
SUPPLEMENTAL MATERIAL 

Longitudinal alterations in brain microstructure surrounding subcortical is -

chemic stroke lesions detected by free-water imaging 

Methods 

Image Processing 
The following description is based on a boilerplate generated by QSIPrep and therefore 

facilitates standardized reporting and reproducibility. 

Anatomical data preprocessing 

We employed the longitudinal anatomical processing stream in order to ensure proper 

co-registration of individual time points for each participant. All T1w images were 

corrected for intensity non-uniformity (INU) using N4BiasFieldCorrection1 (ANTs 

2.3.1). For each subject, a T1w-reference map was computed after registration of all 

T1w images/time points (after INU-correction) using mri_robust_template2 (FreeSurfer 

6.0.1). The T1w-reference was then skull-stripped using antsBrainExtraction.sh (ANTs 

2.3.1), using OASIS as target template. Brain surfaces were reconstructed using 

recon-all3 (FreeSurfer 6.0.1), and the brain mask estimated previously was refined with 

a custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived 

segmentations of the cortical gray-matter of Mindboggle4. 

Diffusion data preprocessing 

MP-PCA denoising as implemented in MRtrix3’s dwidenoise5 was applied with a 5-

voxel window. After MP-PCA, Gibbs unringing was performed using MRtrix3’s 

mrdegibbs6. Following unringing, B1 field inhomogeneity was corrected using 

dwibiascorrect from MRtrix3 with the N4 algorithm1. 

FSL’s eddy (version 6.0.3:b862cdd5) was used for head motion correction and 

eddy current correction7. Eddy was configured with a q-space smoothing factor of 10, 



a total of 5 iterations, and 1000 voxels used to estimate hyperparameters. A linear first 

level model and a linear second level model were used to characterize eddy current-

related spatial distortion. q-space coordinates were forcefully assigned to shells. Field 

offset was attempted to be separated from subject movement. Shells were aligned 

post-eddy. Eddy’s outlier replacement was run8. Data were grouped by slice, only 

including values from slices determined to contain at least 250 intracerebral voxels. 

Groups deviating by more than 4 standard deviations from the prediction had their data 

replaced with imputed values. Final interpolation was performed using the jac method. 

A deformation field to correct for susceptibility distortions was estimated based 

on fMRIPrep’s9 fieldmap-less approach. The deformation field is that resulting from co-

registering the b0 reference to the same-subject T1w-reference with its intensity 

inverted.10,11 Registration is performed with antsRegistration (ANTs 2.3.1), and the 

process regularized by constraining deformation to be nonzero only along the phase-

encoding direction, and modulated with an average fieldmap template12. Based on the 

estimated susceptibility distortion, an unwarped b=0 reference was calculated for a 

more accurate co-registration with the anatomical reference. The DWI time-series were 

resampled to ACPC, generating a preprocessed DWI run in ACPC T1w space with 2 

mm isotropic voxels. 

Many internal operations of QSIPrep use Nilearn 0.8.013 and Dipy14. For more details 

of the pipeline, see https://qsiprep.readthedocs.io/en/latest/workflows.html).  

  

https://qsiprep.readthedocs.io/en/latest/workflows.html


Results 

Table S1. Results of the linear mixed effects models investigating differences in free-

water and FAT between lesion and tissue shells at four different time points 

 Free-water  FAT  

 Estimate (SE) P  Estimate (SE) P 

Days 3-5 (N = 26) 

Intercept 0.006 (0.129) .96  -0.043 (0.030) .17 

Location      

Lesion 0.309 (0.041) <.001***  -0.325 (0.011) <.001*** 

2 mm 0.163 (0.041) <.001***  -0.058 (0.011) <.001*** 

4 mm 0.028 (0.041) .50  0.002 (0.011) .88 

6 mm 0.010 (0.042) .82  0.007 (0.011) .49 

8 mm 0.007 (0.043) .88  0.012 (0.011) .28 

10 mm -0.022 (0.044) .62  0.011 (0.011) .33 

12 mm -0.024 (0.047) .60  0.005 (0.012) .66 

14 mm -0.018 (0.054) .74  -0.004 (0.014) .78 

Lesion volume 0.001 (0.002) .55  <-0.001 (<0.001) .73 

Days since stroke 0.029 (0.032) .38  -0.002 (0.007) .76 

1 month (N = 21) 

Intercept 0.263 (0.157) .11  -0.151 (0.030) <.001*** 

Location      

Lesion 1.041 (0.069) <.001***  -0.318 (0.012) <.001*** 

2 mm 0.148 (0.070) .04*  -0.115 (0.012) <.001*** 

4 mm -.021 (0.071) .77  -0.029 (0.013) .02* 

6 mm 0.001 (0.072) .99  -0.010 (0.013) .45 

8 mm -0.024 (0.073) .75  -0.002 (0.013) .88 

10 mm -0.049 (0.076) .52  -0.002 (0.013) .87 

12 mm -0.027 (0.080) .73  -0.004 (0.014) .79 

14 mm -0.019 (0.093) .84  -0.011 (0.016) .49 

Lesion volume 0.002 (0.004) .59  -0.001 (0.001) .20 

Days since stroke -0.002 (0.003) .54  0.002 (0.001) .02* 

 

  



Table S1. (continued) 

 Free-water  FAT  

 Estimate (SE) P  Estimate (SE) P 

3 months (N = 19) 

Intercept 0.079 (0.311) .80  -0.072 (0.056) .22 

Location      

Lesion 1.943 (0.132) <.001***  -0.208 (0.016) <.001*** 

2 mm 0.344 (0.133) .01*  -0.119 (0.016) <.001*** 

4 mm 0.046 (0.135) .73  -0.052 (0.016) .001** 

6 mm 0.069 (0.137) .62  -0.031 (0.016) 0.05 

8 mm 0.043 (0.139) .76  -0.013 (0.017) .42 

10 mm -0.018 (0.144) .90  <-0.001 (0.017) .99 

12 mm 0.008 (0.153) .96  0.005 (0.018) .79 

14 mm -0.028 (0.176) .88  0.003 (0.021) .90 

Lesion volume -0.003 (0.010) .76  -0.006 (0.002) .005** 

Days since stroke 0.003 (0.003) .37  <0.001 (0.001) .74 

12 months (N = 19) 

Intercept 2.343 (1.720) .19  -0.024 (0.195) .90 

Location      

Lesion 2.174 (0.133) <.001***  -0.143 (0.018) <.001*** 

2 mm 0.862 (0.134) <.001***  -0.090 (0.018) <.001*** 

4 mm 0.247 (0.136) .7  -0.030 (0.018) .11 

6 mm 0.169 (0.137) .22  -0.021 (0.018) .25 

8 mm 0.102 (0.140) .47  -0.012 (0.019) .51 

10 mm 0.048 (0.145) .74  -0.004 (0.019) .83 

12 mm 0.060 (0.154) .70  0.006 (0.019) .75 

14 mm 0.039 (0.177) .83  <0.001 (0.023) >.99 

Lesion volume 0.011 (0.013) .41  -0.003 (0.001) .06 

Days since stroke -0.005 (0.005) .31  <0.001 (0.001) .91 

 

  



Table S2. Spearman correlations of imaging parameters 3-5 days after stroke with clinical variables and 

change in lesion size 3 months after stroke 

 Free-water  FAT 

Outcome variable Lesional  Perilesional  Lesional  Perilesional 

 Rho P Rho P  Rho P Rho P 

Change in lesion size (N = 18) 0.14 .59 -0.51 .03*  -0.51 .03* -0.09 .71 

NIHSS (N = 18) -0.29 .24 0.18 .47  -0.15 .55 -0.08 .74 

Relative grip strength (N = 17) 0.21 .42 -0.22 .40  -0.04 .89 -0.06 .82 

UEFM (N = 18) 0.18 .47 0.05 .85  0.19 .46 -0.15 .56 

NHP (N = 13) 0.45 .12 0.49 .09  0.02 .96 -0.22 .47 

Abbreviations: FAT = fractional anisotropy of the tissue, NHP = Nine-Hole-Peg-Test, NIHSS = National 

Institutes of Health Stroke Scale, SD = standard deviation, UEFM = Fugl-Meyer assessment of the upper 

extremity 
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