Precision Gestational Diabetes Treatment: Systematic review and Meta-analyses

Jamie L Benham, Véronique Gingras, Niamh-Maire McLennan, Jasper Most, Jennifer M Yamamoto, Catherine E Aiken, Susan E Ozanne, Reynolds RM on behalf of ADA/EASD PMDI

Supplementary Text S1 Search Strategy

Supplementary Figures 1.1 to 1.13 Forest Plots (A) and Funnel Plots (B) for GDM to be adequately managed with lifestyle measures without need for additional pharmacological therapy

Supplementary Figures 2.1 to 2.12 Forest Plots (A) and Funnel Plots (B) for Oral Pharmacological Agent adequate in controlling glucose vs not adequate

Supplementary Table 1 Narrative summary of studies not included in the metaanalysis

Supplementary Text S1 Search Strategy

PubMed Search

Systematic review 1: Lifestyle interventions

#1 Diabetes, Gestational"[Mesh]

#2 gestational diabetes"[Title/Abstract] OR GDM[Title/Abstract] OR pregnancy induced diabetes[Title/Abstract] OR pregnancy-induced diabetes

#3 #1 OR #2

a.#4 ((((("Body-Weight Trajectory"[Mesh]) OR "Body Mass Index"[Mesh]) OR "Body Weight"[Mesh]) OR "Body Composition"[Mesh]) OR "Waist Circumference"[Mesh]) OR weight gain[MeSH]

#5 bodyweight*[Title/Abstract] OR "body weight*"[Title/Abstract] OR bodyweight*[Title/Abstract] OR bmi[Title/Abstract] OR "body mass index"[Title/Abstract] OR "body composition"[Title/Abstract] OR bodycomposition[Title/Abstract] OR bodycomposition[Title/Abstract] OR "body fat"[Title/Abstract] OR bodyfat body-fat[Title/Abstract] OR "waist circumfer*"[Title/Abstract] OR waistcircumfer*[Title/Abstract] OR waistcircumfer*[Title/Abstract] OR "weight gain"[Title/Abstract] OR weight-gain[Title/Abstract] OR weightgain[Title/Abstract]

#6 #4 OR #5

b. #7 ((("Diet"[Mesh]) OR "Dietary Supplements"[Mesh]) OR "Diet, Carbohydrate-Restricted"[Mesh]) OR "Diet, Fat-Restricted"[Mesh]) OR "Caloric Restriction"[Mesh] OR nutrition[MeSH]

#8 diet*[Title/Abstract] OR "caloric restrict*"[Title/Abstract] OR calory-restrict*[Title/Abstract] OR eating[Title/Abstract] OR macronutri*[Title/Abstract] OR nutrition*[Title/Abstract] OR protein*[Title/Abstract] OR meal[Title/Abstract] OR beverage*[Title/Abstract] OR meat*[Title/Abstract] OR behavior*[Title/Abstract] OR behaviour*[Title/Abstract] OR habit*[Title/Abstract] OR sleep*[Title/Abstract] OR food*[Title/Abstract]

#9 #7 OR #8

c. #10 exercise[MeSH] OR physical fitness [MeSH] OR lifestyle [MeSH] OR healthy lifestyle [MeSH] OR sedentary behavior [MeSH]

#11 exercis*[Title/Abstract] OR "physical activit*"[Title/Abstract] OR fitness[Title/Abstract] OR sedentary[Title/Abstract] OR walk*[Title/Abstract] OR stretch*[Title/Abstract] OR lifestyle*[Title/Abstract] OR "life style*"[Title/Abstract] OR life-style*[Title/Abstract] OR wellness[Title/Abstract] OR "strength train*"[Title/Abstract] OR strength-train*[Title/Abstract] OR

#12 #10 OR #11

#13 #6 OR #9 OR #12

#14 #3 AND #13

#15 ("controlled trial*" OR randomi* OR "observational stud*" OR RCT OR "retrospective stud*" OR Metformin in Gestational Diabetes trial) OR ("controlled trial*"[Publication Type] OR randomi*[Publication Type] OR "observational stud*"[Publication Type] OR RCT[Publication Type] OR "retrospective stud*"[Publication Type]) #16 #14 AND #15

#17 #16 filters: humans, English

Systematic review 2: Pharmacological interventions

#1 "Diabetes, Gestational"[Mesh]

#2 "gestational diabetes"[Title/Abstract] OR GDM[Title/Abstract] OR pregnancy induced diabetes[Title/Abstract] OR pregnancy-induced diabetes

#3 #1 OR #2

#4 "Insulin"[Mesh]

#5 ((("Metformin"[Mesh]) OR "Sulfonylurea Compounds"[Mesh]) OR "Glyburide"[Mesh]) OR "Secretagogues"[Mesh]

#6 insulin*[Title/Abstract] OR novolin[Title/Abstract] OR iletin[Title/Abstract] OR sulfonylurea*[Title/Abstract] OR Acetohexamide[Title/Abstract] OR Carbutamide[Title/Abstract] OR Chlorpropamide[Title/Abstract] OR Gliclazide[Title/Abstract] OR Glyburide[Title/Abstract] OR Tolazamide[Title/Abstract] OR Tolbutamide[Title/Abstract] OR sulphonylurea*[Title/Abstract] OR glibenclamide[Title/Abstract] OR secretagogues[Title/Abstract] OR "pharmacological therapy"[Title/Abstract]

#7 #4 OR #5 OR #6

#8 #3 AND #7

#9 ("controlled trial*" OR randomi* OR "observational stud*" OR RCT OR "retrospective stud*" OR Metformin in Gestational Diabetes trial) OR ("controlled trial*"[Publication Type] OR randomi*[Publication Type] OR "observational stud*"[Publication Type] OR RCT[Publication Type] OR "retrospective stud*"[Publication Type])

#10 #8 AND #9

#11 #10 Filters: humans, English

Embase search

#1 'pregnancy diabetes mellitus'/exp

#2 'gestational diabetes':ab,ti OR gdm:ab,ti OR 'pregnancy-induced diabetes':ab,ti OR 'pregnancy induced diabetes':ab,ti

#3 #1 OR #2

Systematic review 1: Lifestyle interventions

#4 'weight trajectory' AND 'body weight'/exp OR 'body mass'/exp OR 'body weight'/exp OR 'body composition'/exp OR 'waist circumference'/exp OR 'body weight gain'/exp

#5 bodyweight*:ab,ti OR 'body weight*:ab,ti OR 'body-weight*or bmi':ab,ti OR 'body mass index':ab,ti OR bodycomposition:ab,ti OR 'body composition':ab,ti OR 'body fator bodyfat':ab,ti OR 'waist circumfer*':ab,ti OR 'waistcircumfer*or waist-circumfer*':ab,ti OR 'weight gain':ab,ti OR weightgain:ab,ti

#6 #4 OR #5

#7 'diet'/exp OR 'dietary supplement'/exp OR 'low carbohydrate diet'/exp OR 'low fat diet'/exp OR 'caloric restriction'/exp OR 'nutrition'/exp

#8 diet*:ab,ti OR 'caloric restrict*':ab,ti OR 'calory restrict*':ab,ti OR eating:ab,ti OR macronutri*:ab,ti OR nutrition*:ab,ti OR protein*:ab,ti OR meal:ab,ti OR beverage*:ab,ti OR meat*:ab,ti OR behavior*:ab,ti OR behaviour*:ab,ti OR habit*:ab,ti OR sleep*:ab,ti OR food*:ab,ti

#9 #7 OR #8

#10 'exercise'/exp OR 'fitness'/exp OR 'lifestyle'/exp OR 'healthy lifestyle'/exp OR 'sedentary lifestyle'/exp

#11 exercis*:ab,ti OR 'physical activit*':ab,ti OR fitness:ab,ti OR sedentary:ab,ti OR walk*:ab,ti OR stretch*:ab,ti OR lifestyle*:ab,ti OR 'life style*':ab,ti OR wellness:ab,ti OR 'strength train*':ab,ti

#12 #10 OR #11

#13 #6 OR #9 OR #12

Study design filter

#14 ((randomized:ab,ti OR randomised:ab,ti OR randomly:ab,ti OR rct:ab,ti OR retrospective stud*':ab,ti OR controlled) AND clinical AND trial:ab,ti OR controlled) AND trial:ab,ti OR 'randomized controlled trial'/de OR 'controlled clinical trial'/de

Combination search RQ1 Lifestyle interventions

GDM + Lifestyle interventions + study design filter

#15 #3 AND #13 AND #14

AND [embase]/lim NOT ([embase]/lim AND [medline]/lim)

Filters Human, English

NOT 'conference abstract':it

Systematic review 2: Pharmacological interventions

#16 'insulin'/exp

#17 'metformin'/exp OR 'sulfonylurea derivative'/exp OR 'glibenclamide'/exp OR 'secretagogue'/exp

#18 (insulin* OR novolin OR iletin OR sulfonylurea* OR acetohexamide OR carbutamide OR chlorpropamide OR gliclazide OR glyburide OR tolazamide OR tolbutamide OR sulphonylurea* OR glibenclamide OR secretagogues OR pharmacological) AND therapy

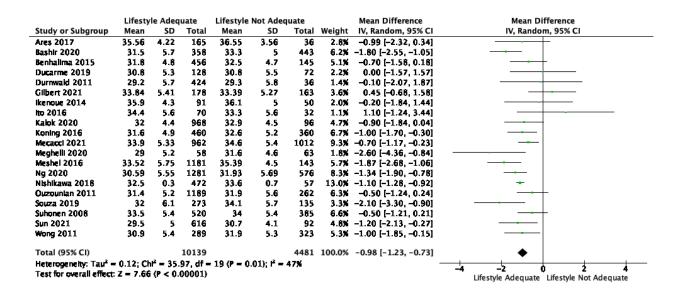
#19 #16 OR #17 OR #18

Combination search RQ2 Pharmacological interventions

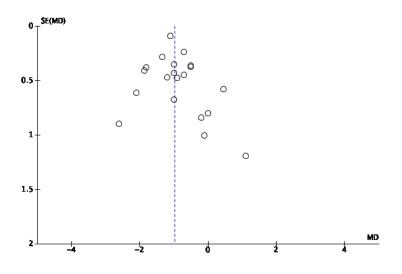
#6 GDM + Pharmacological interventions + study design filter

#3 AND #19 AND #13

AND [embase]/lim NOT ([embase]/lim AND [medline]/lim)

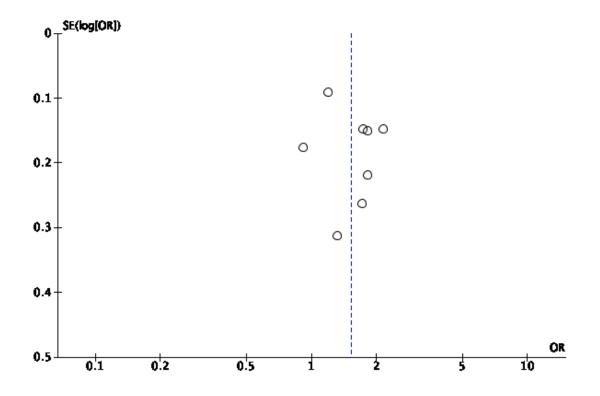

Filters Human, English

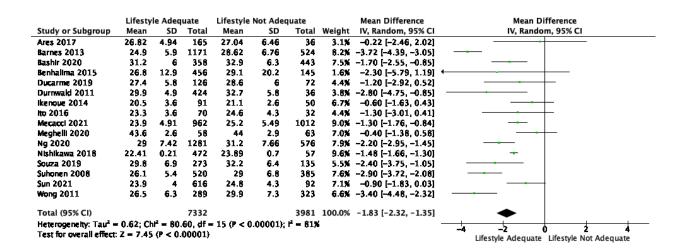
NOT 'conference abstract':it


Supplementary Figures 1.1 to 1.13

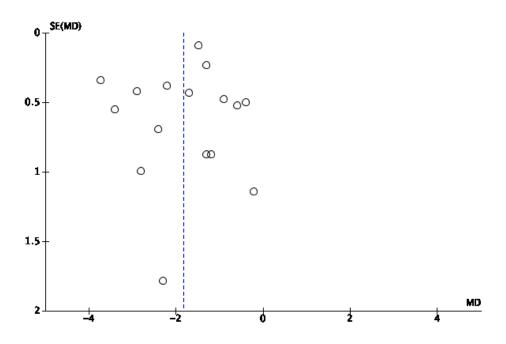
Forest Plots (A) and Funnel Plots (B) for GDM to be adequately managed with lifestyle measures without need for additional pharmacological therapy

Supplementary Figure 1.1A Forest plot for included studies comparing if lifestyle was adequate or not adequate for maternal age

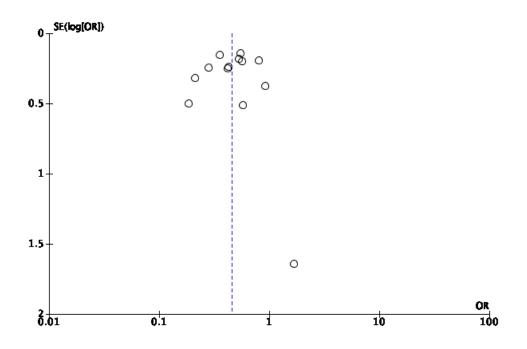

Supplementary Figure 1.1B Funnel Plot for Assessment of Publication Bias


Supplementary Figure 1.2A Forest plot for included studies comparing if lifestyle was adequate or not adequate for nulliparity

	Lifestyle Ad	equate	Lifestyle Not Ac	lequate		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M–H, Random, 95% CI	M–H, Random, 95% CI
Benhalima 2015	163	456	34	145	10.9%	1.62 [1.16, 2.79]	
Ducarme 2019	46	126	23	72	7.5%	1.31 [0.71, 2.42]	
Koning 2016	223	460	110	360	14.3×	2.14 [1.60, 2.86]	
Mecacci 2021	590	962	578	1012	17.0%	1.19 [0.99, 1.43]	- - -
Ouzounian 2011	497	1169	77	262	14.3%	1.73 [1.29, 2.31]	
Souza 2019	74	273	24	135	9.1%	1.72 [1.03, 2.88]	
Suhonen 2008	167	520	91	385	14.1%	1.81 [1.35, 2.44]	_ _
Wong 2011	85	289	101	323	12.9%	0.92 [0.65, 1.29]	
Total (95% CI)		4275		2694	100.0%	1.53 [1.23, 1.89]	•
Total events	1867		1038				
Heterogeneity: Tau2 =	= 0.06; Chl ² =	23.47, di	f = 7 (P = 0.001);	r ² = 70%		-	
Test for overall effect							0.1 0.2 0.5 1 2 5 10 Lifestyle Adequate Lifestyle Not Adequate

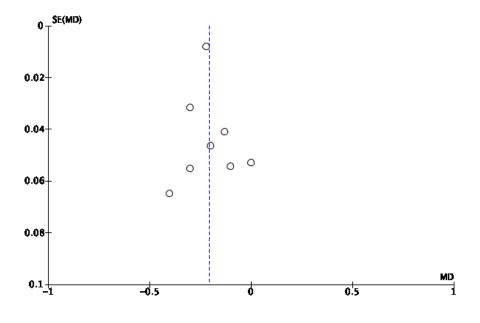

Supplementary Figure 1.2B Funnel Plot for Assessment of Publication Bias

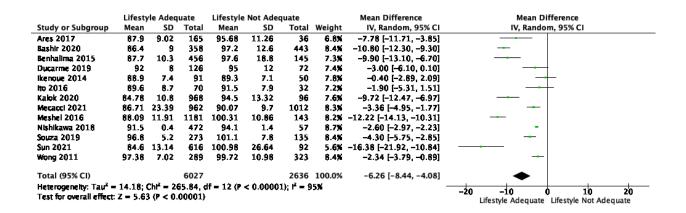
Supplementary Figure 1.3A Forest plot for included studies comparing if lifestyle was adequate or not adequate for body mass index


Supplementary Figure 1.3B Funnel Plot for Assessment of Publication Bias

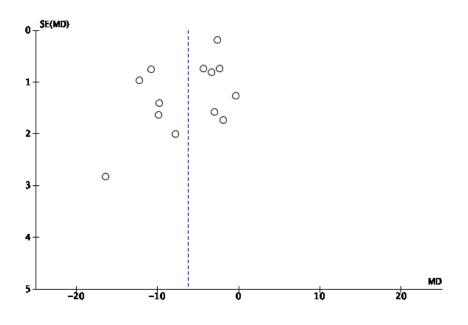
Supplementary Figure 1.4A Forest plot for included studies comparing if lifestyle was adequate or not adequate for previous history of gestational diabetes

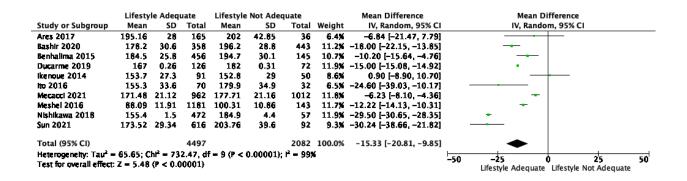
	Lifestyle Ad	equate	Lifestyle Not Ad	lequate		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M–H, Random, 95% Cl
Benhalima 2015	47	456	31	145	8.4%	0.42 [0.26, 0.70]	
Ducarme 2019	23	126	14	72	5.6X	0.93 [0.44, 1.94]	-
Ikenoue 2014	1	91	0	50	0.5%	1.67 [0.07, 41.86]	
Kalok 2020	151	968	29	96	6.6X	0.43 [0.27, 0.68]	
Koning 2016	25	460	61	360	8.6X	0.28 [0.17, 0.46]	_ -
Krispin 2021	61	314	76	328	10.2%	0.80 [0.55, 1.17]	-++
Mecacci 2021	85	962	151	1012	11.6X	0.55 [0.42, 0.73]	
Meghelli 2020	6	58	24	63	3.6%	0.19 [0.07, 0.50]	.
Meshel 2016	293	1181	55	143	10.5%	0.53 [0.37, 0.76]	
Nishikawa 2018	25	472	5	57	3.7%	0.58 [0.21, 1.58]	
Ouzounlan 2011	185	1189	69	262	11.5%	0.36 [0.27, 0.48]	
Souza 2019	17	273	32	135	6.7%	0.21 [0.11, 0.40]	_ -
Wong 2011	48	269	64	323	9.9%	0.57 [0.38, 0.84]	
Total (95% CI)		6839		3046	100.0%	0.46 [0.37, 0.57]	•
Total events	967		651				-
Heterogeneity: Tau ² -);	6		0.01 0.1 1 10 100
Test for overall effect	: Z = 6.86 (P <	< 0.0000:	1)				Lifestyle Adequate Lifestyle Not Adequate

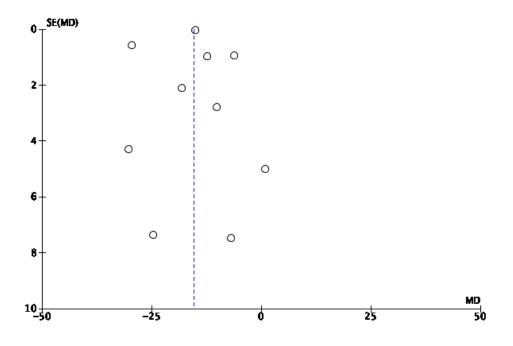

Supplementary Figure 1.4B Funnel Plot for Assessment of Publication Bias


Supplementary Figure 1.5A Forest plot for included studies comparing if lifestyle was adequate or not adequate for haemoglobin A1C

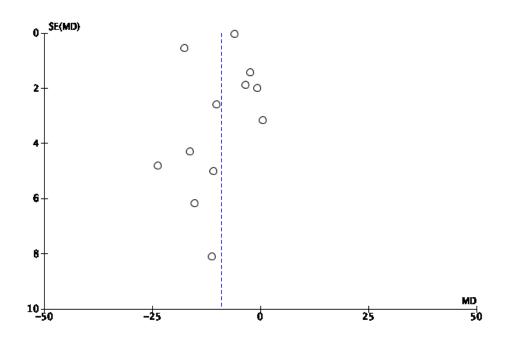
	Lifesty	le Adeq	uate	Lifestyle	Not Adeo	uate		Mean Difference		Mean Dif	ference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Randor	n, 95% Cl	
Barnes 2013	5.2	0.6	1171	5.5	0.6	524	14.3%	-0.30 [-0.36, -0.24]				
Benhalima 2015	5.2	0.5	456	5.5	0.6	145	11.1%	-0.30 [-0.41, -0.19]				
Ducarme 2019	5.2	0.3	126	5.3	0.4	72	11.3%	-0.10 [-0.21, 0.01]				
Gilbert 2021	5.3	0.31	176	5.5	0.51	163	12.3%	-0.20 [-0.29, -0.11]				
Ikenoue 2014	5.4	0.3	91	5.4	0.3	50	11.4%	0.00 [-0.10, 0.10]			_	
Nishikawa 2018	5.24	0.01	472	5.46	0.06	57	16.5%	-0.22 [-0.24, -0.20]		•		
Sun 2021	5.2	0.4	616	5.6	0.6	92	9.9%	-0.40 [-0.53, -0.27]				
Wong 2011	5.41	0.39	289	5.54	0.61	323	13.1%	-0.13 [-0.21, -0.05]				
Total (95% CI)			3399			1426	100.0%	-0.21 [-0.27, -0.14]		•		
Heterogeneity: Tau ² =	0.01: C	$1^2 = 43$	53. df •	- 7 (P < 0.)	00001): P	- 64%			<u> </u>			
Test for overall effect:						• ••-			-1	–0.5 0 Lifestyle Adequate	0.5 Lifestyle Not Ade	quate


Supplementary Figure 1.5B Funnel Plot for Assessment of Publication Bias


Supplementary Figure 1.6A Forest plot for included studies comparing if lifestyle was adequate or not adequate for fasting glucose

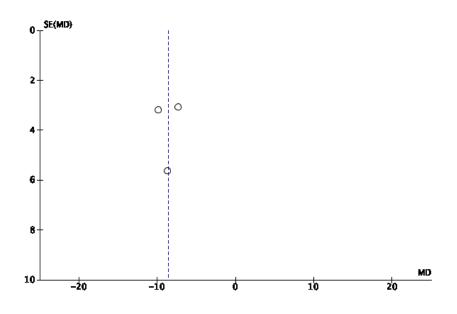

Supplementary Figure 1.6B Funnel Plot for Assessment of Publication Bias

Supplementary Figure 1.7A Forest plot for included studies comparing if lifestyle was adequate or not adequate for 1-hour glucose


Supplementary Figure 1.7B Funnel Plot for Assessment of Publication Bias

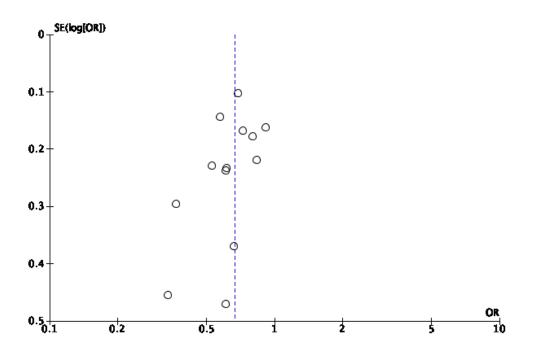
Supplementary Figure 1.8A Forest plot for included studies comparing if lifestyle was adequate or not adequate for 2-hour glucose

	Lifesty	le Adeq	uate	Lifestyle	Not Ade	quate		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Ares 2017	179.53	22.4	165	190.78	47.33	36	4.5%	-11.25 [-27.08, 4.58]	
Bashir 2020	149.4	28.8	358	165.6	64.6	443	7.6%	-16.20 [-24.62, -7.78]	
Benhalima 2015	175	22.8	456	185.2	28.5	145	9.2%	-10.20 [-15.29, -5.11]	_ —
Ducarme 2019	151	0.25	126	157	0.32	72	10.4%	-6.00 [-6.09, -5.91]	•
Ikenoue 2014	135.8	26.2	91	146.6	29.6	50	6.9%	-10.80 [-20.61, -0.99]	
lto 2016	135.3	29.7	70	150.5	28.5	32	5.9%	-15.20 [-27.28, -3.12]	
Kalok 2020	152.82	14.58	966	156.24	18	96	9.7%	-3.42 [-7.14, 0.30]	
Mecacci 2021	138.06	30.08	962	140.45	33.29	1012	10.0%	-2.39 [-5.19, 0.41]	-+-
Meshel 2016	162.22	29.68	1161	161.69	36.31	143	8.7%	0.53 [-5.66, 6.72]	_
Nishikawa 2018	139.5	1.2	472	157.1	4.1	57	10.3%	-17.60 [-18.67, -16.53]	+
Sun 2021	149.22	27.9	616	172.98	44.82	92	7.1%	-23.76 [-33.18, -14.34]	
Wong 2011	149.4	22.68	289	150.12	26.64	323	9.6%	-0.72 [-4.63, 3.19]	
Total (95% CI)			5754			2501	100.0%	-9.06 [-13.55, -4.56]	◆
Heterogeneity: Tau ² -	• 50.61; C	hl² = 49	4.03, d	F = 11 (P <	: 0.00001); i ² = 91	8%		-50 -25 0 25 50
Test for overall effect	: Z = 3.95	(P < 0.0	001)	-					-50 -25 0 25 50 Lifestyle Adequate Lifestyle Not Adequate


Supplementary Figure 1.8B Funnel Plot for Assessment of Publication Bias

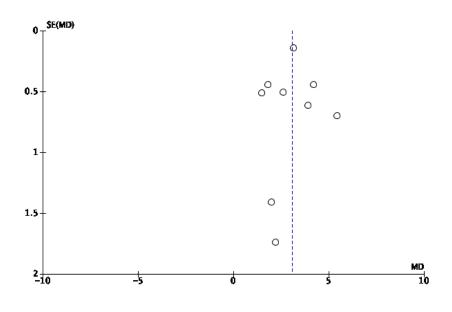
Supplementary Figure 1.9A Forest plot for included studies comparing if lifestyle was adequate or not adequate for 3-hour glucose

	Lifesty	le Adeq	uate	Lifestyle	Not Adec	quate		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Ares 2017	152.77	25.72	165	161.47	31.52	36	13.3%	-8.70 [-19.72, 2.32]	
Benhalima 2015	145.4	27.6	456	152.7	33.4	145	45.0%	-7.30 [-13.30, -1.30]	8
Meshel 2016	97.87	35.49	1181	107.74	35.94	143	41.7%	-9.87 [-16.10, -3.64]	
Total (95% CI)			1802			324	100.0%	-8.56 [-12.58, -4.54]	•
Heterogeneity: Tau ² = Test for overall effect:				2 (P = 0.64	l); l ² = 0%				-20 -10 0 10 20 Lifestyle Adequate Lifestyle Not Adequate


Supplementary Figure 1.9B Funnel Plot for Assessment of Publication Bias

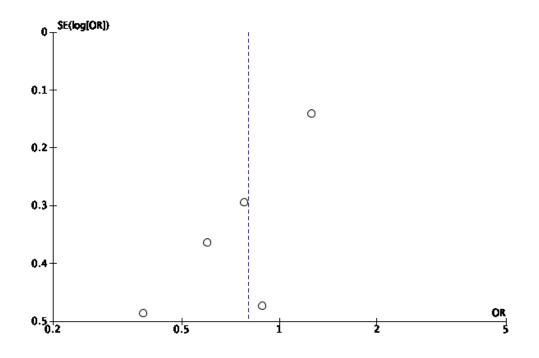
Supplementary Figure 1.10A Forest plot for included studies comparing if lifestyle was adequate or not adequate for family history of diabetes

	Lifestyle Ad	equate	Lifestyle Not A	lequate		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
Benhalima 2015	75	456	33	135	6.1%	0.61 [0.38, 0.97]	
Gilbert 2021	97	176	96	163	6.9X	0.84 [0.54, 1.28]	_
Ikenoue 2014	12	91	10	50	1.7%	0.61 [0.24, 1.53]	
htp 2016	16	70	15	32	1.9%	0.34 [0.14, 0.82]	
Kalok 2020	210	968	30	96	6.2%	0.61 [0.39, 0.96]	
Koning 2016	156	460	170	360	13.0%	0.57 [0.43, 0.76]	_ - -
Krispin 2021	95	314	123	328	10.5%	0.72 [0.52, 1.00]	
Mecacci 2021	223	962	309	1012	19.6X	0.69 [0.56, 0.84]	
Meshel 2016	479	1181	66	143	9.6X	0.80 [0.56, 1.13]	
Nishikawa 2018	199	472	36	57	4.1%	0.36 [0.20, 0.65]	
Souza 2019	159	273	96	135	6.5%	0.53 [0.34, 0.82]	
Sun 2021	46	616	10	92	2.6%	0.66 [0.32, 1.36]	
Wong 2011	134	289	157	323	11.1%	0.91 [0.67, 1.26]	
Total (95% CI)		6330		2926	100.0%	0.66 [0.59, 0.75]	•
Total events	1901		1155				-
Heterogeneity: Tau2 -		15.07. di		r ² = 20%			
Test for overall effect							0.1 0.2 0.5 1 2 5 10 Lifestyle Adequate Lifestyle Not Adequate


Supplementary Figure 1.10B Funnel Plot for Assessment of Publication Bias

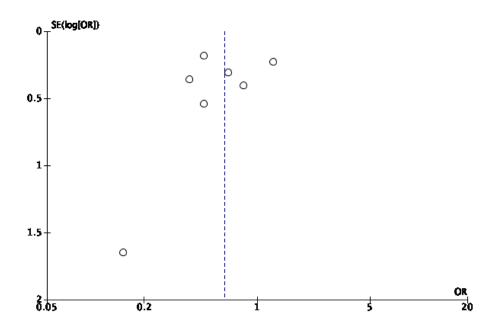
Supplementary Figure 1.11A Forest plot for included studies comparing if lifestyle was adequate or not adequate for gestational age at gestational diabetes diagnosis

	Lifestyle Ad	equate	Lifestyle Not Ac	lequate		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M–H, Random, 95% Cl
Benhalima 2015	75	456	33	135	6.1%	0.61 [0.38, 0.97]	
Gilbert 2021	97	176	96	163	6.9%	0.84 [0.54, 1.28]	
Ikenoue 2014	12	91	10	50	1.7%	0.61 [0.24, 1.53]	
hto 2016	16	70	15	32	1.9%	0.34 [0.14, 0.82]	
Kalok 2020	210	968	30	96	6.2%	0.61 [0.39, 0.96]	
Koning 2016	156	460	170	360	13.0%	0.57 [0.43, 0.76]	_ _
Krispin 2021	95	314	123	328	10.5%	0.72 [0.52, 1.00]	
Mecacci 2021	223	962	309	1012	19.6X	0.69 [0.56, 0.84]	
Meshel 2016	479	1181	66	143	9.6X	0.80 [0.56, 1.13]	
Nishikawa 2018	199	472	38	57	4.1×	0.36 [0.20, 0.65]	
Souza 2019	159	273	96	135	6.5%	0.53 [0.34, 0.82]	(
Sun 2021	46	616	10	92	2.6%	0.66 [0.32, 1.36]	
Wong 2011	134	289	157	323	11.1%	0.91 [0.67, 1.26]	
Total (95% CI)		6330		2926	100.0%	0.66 [0.59, 0.75]	•
Total events	1901		1155				-
Heterogeneity: Tau2 -				r² = 20%			0.1 0.2 0.5 1 2 5 10
Test for overall effect	: Z = 6.45 (P <	: 0.0000:	1)				Lifestyle Adequate Lifestyle Not Adequate


Supplementary Figure 1.11B Funnel Plot for Assessment of Publication Bias

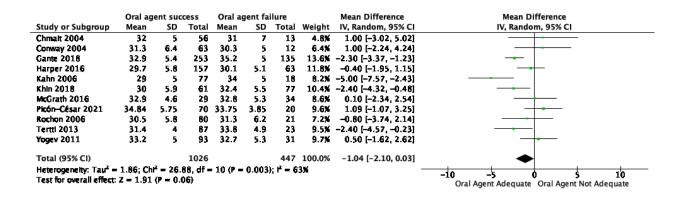
Supplementary Figure 1.12A Forest plot for included studies comparing if lifestyle was adequate or not adequate for history of smoking

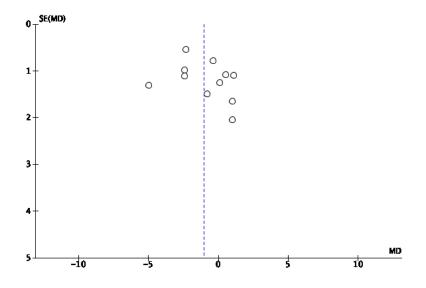
	Lifestyle Ad	equate	Lifestyle Not Ad	equate		Odds Ratio		Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Rando	om, 95% Cl	
Durnwald 2011	30	424	6	36	13.1%	0.38 [0.15, 0.99]	←	-		
Krispin 2021	22	314	29	328	22.3%	0.78 [0.44, 1.38]				
Meghelli 2020	10	58	12	63	13.5%	0.89 [0.35, 2.24]				
Ng 2020	218	1261	61	576	32.6%	1.25 [0.95, 1.65]		+		
Souza 2019	19	273	15	135	18.4%	0.60 [0.29, 1.22]	_	•		
Total (95% CI)		2350		1138	100.0%	0.80 [0.52, 1.23]			-	
Total events	299		143							
Heterogeneity: Tau ² =	= 0.12; Chf ² =	9.35. df	= 4 (P = 0.05); l ² •	- 57%			L .			
Test for overall effect							0.2	0.5 1 Lifestyle Adequate	Lifestyle Not Adequate	• •


Supplementary Figure 1.12B Funnel Plot for Assessment of Publication Bias

Supplementary Figure 1.13A Forest plot for included studies comparing if lifestyle was adequate or not adequate for previous history of macrosomia

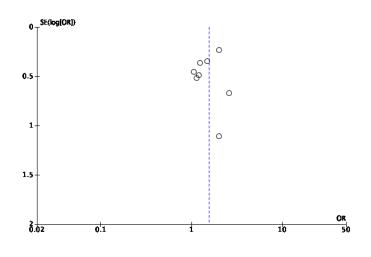
	Lifestyle Ad	equate	Lifestyle Not Ad	equate		Odds Ratio		Odds	Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Rando	m, 95% CI		
Ducarme 2019	7	126	6	72	9.7%	0.47 [0.16, 1.36]					-
lto 2016	0	70	1	32	1.5%	0.15 [0.01, 3.76]	←	· · · · · · · · · · · · · · · · · · ·			
Koning 2016	55	460	35	360	20.6X	1.26 [0.81, 1.97]		-+			
Krispin 2021	19	314	29	328	17.2%	0.66 [0.36, 1.21]			-		
Mecacci 2021	11	962	14	1012	13.5X	0.82 [0.37, 1.83]					
Ouzounian 2011	116	1189	49	262	22.4%	0.47 [0.33, 0.68]					
Souza 2019	16	273	19	135	15.2%	0.38 [0.19, 0.77]					
Total (95% CI)		3394		2201	100.0%	0.63 [0.42, 0.94]		•			
Total events	224		155								
Heterogeneity: Tau2 -	= 0.16; Chl ² =	15.23, di	f = 6 (P = 0.02); P	= 61%			0.05	0.2 1		ļ.	20
Test for overall effect	: Z = 2.23 (P =	0.03)					0.05		Lifestyle Not A	dequate	20


Supplementary Figure 1.13B Funnel Plot for Assessment of Publication Bias


Supplementary Figures 2.1 to 2.12

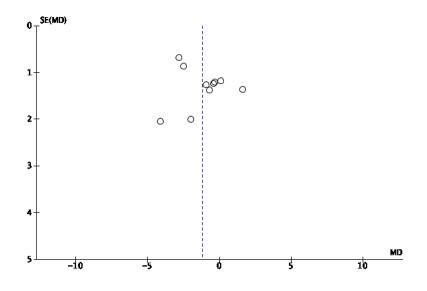
Forest Plots (A) and Funnel Plots (B) for Oral Pharmacological Agent adequate in controlling glucose vs not adequate

Supplementary Figure 2.1A Forest plot for included studies comparing if oral pharmacological agent was adequate or not adequate for maternal age


Supplementary Figure 2.1B Funnel Plot for Assessment of Publication Bias

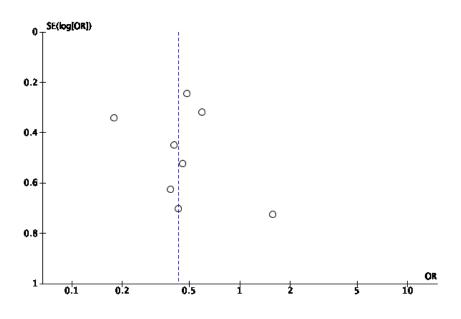
Supplementary Figure 2.2A Forest plot for included studies comparing if oral pharmacological agent was adequate or not adequate for nulliparity

	Oral agent s	uccess	Oral agent	failure		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M–H, Random, 95% CI
Chmait 2004	8	56	1	13	1.6%	2.00 [0.23, 17.57]	
Harper 2016	47	157	14	63	16.5%	1.50 [0.75, 2.97]	_
Khin 2018	21	61	23	77	14.9X	1.23 [0.60, 2.53]	_
Picón-César 2021	44	70	12	20	7.5%	1.13 [0.41, 3.12]	
Rochon 2006	24	60	3	21	4.5%	2.57 [0.69, 9.55]	
Rowan 2008	75	195	40	168	36.9%	2.00 [1.27, 3.16]	
Tertti 2013	34	87	8	23	8.4%	1.20 [0.46, 3.14]	
Yogev 2011	28	93	9	31	9.7%	1.05 [0.43, 2.57]	
Total (95% CI)		799		416	100.0%	1.55 [1.17, 2.04]	•
Total events	261		110				
Heterogeneity: Tau2 -	= 0.00; Chl ² =	3.58. df	= 7 (P = 0.63	3); $f^2 = 0$;		4	an ala da cal
Test for overall effect			• • • •			Q.	02 0.1 1 10 50 Oral Agent Adequate Oral Agent Not Adequate


Supplementary Figure 2.2B Funnel Plot for Assessment of Publication Bias

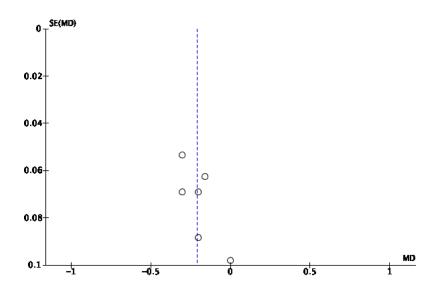
Supplementary Figure 2.3A Forest plot for included studies comparing if oral pharmacological agent was adequate or not adequate for body mass index

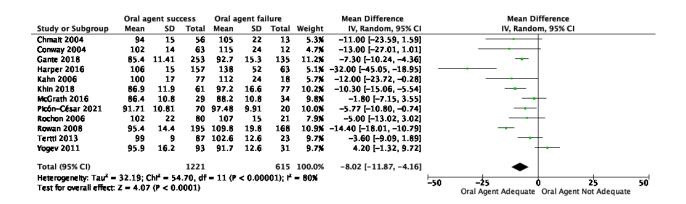
	Oral ag	ent suc	cess	Oral a	gent fa	ilure		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Gante 2018	29	6.3	253	31.8	6.6	135	17.0%	-2.80 [-4.16, -1.44]	
Harper 2016	35	8.6	157	35.4	8.2	63	10.0%	-0.40 [-2.83, 2.03]	-
Kahn 2006	30	6	77	32	8	18	5.1%	-2.00 [-5.93, 1.93]	
Khin 2018	32.4	7.1	61	32.7	7.1	77	10.3%	-0.30 [-2.69, 2.09]	_
McGrath 2016	25.9	8.3	29	30	7.8	34	5.0%	-4.10 [-8.10, -0.10]	
Picón-César 2021	29.75	6.26	70	30.65	4.58	20	9.6%	-0.90 [-3.39, 1.59]	
Rochon 2006	31.5	7.5	80	32.2	5	21	6.6X	-0.70 [-3.40, 2.00]	
Rowan 2008	31.1	7.8	195	33.6	8.6	168	14.4%	-2.50 [-4.20, -0.80]	_ _
Tertti 2013	29.8	6	87	28.2	5.8	23	8.9%	1.60 [-1.08, 4.28]	
Yogev 2011	28	5.4	93	27.9	5.8	31	10.6%	0.10 [-2.22, 2.42]	
Total (95% CI)			1102			590	100.0%	-1.21 [-2.21, -0.21]	•
Heterogeneity: Tau ² = Test for overall effect:				• 9 (P =)	0.07); ŕ	° = 43%	i		-10 -5 0 5 10
rest for overall effects	2 = 2.30	\r = 0.1	V2)						Oral Agent Adequate Oral Agent Not Adequate


Supplementary Figure 2.3B Funnel Plot for Assessment of Publication Bias

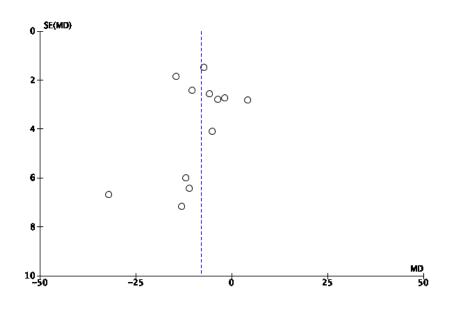
Supplementary Figure 2.4A Forest plot for included studies comparing if oral pharmacological agent was adequate or not adequate for previous history of gestational diabetes

	Oral agent s	uccess	Oral agent	failure		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Chmait 2004	9	56	4	13	6.2%	0.43 [0.11, 1.71]	
Gante 2018	25	253	21	135	18.3%	0.60 [0.32, 1.11]	
Harper 2016	22	157	30	63	17.0%	0.18 [0.09, 0.35]	
Kahn 2006	10	77	5	18	7.5%	0.39 [0.11, 1.32]	
McGrath 2016	5	29	4	34	5.9%	1.56 [0.38, 6.47]	
Picón-César 2021	19	70	9	20	9.9%	0.46 [0.16, 1.27]	_
Rowan 2008	36	195	56	168	23.0%	0.48 [0.30, 0.78]	
Yogev 2011	19	93	12	31	12.2%	0.41 [0.17, 0.98]	
Total (95% CI)		930		482	100.0%	0.43 [0.30, 0.63]	•
Total events	147		141				_
Heterogeneity: Tau ² -	= 0.10; Chl ² =	11.09. d	f = 7 (P = 0.1)	3); i ² = 3	37%		ala ala ala da da da da
Test for overall effect							0.1 0.2 0.5 1 2 5 10 Oral Agent Adequate Oral Agent Not Adequate

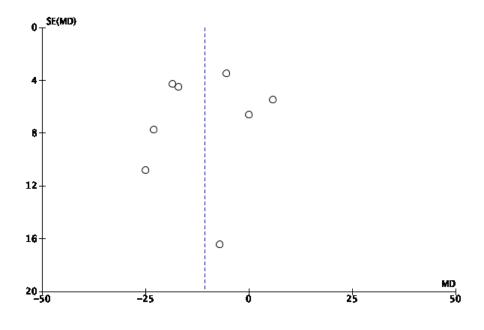

Supplementary Figure 2.4B Funnel Plot for Assessment of Publication Bias

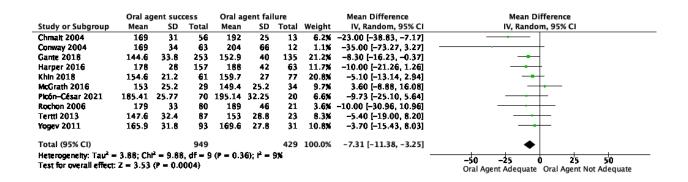

Supplementary Figure 2.5A Forest plot for included studies comparing if oral pharmacological agent was adequate or not adequate for haemoglobin A1C

	Oral ag	Oral agent success Oral agent failure				ilure		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Gante 2018	5.2	0.5	253	5.5	0.5	135	21.6%	-0.30 [-0.40, -0.20]	
Khin 2018	5.4	0.33	61	5.6	0.48	77	17.3%	-0.20 [-0.34, -0.06]	_
McGrath 2016	5	0.3	29	5.2	0.4	34	13.1%	-0.20 [-0.37, -0.03]	_
Picón-César 2021	5.3	0.37	70	5.3	0.39	20	11.5%	0.00 [-0.19, 0.19]	
Rowan 2008	5.6	0.6	195	5.9	0.7	168	17.3%	-0.30 [-0.44, -0.16]	
Tertti 2013	5.44	0.35	87	5.6	0.24	23	19.0%	-0.16 [-0.28, -0.04]	
Total (95% CI)			695			457	100.0%	-0.21 [-0.29, -0.13]	•
Heterogeneity: Tau ² = 0.00; Ch ² = 9.71, df = 5 (P = 0.08); l ² = 49% Test for overall effect: Z = 5.17 (P < 0.00001)									-1 -0.5 0 0.5 1 Oral Agent Adequate Oral Agent Not Adequate

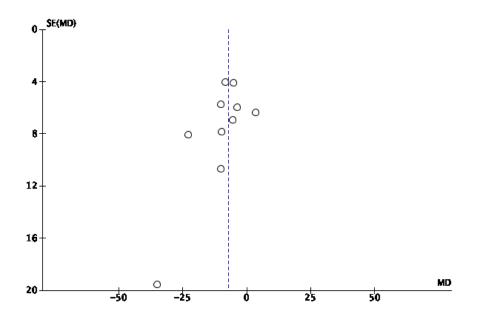

Supplementary Figure 2.5B Funnel Plot for Assessment of Publication Bias

Supplementary Figure 2.6A Forest plot for included studies comparing if oral pharmacological agent was adequate or not adequate for fasting glucose

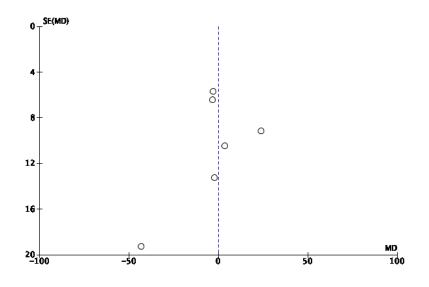

Supplementary Figure 2.6B Funnel Plot for Assessment of Publication Bias


Supplementary Figure 2.7A Forest plot for included studies comparing if oral pharmacological agent was adequate or not adequate for 1-hour glucose

	Oral ag	Oral agent success Oral agent failure				lure		Mean Difference	Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
Chmait 2004	199	25	56	206	58	13	4.4%	-7.00 [-39.20, 25.20]		
Conway 2004	205	23	63	230	36	12	7.9%	-25.00 [-46.15, -3.85]		
Gante 2018	171.4	32.2	253	176.8	33.1	135	17.3%	-5.40 [-12.25, 1.45]	_ - +	
Harper 2016	201	28	157	218	31	63	15.9%	-17.00 [-25.82, -8.18]	-	
Picón-César 2021	198.92	30.81	70	217.31	9.64	20	16.2%	-18.39 [-26.75, -10.03]	_	
Rochon 2006	200	33	80	223	31	21	11.2%	-23.00 [-38.10, -7.90]	(
Tertti 2013	201.6	25.2	87	201.6	28.8	23	12.6%	0.00 [-12.91, 12.91]		
Yogev 2011	198.8	29.4	93	193	25.3	31	14.4%	5.80 [-4.92, 16.52]		
Total (95% CI)			859			318	100.0%	-10.64 [-18.25, -3.02]	•	
Heterogeneity: Tau ² = 75.01; Chi ² = 23.47, df = 7 (P = 0.001); l ² = 70% Test for overall effect: Z = 2.74 (P = 0.006)									-50 -25 0 25 50 Oral Agent Adequate Oral Agent Not Adequate	

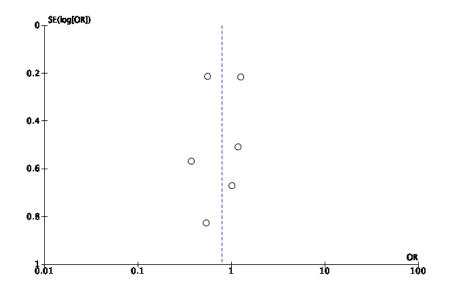

Supplementary Figure 2.7B Funnel Plot for Assessment of Publication Bias

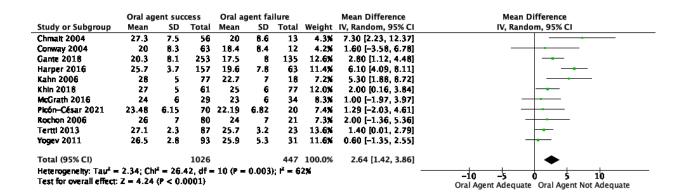
Supplementary Figure 2.8A Forest plot for included studies comparing if oral pharmacological agent was adequate or not adequate for 2-hour glucose


Supplementary Figure 2.8B Funnel Plot for Assessment of Publication Bias

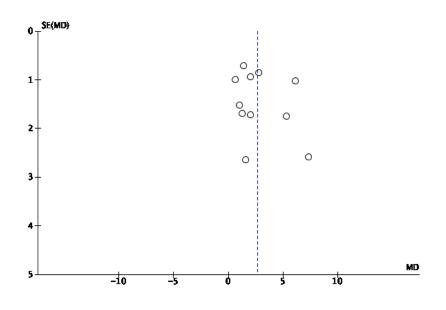
Supplementary Figure 2.9A Forest plot for included studies comparing if oral pharmacological agent was adequate or not adequate for 3-hour glucose

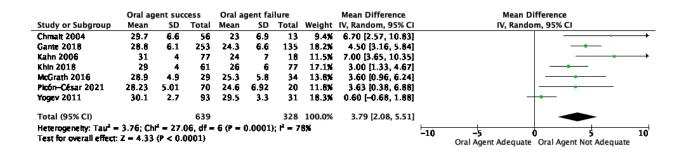
	Oral ag	gent suc	cess	Oral a	gent fail	ure		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Chmait 2004	126	33	56	126	45	13	12.3%	-2.00 [-27.94, 23.94]	
Conway 2004	133	33	63	176	65	12	7.4%	-43.00 [-80.67, -5.33]	
Harper 2016	140	27	157	143	42	63	23.9%	-3.00 [-14.20, 8.20]	-
Picón-César 2021	150.81	29.37	70	147.21	43.96	20	15.9%	3.60 [-16.86, 24.06]	_
Rochon 2006	138	35	60	114	38	21	17.6%	24.00 [6.03, 41.97]	
Yogev 2011	116	36.3	93	121.1	28.9	31	22.6%	-3.10 [-15.67, 9.47]	
Total (95% CI)			519			160	100.0%	0.00 [-11.79, 11.79]	•
Heterogeneity: $Tau^2 = 118.73$; $Chl^2 = 12.50$, $df = 5$ (P = 0.03); $l^2 = 60\%$									-100 -50 0 50 100
Test for overall effect	: Z = 0.00	(P = 1.0)	(U)						Oral Agent Adequate Oral Agent Not Adequate


Supplementary Figure 2.9B Funnel Plot for Assessment of Publication Bias


Supplementary Figure 2.10A Forest plot for included studies comparing if oral pharmacological agent was adequate or not adequate for family history of diabetes

	Oral agent s	uccess	Oral agent	failure		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M–H, Random, 95% Cl
Chmalt 2004	23	50	5	11	9.4%	1.02 [0.28, 3.79]	
Conway 2004	46	63	10	12	6.7%	0.54 [0.11, 2.73]	
Gante 2018	114	253	53	135	29.0%	1.27 [0.83, 1.94]	- -
McGrath 2016	14	29	15	34	13.6%	1.18 [0.44, 3.20]	
Picón-César 2021	37	70	15	20	11.6%	0.37 [0.12, 1.14]	
Rowan 2006	74	195	66	168	29.3%	0.56 [0.37, 0.85]	
Total (95% CI)		660		380	100.0%	0.79 [0.50, 1.25]	•
Total events	308		166				-
Heterogeneity: Tau2 -	• 0.14; Cht ² =	10.15, di	f = 5 (P = 0.0	(7); I ² = !	51%	0.01	1 0.1 1 10 100
Test for overall effect	: Z = 1.00 (P =	0.32)				0.0.	Oral Agent Adequate Oral Agent Not Adequate


Supplementary Figure 2.10B Funnel Plot for Assessment of Publication Bias


Supplementary Figure 2.11A Forest plot for included studies comparing if oral pharmacological agent was adequate or not adequate for gestational age at gestational diabetes diagnosis

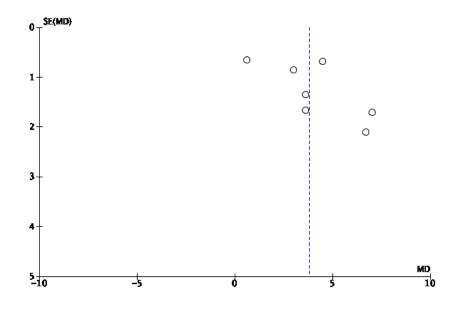

Supplementary Figure 2.11B Funnel Plot for Assessment of Publication Bias

Table 2.12B Forest plot for included studies comparing if oral pharmacological agent was adequate or not adequate for gestational age at initiation of oral pharmacological agent for treatment of GDM

Supplementary Figure 2.12B Funnel Plot for Assessment of Publication Bias

Author	Key findings
Insulin required when d	iet not adequate
Berg 2007 ²⁴	The need for insulin treatment increased with increasing BMI. Among women with normal weight (BMI <25 kg/m ²), 9.6% (n=33) required insulin, compared to 31.9% (n=52) in the obese group ($p < 0.001$)
Elnour 2008 ²⁷	The number of abnormal OGTT values, specifically fasting values (≥95 mg/dl) and 1-h values (≥180 mg/dl), contributed significantly to insulin need during the index pregnancy (P<0.05).
Giannubilo 2018 ²⁸	The overall risk of need for insulin therapy was significantly higher in women carrying a male fetus (odds ratio = 1.837; 95% CI, 1.737–2.8775; P = 0.0078)
Gibson 2012 ²⁹	There were no significant differences in age, race, or parity among patients requiring insulin therapy and diet/exercise-controlled GDM. Patients requiring insulin therapy had significantly higher pre-pregnancy BMI, but comparable 1-h glucose tolerance test, gestational age at delivery, and weight gain.
Hillier 2013 ³⁰³⁰	Treatment with insulin more likely in higher BMI groups and non-white ethnicities
Molina-Vega 2020 ³⁷³⁷	Greater BMI was associated with greater odds of needing insulin therapy (OR 1.103; p<0.001). Age (OR 1.019; p=0.429) and pregnancy during winter (OR 0.493; p=0.050, spring (OR 0.626; p=0.159) or summer (0.680; p=0.214), as opposed to during fall were not associated with the need for insulin therapy.
Nguyen 2016 ³⁹³⁹	Maternal predictors of antepartum insulin therapy: Pre-pregnancy BMI (OR 1.03; 95% CI 1.01 – 1.06), Past history of GDM (OR 1.77; 9%% CI 1.24–2.56), Diagnosis of GDM <20 weeks gestation (OR 3.32; 95% CI 1.87–6.19), fasting plasma glucose (OR 1.65; 95% CI 1.10–2.47), 2-hour post-OGTT glucose (OR 1.39; 95% CI 0.91–2.14); Both glucose values above local reference range at screening (OR 2.60; 95% CI 1.98 – 3.44) Maternal factors not significantly associated with insulin therapy: Past history of caesarean delivery (OR 1.41; 95% CI 0.96 – 2.08), Past history of macrosomia (OR 0.79; 95% CI 0.88 – 1.46)
Parrettini 2020 ⁴²	Maternal age and distribution of diagnostic values at the OGTT were the only factors that were significantly associated with a risk of need for insulin therapy ($p < 0.05$).
Wong 2012 ⁴⁷	Women from South-East Asia had the lowest need to start insulin (37.2%), compared with Anglo- Europeans (56.7%, P < 0.001) - SE Asian (37.2%), South Asian (55%), Middle Eastern (51.6%), Anglo- European (56.7%), Pacific Islander (65.5%) - ANOVA p<0.001 Women from South-East Asia had the lowest need for rapid-acting insulin for the management of postprandial hyperglycaemia (30.4% vs. 44.9% for women from Anglo-European background, P = 0.002). Pacific Islanders had the greatest need for insulin therapy, but were started on insulin at a later stage.
Zawiejska 2014 ⁴⁹	Maternal fasting hyperglycaemia >=5.1 mmol/l increased odds of requiring insulin therapy (OR 3.8 [95% CI 2.3, 6.5]; aOR 2.6 [1.4, 4.9])
Pharmacological therap	y required (oral agent and/or insulin) when diet not adequate

Supplementary Table 1 Narrative summary of studies not included in the meta-analysis

Zhu 2021 ⁵⁴	The strongest predictor of moving from diet to medication was the 2nd trimester FBG, recording an odds ratio of 3.58. This suggests that for every additional 1 mmol/L the FBG was elevated, patients were 3.58 times more likely be medicated for their GDM, controlling for other factors in the model. The other significant predictor was age, with an odds ratio of 1.06.
· · · · · · · · · · · · · · · · · · ·	lyburide being inadequate to achieve target glucose values
Bouchghoul et al	CYP2C9 and OATP1B3 genetic polymorphisms
2021 ⁶⁷	The percentage of patients who switched from glyburide to insulin was much higher (× 1.8) in the variant genotype group, although this was not statistically significant: 23.8% (5/21) vs. 13.0% (7/54) in the wild-type genotype group and 19.0% (8/42) in the intermediate group (trend test-logistic regression, P = 0.24). The fasting glycaemic control of diabetes with glyburide was, on average, better in the wild-type genotype group than in the intermediate group and the variant group, with a lower percentage of out-of-target blood glucose values
Maternal lipidome resp	onses to metformin and insulin treatment
Huhtala et al 2020 ⁶⁸	 Fasting serum lipidome measured at diagnosis (mean 30 weeks gestation) and at 36 weeks using nuclear magnetic resonance spectroscopy Compared to insulin, metformin treatment of GDM led to higher maternal serum concentrations of triglyceride-rich lipoproteins. Especially triglycerides and cholesterol in VLDL were positively associated with birthweight. Women with high VLDL cholesterol or high apoB/apoA-1 may benefit from insulin treatment over metformin with respect to offspring birthweight