within-subject correlation results for patients (rest of the brain) and HCs (whole brain) and their group comparison

Notes. * indicates p <0.05, ** indicates p<0.001; r = Pearson's correlation; p_{FDR} = False Discovery Rate adjusted p-value. The p-values were corrected for the different frequency bands and densities.

Frequency, Density	Variable	Coefficient [CI]	Standardized Coefficient (betas)	Z	р	<i>p</i> _{FDR}
IDH-wt glio	blastoma		(betus)			
Lower						
Alpha 20%	Intercept	0.349 [0.063, 0.635]		2.393	0.017	
	EC_{dev}	-0.118 [-0.144, - 0.092]	-0.098	-8.812	< 0.001	<0.001**
	CC_{dev}	-0.021 [-0.046, 0.005]	-0.019	-1.579	0.114	0.114
30%	Intercept	0.357 [0.072, 0.642]		2.452	0.014	
	$EC_{dev} \\$	-0.101 [-0.127, - 0.075]	-0.083	-7.646	< 0.001	<0.001**
	CC_{dev}	-0.058 [-0.084, - 0.032]	-0.051	-4.363	< 0.001	<0.001**
IDH-mutant	, 1p19q non	-codeleted				
Lower						
Alpha 20%	Intercept	0.402 [0.135, 0.669]		2.954	0.003	
	ECdev	0.008 [-0.016, 0.031]	0.007	0.659	0.509	0.547
	CCdev	0.007 [-0.16, 0.03]	0.007	0.602	0.547	0.547
30%	Intercept	0.136 [0.134, 0.668]		2.947	0.003	
	ECdev	0.017 [-0.007, 0.04]	0.015	1.38	0.167	0.547
	CCdev	0.012 [-0.012, 0.036]	0.012	0.951	0.342	0.547
IDH-mutant	, 1p19q cod	eleted				
Lower						
Alpha 20%	Intercept	0.452 [0.071, 0.834]		2.325	0.020	
	EC_{dev}	-0.066 [-0.102, -	-0.056	-3.647	< 0.001	< 0.001**
	CC_{dev}	-0.018 [-0.051, 0.015]	-0.017	-1.069	0.285	0.285
30%	Intercept	0.456 [0.076, 0.837]		2351	0.019	
	EC_{dev}	-0.069 [-0.105, -	-0.057	-3.838	< 0.001	<0.001**
	CC_{dev}	-0.035 [-0.07, -0.001]	-0.032	-1.991	0.047	0.062

Table S11 Linear Mixed Model with offset_{dev} as dependent variable and lower alpha EC_{dev} and CC_{dev} as independent variables for the different subtypes of glioma (rest of the brain)

Note. * indicates p <0.05, ** indicates p<0.001; A random intercept was fitted for participants; CI = Confidence interval for coefficient; $p_{FDR} = False$ Discovery Rate adjusted p-value. The p-values were corrected for the two densities. Only the independent variables were included in this correction.

Subtype	CC _{dev} and	l offset _{dev}	EC _{dev} and offset _{dev}		
	20%	30%	20%	30%	
IDH-wildtype glioblastoma	-0.0345	-0.061	-0.100	-0.090	
$(r(p, p_{FDR}))$	(0.382, 0.382)	(0.100, 0.200)	(0.019, 0.029*)	(0.029, 0.029*)	
IDH-mutant, 1p/19q non-codeleted	0.012	0.010	0.012	0.021	
$(r(p, p_{FDR}))$	(0.779, 0.849)	(0.849, 0.849)	(0.831, 0.831)	(0.582, 0.831)	
IDH-mutant, 1p/19q co-deleted	-0.055	-0.070	-0.101	-0.098	
$(r(p, p_{FDR}))$	(0.159, 0.159)	(0.079, 0.159)	(0.020, 0.020*)	(0.008, 0,016*)	

Table S12 Within-subject correlation results for the different glioma subgroups (for the lower Alpha band)

Note. * indicates p <0.05, ** indicates p<0.001; r = Pearson's correlation; p_{FDR} = False Discovery Rate adjusted p-value. The p-values were corrected for the two densities.

Subtype	Peritumoral Area all regions				Peritumoral Area 3 highest activity regions			
	CC _{dev} and offset _{dev} Lower Alpha		EC _{dev} and offset _{dev} Lower Alpha		CC _{dev} and offset _{dev} Lower Alpha		EC _{dev} and offset _{dev} Lower Alpha	
	20%	30%	20%	30%	20%	30%	20%	30%
Patients whole group (<i>r</i> (<i>p</i> , <i>p</i> _{FDR}))	-0.027 (0.829, 0.829)	-0.065 (0.601, 0.829)	-0.058 (0.638, 0.638)	-0.076 (0.542, 0.638)	0.003 (0.979, 0.979)	-0.008 (0.947, 0.979)	0.029 (0.813, 0.874)	0.019 (0.874, 0.874)
IDH-wildtype glioblastoma $(r (p, p_{FDR}))$	0.063 (0.769, 0.944)	0.015 (0.943, 0.943)	-0.222 (0.296, 0.338)	-0.204 (0.338, 0.338)	0.129 (0.545, 0.579)	0.119 (0.579, 0.579)	-0.134 (0.532, 0.606)	-0.111 (0.606, 0.606)
IDH-mutant, 1 p /19 q non- codeleted (r (p , p_{FDR}))	-0.203 (0.353, 0.353)	-0.209 (0.339, 0.353)	-0.055 (0.803, 0.803)	-0.108 (0.622, 0.803)	-0.198 (0.366, 0.366)	-0.199 (0.361, 0.366)	-0.059 (0.787, 0.682)	-0.090 (0.682, 0.787)
IDH-mutant, 1p/19q-codeleted $(r (p, p_{FDR}))$	-0.003 (0.993, 0.993)	-0.182 (0.591, 0.993)	0.138 (0.685, 0.692)	0.135 (0.692, 0.692)	-0.123 (0.717, 0.717)	-0.303 (0.363, 0.717)	0.145 (0.670, 0.739)	0.114 (0.739, 0.739)

Table S13 Correlations between peritumoral offset and associations in the rest of the brain

Notes. * indicates p < 0.05, ** indicates p < 0.001; r = Pearson's correlation; $p_{FDR} = False$ Discovery Rate adjusted p-value. The p-values were corrected for the two densities.

References

- 1. Douw L, van Dellen E, de Groot M, et al. Epilepsy is related to theta band brain connectivity and network topology in brain tumor patients. BMC Neurosci. 2010;11(1):103.
- 2. van Dellen E, Douw L, Hillebrand A, et al. MEG Network Differences between Low- and High-Grade Glioma Related to Epilepsy and Cognition. PLoS ONE. 2012;7(11):e50122.
- 3. van Dellen E, de Witt Hamer PC, Douw L, et al. Connectivity in MEG resting-state networks increases after resective surgery for low-grade glioma and correlates with improved cognitive performance. NeuroImage: Clinical. 2013;2:1-7.
- 4. Carbo EWS, Hillebrand A, van Dellen E, et al. Dynamic hub load predicts cognitive decline after resective neurosurgery. Sci Rep. 2017;7(1):42117.
- 5. Derks J, Wesseling P, Carbo EWS, et al. Oscillatory brain activity associates with neuroligin-3 expression and predicts progression free survival in patients with diffuse glioma. J Neurooncol. 2018;140(2):403-412.
- Derks J, Kulik S, Wesseling P, et al. Understanding cognitive functioning in glioma patients: The relevance of IDH-mutation status and functional connectivity. Brain Behav. 2019;9(4):e01204.
- 7. Belgers V, Numan T, Kulik SD, et al. Postoperative oscillatory brain activity as an add-on prognostic marker in diffuse glioma. J Neurooncol. 2020;147(1):49-58.
- 8. Numan T. Non-invasively measured brain activity and radiological progression in diffuse glioma. Sci Rep 2021;(11):18990.
- 9. Derks J, Kulik SD, Numan T, et al. Understanding Global Brain Network Alterations in Glioma Patients. Brain Connectivity. 2021;11(10):865-874.
- Röttgering JG, Belgers V, De Witt Hamer PC, Knoop H, Douw L, Klein M. Toward unraveling the correlates of fatigue in glioma. Neuro-Oncology Advances. 2022;4(1):vdac169.
- 11. Röttgering JG, Varkevisser TMCK, Gorter M, et al. Symptom networks in glioma patients: understanding the multidimensionality of symptoms and quality of life. *J Cancer Surviv*. 2023.
- 12. van Lingen, M.R., Breedt, L.C., Geurts, J.J. et al. The longitudinal relation between executive functioning and multilayer network topology in glioma patients. Brain Imaging and Behavior. 2023.
- 13. Derks J, Dirkson AR, de Witt Hamer PC, et al. Connectomic profile and clinical phenotype in newly diagnosed glioma patients. NeuroImage: Clinical. 2017;14:87-96.

14. Bouget D. Preoperative brain tumor imaging: models and software for segmentation and standardized reporting. Frontiers in Neurology. 2022;13:18.