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Abstract (250 words):  24 

Background 25 

Mayaro virus (MAYV) is a mosquito-borne Alphavirus that is widespread in South America. MAYV 26 

infection often presents with non-specific febrile symptoms but may progress to debilitating chronic 27 

arthritis or arthralgia. Despite the pandemic threat of MAYV, its true distribution remains unknown. The 28 

objective of this study was to clarify the geographic distribution of MAYV using an established risk 29 

mapping framework. This consisted of generating evidence consensus scores for MAYV presence, 30 

modeling the potential distribution of MAYV across the Americas, and estimating at-risk population 31 

residing in areas suitable for MAYV transmission. 32 

Methods 33 

We compiled a georeferenced compendium of MAYV occurrence in humans, animals, and arthropods. 34 

Based on an established evidence consensus framework, we integrated multiple information sources to 35 

assess the total evidence supporting ongoing transmission of MAYV within each country in our study 36 

region. We then developed high resolution maps of the disease’s estimated distribution using a boosted 37 

regression tree approach. Models were developed using ten climatic and environmental covariates that are 38 

related to the MAYV transmission cycle. Using the output of our boosted regression tree models, we 39 

estimated the total population living in regions suitable for MAYV transmission. 40 

Findings 41 

The evidence consensus scores revealed high or very high evidence of MAYV transmission in Brazil 42 

(especially the states of  Mato Grosso and Goiás), Venezuela, Peru, Trinidad and Tobago, Colombia, 43 

Bolivia, and French Guiana. According to the boosted regression tree models, a substantial region of 44 

South America is suitable for MAYV transmission, including north and central Brazil, French Guiana, 45 

and Suriname. Some regions (e.g., Guyana) with low or moderate evidence of transmission were 46 

identified as highly suitable for MAYV.  We estimate that approximately 77 million people in the 47 

Americas live in areas that may be suitable for MAYV transmission, including 43·4 million people in 48 

Brazil. Our results can assist public health authorities in prioritizing high-risk areas for vector control, 49 

human disease surveillance and ecological studies.  50 
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Research in context  57 

Evidence before this study  58 

We searched PubMed on January 27, 2021 using the search term “Mayaro virus”. This search yielded 274 59 

results including two systematic reviews of Mayaro virus (MAYV) occurrence and one study that 60 

modeled the distribution of MAYV risk. Although prior systematic reviews included some spatial 61 

information, they did not attempt to georeference MAYV occurrence with a high level of spatial precision 62 

and did not quantify uncertainty in geolocated records. Furthermore, the one published study that modeled 63 

environmental suitability for MAYV included only a limited set of MAYV occurrence locations. No 64 

additional studies have been conducted to  model the risk of MAYV occurrence across space or to 65 

quantify the total population which may be at risk of MAYV infection in the Americas. 66 

Added value of this study  67 

We used a comprehensive, georeferenced compendium of MAYV occurrence to model the suitability for 68 

MAYV occurrence in the Americas. Our boosted regression tree model incorporated 203 MAYV 69 

occurrence locations and 10 gridded environmental covariates to generate a 5 x 5 km continuous surface 70 

of MAYV suitability across the Americas. Using this distribution model, we estimated the total 71 

population residing in areas that are suitable for MAYV transmission. Furthermore, we developed 72 

evidence consensus scores for each country in our study region that synthesized a variety of sources to 73 

assess the overall evidence of MAYV transmission.  74 

Implications of all the available evidence 75 

Our study provides a contemporary estimate of MAYV distribution using a well-established disease 76 

mapping framework. This information provides an evidence base that can guide disease surveillance 77 

(including human cases and ecological studies) and vector control efforts in the Americas. This is 78 

especially useful in regions with high MAYV suitability but little or no evidence of MAYV transmission 79 

(e.g., Guyana and Suriname). 80 
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Introduction 81 

Mayaro virus (MAYV) is a mosquito-borne Alphavirus that was first detected in Trinidad in 82 

1954.1 MAYV has caused periodic outbreaks throughout Latin America2 and serological surveys 83 

and syndromic surveillance studies suggest widespread circulation in the region.3 Some 84 

researchers have hypothesized that MAYV has broader epidemic potential and raised alarm 85 

about its increased geographic spread.4,5  86 

MAYV can cause debilitating arthralgia or arthritis that can persist for months after initial 87 

infection.6 However, most MAYV patients present with non-specific febrile symptoms that are 88 

clinically indistinguishable from other vector borne diseases such as dengue or Zika.7 Therefore, 89 

clinical diagnosis is often difficult and accurate estimates of disease burden remain elusive. This 90 

is further complicated by the many limitations of serological diagnostics including the cross-91 

reactivity of antigenically similar viruses.8 Supportive care remains the current standard of 92 

clinical treatment for MAYV as no licensed vaccine or antiviral treatment currently exists. 93 

Limited studies on MAYV ecology suggest that this virus is maintained in a sylvatic 94 

transmission cycle involving arboreal mosquito vectors and non-human animal reservoirs. High 95 

seroprevalence among non-human primates (NHPs)9 suggests they may be involved in the 96 

MAYV transmission cycle, although their precise role is inconclusive. In addition, MAYV 97 

antibodies have been detected in other mammals including rodents and marsupials10. Risk factors 98 

including residing near forested areas11 and hunting in the rainforest12 are associated with 99 

MAYV infection in humans, highlighting the importance of the sylvatic transmission cycle and 100 

the potential for spillover events. However, the occurrence of MAYV in the city of Manaus has 101 

also led to concerns about the involvement of Aedes (Ae.) mosquitoes in an urban transmission 102 

cycle.13 Though studies of wild-caught mosquito populations implicated the canopy-dwelling 103 

Haemagogus (Hg.) janthinomys mosquito as the primary vector during a major outbreak in 104 

Brazil,9 Ae. aegypti and Ae. albopictus have demonstrated the potential to transmit MAYV in 105 

laboratory settings.14    106 

A recent epidemiological alert by the Pan American Health Association (PAHO) emphasized the 107 

need for increased awareness of and extended surveillance for MAYV in the Americas.15 Ideally, 108 

MAYV spillover and outbreak prevention in the Americas would be guided by granular maps of 109 

MAYV risk enabling targeted febrile surveillance and ecological surveillance efforts and better 110 

tailored risk communications to endemic populations and travelers. However, the precise areas of 111 

risk from MAYV throughout the Americas remain unclear due to limited data on MAYV 112 

occurrence16, underscoring a fundamental need for a more comprehensive and georeferenced 113 

dataset on MAYV occurrence in the Americas.  114 

Here, we provide a critical update to the current state of knowledge on MAYV transmission risk 115 

across the Americas. We adopted a well-established machine-learning based disease mapping 116 

approach originally developed by ecologists to model species distributions but has since been 117 

successfully applied to several medically-relevant vector-borne pathogens17-19. These methods 118 

are particularly powerful for leveraging biological and ecological information underpinning a 119 

sylvatic disease system to generate biologically realistic and spatially explicit predictions when 120 

epidemiological data are still sparse. Many of these models rely on machine learning techniques 121 

including boosted regression trees (BRT)20 to develop a multivariate relationship between 122 
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disease occurrence locations and relevant climatic or environmental covariates that impact 123 

disease transmission. 124 

In order to develop a contemporary estimate of MAYV risk in the Americas, we applied a 125 

predictive mapping approach with three components: (1) scoring the total evidence supporting 126 

ongoing MAYV transmission within each country (i.e., evidence consensus scores); (2) 127 

modeling the likely distribution of MAYV suitability throughout the Americas with high 128 

predictive accuracy; (3) estimating the total population residing in areas with a high suitability 129 

for MAYV transmission. Compared to previous estimates, these updated datasets and analyses 130 

suggest that MAYV poses a substantial and possibly underestimated threat to the Americas.  131 

Methods 132 

Evidence Consensus  133 

We used a well-established framework21 to generate an evidence consensus score for each 134 

country in the study region. This approach integrates several information sources to generate a 135 

score that characterizes the evidence for disease transmission. The data sources that we 136 

considered for MAYV evidence consensus scores included health organization status, date of 137 

most recent human occurrence, validity of diagnostic tests, recency of outbreaks or clinical cases, 138 

and recency of occurrence in non-human animals or arthropods. Scores ranged from 0 (“No 139 

evidence of MAYV presence”) to 21 (“Complete evidence of MAYV presence”). A more 140 

comprehensive description of the evidence consensus scoring process is presented in the 141 

Supplementary Materials (pp 3-5).  142 

Occurrence records 143 

We collected and georeferenced MAYV occurrence records in humans, non-human animals, and 144 

arthropods22,23. These records were extracted from peer-reviewed and grey literature sources. 145 

Occurrences with a high level of spatial precision were designated point locations, while less 146 

precise records (e.g., administrative units) were designated polygon locations. We recorded the 147 

coordinates of all point locations and polygon centroids as well as the uncertainty associated with 148 

each record. We included occurrence records with ≤75km of uncertainty in our current analysis. 149 

Overall, our dataset comprised 203 MAYV occurrence records in humans, animals, and 150 

arthropods. This was subsequently reduced to 170 records after we thinned the dataset to reduce 151 

spatial autocorrelation. Details on the assembly of the occurrence records are available in the 152 

Supplementary Materials (p 3). 153 

Description of covariates 154 

We considered 10 ecologically relevant gridded variables (i.e., raster data) for inclusion in our 155 

model. These variables included various measures of topography, climate, land cover and 156 

vegetation that likely influence the MAYV transmission cycle and the distribution of MAYV 157 

risk throughout the region. (See Supplementary Materials for a description of the covariates and 158 

rationale for their inclusion in the model.) Values for each gridded covariate were extracted at 159 

each presence/pseudoabsence location and used in the modeling procedure described below. 160 

Climatic variables included rainfall, nighttime land surface temperature (LST Night), and 161 
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daytime land surface temperature (LST Day) (Figures 1A – 1C). Measures of land cover and 162 

vegetation included two proportional land cover classes (evergreen broadleaf and urban/built-163 

up), enhanced vegetation index (EVI), tasseled cap wetness (TCW) and tasseled cap brightness 164 

(TCB) (Figures 1D – 1H). Lastly, we included two topographic covariates: slope and elevation 165 

(Figures 1I and 1J). The covariate layers are presented as maps in Figure 1 and additional details 166 

on the covariates are presented in the Supplementary Materials (pp 5-6). We did not detect any 167 

collinearity between the covariates based on a Spearman correlation coefficient of 0.8, and thus 168 

included all 10 covariates in the final model. 169 

Mapping risk for MAYV occurrence 170 

Although first developed by ecologists to model the potential distribution of plants and animals, 171 

ecological niche models (also known as species distribution models or environmental suitability 172 

models) are now common in the epidemiological literature to model human disease risk. A 173 

robust disease mapping framework has been established in the last decade to model the zoonotic 174 

niche of medically-relevant pathogens including dengue virus (DENV)17 and Zika virus 175 

(ZIKV)18, among others. We used BRT to model the environmental suitability for MAYV 176 

occurrence across our study region. BRT is a machine learning approach that uses regression or 177 

classification trees to partition the dataset and combines many simple models (i.e., boosting) to 178 

improve overall model accuracy.20 We fitted 100 BRT ‘sub-models’ to separate bootstraps of the 179 

dataset using the gbm.step procedure in the dismo R package.24 The predictive accuracy of the 180 

model was assessed using the area under the receiver operator characteristic curve (AUC), 181 

sensitivity, specificity, Kappa statistic, and percent correctly classified (PCC). Metrics were 182 

calculated for each sub-model using 10-fold cross validation. The final prediction map represents 183 

the mean MAYV suitability at each 5 x 5 km pixel across our ensemble of 100 models. We also 184 

generated a map of the model uncertainty, represented by the per-pixel standard deviation. 185 

Total population at potential risk 186 

We estimated the total human population living in areas of high predicted MAYV suitability. We 187 

first transformed the mean prediction map into a binary risk map using a previously established 188 

protocol,18 whereby a suitability threshold value was chosen that encompassed 90% of the 189 

MAYV occurrence points. Each 5 x 5 km pixel was classified as 1 (i.e., suitable) if its predicted 190 

suitability exceeded the threshold value; otherwise, it was classified as 0 (i.e., not suitable). We 191 

then determined the total population residing in suitable areas by multiplying the population 192 

count within each grid cell by the binary suitability classification and summing these values 193 

across each country. 194 
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   95 

 96 

Figure 1. Covariates used to model the environmental suitability of MAYV. A. and B. Land surface 97 

temperature (LST) night and LST day, respectively; C. Rainfall; D. Enhanced vegetation index (EVI); E. 98 
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Evergreen forest; F. Urban/built-up land cover; G. Tasseled cap brightness (TCB); H. Tasseled cap wetness 99 

(TCW);  I. Elevation; J. Slope 00 
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Results 201 

The map of evidence consensus is presented in Figure 2A and the evidence score for each 202 

country is presented by category in the Supplementary Materials (pp 11-16). Evidence consensus 203 

scores ranged from 0 (no evidence of MAYV transmission) to 19 (very high evidence of 204 

transmission). We recorded a very high evidence consensus score for Brazil and Venezuela, with 205 

scores of 19 and 16, respectively. Other countries with a high evidence consensus score included 206 

Peru with a score of 15, French Guiana with a score of 13, and Trinidad and Tobago, Colombia, 207 

and Bolivia (all with scores of 11). We recorded evidence consensus scores ranging from very 208 

low to moderate in all Central American and Caribbean countries. Among these countries with 209 

low to moderate risk, the highest evidence consensus scores were documented for Haiti with a 210 

score of 10, and Panama with a score of 9. 211 

In order to provide more granular data throughout Brazil, we also calculated evidence scores by 212 

state (i.e., first-administrative division). These results are presented in Figure 2B. Because health 213 

organization status was not available for each state, we assigned a baseline score of one to each 214 

state, and then calculated the remaining categories according to the methods described above. 215 

Evidence of MAYV transmission was highest in the central Brazilian states of Mato Grosso and 216 

Goiás, both with very high scores of 16. High evidence of MAYV was also documented in five 217 

Northern and Central states, including Pará (Evidence Consensus= 14), Roraima (Evidence 218 

Consensus= 13), Bahia and Piauí (Evidence Consensus= 12 for both), and Mato Grosso do Sul 219 

(Evidence Consensus= 11). 220 

Figure 3 displays the 203 MAYV occurrences (human, animal, and arthropod) that were used to 221 

construct our model. The occurrence locations fell in 13 countries, most frequently in Brazil 222 

(n=102), French Guiana (n=27) and Peru (n=22). MAYV occurrences were reported between the 223 

years 1954 and 2021, with the majority of cases (n=140) occurring since the year 2000. One 224 

hundred and sixty (79%) of the 203 occurrence locations were detected in humans while 43 225 

(21%) were detected in non-human animals or arthropods. An alternative model using just the 226 

reported human occurrence was also constructed using the 160 human occurrence points. This 227 

model is presented in the Supplementary Materials along with a map showing the observed 228 

difference between the all-host and the human-only models (pp 8-9). 229 

The predicted distribution of MAYV environmental suitability is presented in Figure 4A. This 230 

risk map represents the average output across the 100 BRT sub-models. The map of model 231 

uncertainty (i.e., the per-pixel standard deviation across the 100 model runs) is presented in 232 

Figure 4B. High suitability for MAYV transmission was evident across the Amazon rainforest 233 

ecoregion in South America. The model predicted very high suitability for MAYV across a large 234 

portion of Central and Northern Brazil, especially the states of Amazonas, Acre, Pará, and 235 

Tocantins. High suitability was also predicted throughout French Guiana, Guyana, Suriname, 236 

and Trinidad and Tobago, as well as Southern portion of Colombia and Venezuela, and the 237 

north-eastern region of Peru and northern region of Bolivia.  238 

Certain regions of Central America with low or moderate evidence consensus scores were also 239 

found to be highly suitable for MAYV transmission, namely the Southern region of Panama and 240 

eastern coastal regions of Nicaragua, Honduras, and Belize. The results of the human-only model 241 

are presented in the Supplementary Figure 1. Overall, the results of this model were very similar 242 

to the all-host model, with only slight differences. The difference in predicted environmental 243 
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suitability between the all-host model and human-only model is presented in Supplementary 244 

Figure 2.   245 

Our models showed MAYV suitability to be especially influenced by climatic variables 246 

including nighttime LST (relative importance of 44·8%) and rainfall (relative importance of 247 

23·6%) as well as EVI (relative importance of 8·1%). The partial dependence plots for nighttime 248 

LST and rainfall are presented in Figure 5 and partial dependence plots for the remaining 249 

variables are presented in the Supplementary Figure 3. The partial dependence plot for nighttime 250 

LST reveals a steep increase in MAYV suitability around 12� that peaks at ~22�. The plot for 251 

rainfall reveals a similarly steep increase starting at ~80mm that peaks at ~110mm and then 252 

plateaus, with only a minor peak at ~375mm. After applying pairwise distance sampling to 253 

remove spatial sorting bias, the model demonstrated good predictive power with an AUC of 0·78 254 

+ 0·007 standard error. Other statistics from the 10-fold cross-validation procedure included the 255 

following: PCC= 83%, sensitivity= 0·75, specificity= 0·91, and Kappa= 0·6. 256 

We identified 0·488 as the threshold suitability value that encompassed 90% of the MAYV 257 

occurrence locations. We applied this conservative value to classify pixels as either suitable or 258 

unsuitable for MAYV transmission. Overall, we estimate that approximately 77 million people in 259 

the Americas live in areas that are potentially suitable for MAYV transmission. Countries with 260 

the greatest at-risk population include Brazil (43.4 million people), Colombia (6.9 million 261 

people), and Mexico (4.9 million people). The majority of the Brazilian population living in 262 

high-risk areas reside in the Amazon rainforest ecoregion.   263 

 264 

Table 1. Total population living in areas potentially suitable for MAYV transmission 265 

(millions). Table 1 indicates the five countries in each region with the largest population in 266 

suitable transmission regions. The North/Central American region includes Caribbean Island 267 

nations. 268 

Country/Region Pop. at risk (millions) 
South America 58.38 
Brazil 43.37 
Colombia 6.96 
Venezuela 2.80 
Peru 1.95 
Trinidad and Tobago  0.90 
North/Central America 18.33 
Mexico 4.96 
Haiti 3.09 
Dominican Republic 2.52 
Panama 2.30 
Guatemala  1.21 
Overall 76.71 
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 269 

 270 

Fig 2. Evidence consensus scores. Evidence consensus is presented at the Admin0 level for all countries in the study (Fig. 2A) and at 271 

the Admin1 level (Fig. 2B) for Brazil. Scores are based on health organization status, date of most recent MAYV occurrence; validity 272 

of MAYV diagnostic test, recency of MAYV outbreaks or clinical cases, and recency of MAYV occurrence in animals or arthropods. 273 

Blue represents very low evidence consensus while red represents very high evidence consensus.274 
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 275 

 276 

Figure 3. Geographic distribution and temporal trend of MAYV occurrence. The map shows the distribution of the 203 277 

occurrence locations (before the spatial thinning procedure) that were used to construct the boosted regression tree (BRT) model. The 278 

color corresponds to the host type of each point (human, animal, or arthropod). The inset chart displays total occurrences that were 279 

reported in each year since the initial human case was detected in 1954. 280 
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 281 

Fig 4. Map of environmental suitability and prediction uncertainty for MAYV occurrence. (A) Suitability ranged from blue (0 - 282 

no suitability) to red (1 - very high suitability). The inset map shows greater detail in Trinidad and Tobago. (B) The per-pixel standard 283 

deviation across the 100 sub-models is presented as a measure of the model’s uncertainty.284 
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  285 

Fig 5. Partial dependence plots of the two most important variables. The solid black line represents average response over 100 286 

sub-models and the gray region represents one standard deviation. Tick marks represent values of each variable at occurrence location.287 
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Discussion  288 

In this paper we present an ensemble BRT model of MAYV environmental suitability in the 289 

Americas and an evidence consensus framework that integrates multiple information sources. In 290 

the absence of comprehensive epidemiological data and reliable and affordable methods for large 291 

scale arboviral diagnosis, distribution models can serve an important role in guiding arboviral 292 

surveillance (in humans and other hosts) and targeting vector control efforts. This is especially 293 

true in the case of MAYV given its nonspecific febrile presentation and the uncertainty 294 

surrounding its true distribution and non-human animal reservoirs. Our model provides important 295 

information regarding regions of Central and South America that are at highest risk of MAYV 296 

transmission allowing us to estimate the total population living in areas suitable for MAYV 297 

transmission. Furthermore, we are able to identify areas with high predicted MAYV suitability 298 

despite low or moderate evidence consensus.  299 

Our model predicted the distribution of MAYV with relatively high accuracy, identifying several 300 

regions of high environmental suitability. This included large areas of North and Central Brazil 301 

(e.g., the states of Mato Grosso, Pará, and Goiás), French Guiana, Trinidad & Tobago, and 302 

Northern Peru, all areas with well-documented evidence of MAYV transmission.25 In addition, 303 

several regions with minimal or no published evidence of MAYV transmission were also found 304 

to be highly suitable for transmission, including the majority of Guyana as well as coastal 305 

regions of Belize, Nicaragua, and Honduras. This finding highlights the utility of distribution 306 

models in identifying areas that are particularly receptive to MAYV transmission that could be 307 

targeted for increased surveillance or vector control.    308 

The wide predicted geographic distribution of MAYV underscores the need for increased 309 

surveillance and diagnostic capacity throughout the Americas. Our findings suggest that MAYV 310 

is likely vastly underreported and that co-occurring arboviral epidemics (e.g., DENV or CHIKV) 311 

may obfuscate the true MAYV disease burden. This is especially true in Brazil, where ~43 312 

million people reside in areas that are potentially suitable for MAYV transmission. An additional 313 

concern is the detection of MAYV in Haiti,26 where ~3 million people are predicted to be at 314 

potential risk according to our model. The discovery of MAYV in Haiti has prompted additional 315 

questions about its potential vectors and the possibility of urban transmission, due to the lack of 316 

Haemagogus mosquitoes and non-human primates on the island. These questions require further 317 

entomological investigations in order to elucidate the vectorial capacity of urban mosquitoes and 318 

potential animal reservoirs other than non-human primates.  319 

Our model has several important limitations that must be considered when interpreting the 320 

findings presented here. Georeferenced reports of disease occurrence are subject to sampling bias 321 

related to the accessibility of certain locations, availability of laboratory infrastructure, or the 322 

presence of a robust surveillance system that is able to detect arbovirus occurrence. Therefore, 323 

the presence locations used in our model are likely subject to sampling bias and do not reflect the 324 

true distribution of MAYV across the Americas. Following previously published modeling 325 

studies,27 we attempted to correct for the sampling bias in our dataset through the use of 326 

pseudoabsence points with a similar spatial bias as the presence points. However, it is likely that 327 

the model is still affected by some level of bias in the occurrence locations. Ideally, future 328 

MAYV distribution models will be updated when new occurrence locations are reported (as in 329 

Pigott et al.28 updates to the Ebola niche map), leading to a more accurate prediction of the true 330 

MAYV distribution.  331 
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Another limitation relates to the covariate set used to construct our model. Many aspects of the 332 

MAYV epidemiology remain poorly understood and current knowledge of MAYV ecology is 333 

lacking. We attempted to include covariates that likely have a strong influence on MAYV 334 

transmission, including climate, landcover, and vegetation indices, which impact vector ecology 335 

and therefore transmission risk. However, disease risk is influenced by other unknown or 336 

understudied variables including socioeconomic factors and the presence of non-human reservoir 337 

hosts. Although several non-human primate species appear to be important MAYV reservoirs,9 338 

we opted not to include primate distribution in our model due to the lack of certainty regarding 339 

their precise role in the transmission cycle. For systems like YFV, where the role of particular 340 

primate species is better understood,  the distributions of particular primate reservoir species may 341 

be incorporated directly into predictive models.29 As more research is conducted on MAYV 342 

ecology and additional animal reservoirs are identified, future MAYV distribution models should 343 

be updated to include primate distribution as a contributor to overall spillover risk. Our results 344 

here may assist in targeting and designing animal reservoir studies.  345 

Our model contributes several crucial additions to the limited literature on MAYV distribution.16  346 

By including a comprehensive compendium of MAYV occurrence points along with high-347 

resolution, remotely sensed covariates at each point, the current ensemble model generates 348 

actionable predictions through its demonstrated high predictive accuracy20 across a wider 349 

geographic range than any previously published model. Furthermore, the evidence consensus 350 

scores provide an alternate method for estimating MAYV transmission, which complements the 351 

modeled predictions. These estimates thus inform where and when both human and non-human 352 

MAYV surveillance should be targeted. While it remains difficult to accurately estimate the 353 

costs of epidemic response30 our estimates of the total at-risk human population across multiple 354 

countries also make clear that the potential risk to human health is disproportionately high 355 

compared to investments in understanding the basic ecology and epidemiology of MAYV 356 

needed to mitigate the risk of future spillover transmission.  357 
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Occurrence records 

We previously developed a georeferenced compendium of MAYV occurrence based on methods that have been 
established for other pathogens including dengue and leishmaniasis.1-4 MAYV occurrence among humans, non-
human animals, and arthropods was compiled through a systematic review of the literature, including an evaluation 
of the quality of such evidence. These methods were described previously in greater detail.5 All occurrences were 
assigned to a point or polygon location, depending on the spatial resolution provided by the authors. Point data 
comprised precise locations with less than 5km of uncertainty (e.g., specific coordinates or a small town) while 
polygon data comprised larger areas or administrative units that exceeded 5km of uncertainty. The coordinates of 
point locations and polygon centroids were recorded in our database and used as the presence records in our current 
modeling study.  

Presence points with ≤75km of uncertainty were included in our current analysis, although the majority of points 
had substantially less uncertainty. Following a previously published modeling study that accepted up to 65km of 
uncertainty,6 we chose to accept a greater level of uncertainty in our occurrence data in order to include more 
occurrence locations during the model development process. Due to the limited size of our occurrence dataset, we 
deemed that the extra information gained from each occurrence record outweighed any issues associated with the 
greater uncertainty of some occurrence records.  

The final MAYV database contained 265 unique georeferences in 15 countries, published between 1954 and 2022. 
Two-hundred and three of these occurrence points met the ≤75km uncertainty threshold, and thus were eligible for 
inclusion in our model. We used the spThin package in the R statistical software to reduce clustering of presence 
records.7 A 5km distance threshold was applied to ensure that no more than one presence point occurred within each 
pixel of our covariate layers.  

Evidence Consensus  

Collating published reports of MAYV is an important first step in clarifying its distribution. However, 
heterogeneous surveillance capacity across countries and incomplete or unclear reporting of epidemiological data 
may impact our ability to definitively say that MAYV is present in a certain location. An evidence consensus 
approach takes several information sources into account in order to score the total available evidence supporting the 
presence or absence of a disease in a given country. This approach has been used previously to provide a refined 
description of the spatial limits of several pathogens including dengue virus,8 leishmaniasis,9 podoconiosis,10 and 
Lassa fever.11 These studies considered multiple data sources to develop an evidence consensus score for disease 
presence or absence, including health organization status, peer reviewed evidence, case data, animal infection, 
economic status, and other supplementary evidence. We followed a similar procedure to generate a consensus score 
for each country in Latin America that quantifies the evidence supporting MAYV presence. This score ranged from 
0 (“No evidence of MAYV presence”) to 21 (“Complete evidence of MAYV presence”) based on the categories 
described below.  

Health Organization Reports (max 3 points) 

International health organizations have been used previously to support evidence of pathogen presence or absence in 
specific countries.8  We followed a similar procedure, using health reports from two sources: Pan American Health 
Organization (PAHO)/World Health Organization (WHO) and the Global Infectious Diseases and Epidemiology 
Online Network (GIDEON). The PAHO issues weekly epidemiological alerts to update the public on the occurrence 
of significant health events. Similarly, the WHO issues Disease Outbreak News (DONs) related to public health 
issues of international importance. We searched these PAHO/WHO bulletins for relevant alerts related to MAYV in 
a given country. Countries were assigned a score of 1 if WHO/PAHO had issued an epidemiological alert for 
MAYV in that country.  

GIDEON is a web application that compiles relevant news on infectious disease outbreaks and designates countries 
as endemic/potentially endemic for each pathogen. If a country was listed as endemic/potentially endemic for 
MAYV in the GIDEON database, it was assigned a score of 1. If a country fulfilled both criteria (i.e., listed as 
endemic in GIDEON and a relevant PAHO/WHO health alert) it was assigned a score of 3. 
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Peer-reviewed Evidence of Human Infection (max 6 points) 

Based on methods proposed by Brady et al.,8 peer-reviewed evidence of human infection was scored based on the 
following two categories: contemporariness (3 for 2011-2020, 2 for 2000-2010, and 1 for 1999 and earlier) and 
diagnostic accuracy (3 for PCR, viral culture, or PRNT, 2 for serological methods only, 1 for presumed cases 
without diagnostic test or cases with unspecified diagnostic test). In the case of multiple MAYV reports in a given 
country, the highest scoring report was used. For example, if one study in Brazil reported serological evidence of 
MAYV transmission (score of 2) in 1990 (score of 1) and another study in Brazil reported MAYV viral culture 
(score of 3) in 2019 (score of 3), Brazil would receive a score of 6 for this category. We also considered returning 
traveler reports for this category if the case was definitively linked to the country of travel. These reports are useful 
for establishing evidence of pathogen presence because diagnosis is often pursued rigorously for travelers upon 
returning to their country of origin.8 

Outbreaks and Clinical Cases (max 6 points) 

Reported outbreaks of MAYV or clinical cases that were detected using PCR were scored according to total case 
numbers and contemporariness. Previous studies have used only the occurrence of reported outbreaks (with no 
consideration to clinical cases) to assign a score for this category.8 However, because only a limited number of 
MAYV outbreaks have occurred and because diagnostic techniques have been inconsistent across these outbreaks, 
we also considered clinical cases diagnosed by PCR or viral culture that were not necessarily considered to be an 
outbreak. The scoring system for this category was adapted based on methods used by Mylne et al.,11 where higher 
scores were assigned to contemporary reports with 20 or more cases. In order to calculate a score for each country, 
we summed the cases detected across multiple studies within a single time period. For example, if two separate 
reports from Peru each detected 10 cases of MAYV using PCR between 2011 and 2020, we summed the reported 
cases (20 total) and assigned Peru 6 points for this category. However, cases from multiple reports were not summed 
across different time periods.  

A lack of MAYV case reports in a given country is not necessarily indicative of a lack of virus transmission. It is 
likely that MAYV cases may go undetected due to insufficient surveillance or diagnostic capacity. We attempted to 
account for this uncertainty using healthcare expenditure (HE) as a proxy of a country’s capacity for detecting 
MAYV occurrence. If no outbreaks or clinical cases were reported in a given country, we used the current HE per 
capita from the World Health Organization 2017 dataset. Total HE for each country was designated as low (HE < 
$100), medium ($100 < HE < $500), or high (HE > $500) according to methods that were previously described.8 We 
also considered a country’s proximity to other countries that have reported outbreaks or clinical cases diagnosed by 
PCR.11 Adjacency to countries with outbreaks or clinical cases was combined with HE to assign a score. The highest 
score was assigned to countries with MAYV outbreaks/clinical cases in two or more neighboring countries and a 
low HE. 

Animal and Arthropod Data (max 6 points) 

Detection of MAYV occurrence in non-human animal or arthropod species provides additional evidence of MAYV 
presence. This may be indicative of the potential for disease spillover into the human population. Previous studies 
have considered the presence of competent vector species when calculating the evidence consensus score.12,13 
However, because of uncertainties regarding the role of various mosquitoes in the MAYV transmission cycle (e.g., 
the possible role of Aedes aegypti in urban transmission14), we considered reports of any wild-caught arthropods that 
were identified as MAYV positive. Similarly, we assigned a separate score based on reports of infection in potential 
animal reservoirs. The highest scores for both animal and arthropod MAYV positivity were assigned to more 
contemporary studies. In the case of multiple MAYV reports in a given country, the highest scoring report was used. 
All data on MAYV positivity in non-human animals and arthropods was compiled in a systematic review that was 
previously described.5  

 

Supplementary Table 1. Evidence Categories and Possible Scores 

Evidence Category Score 
Health organization status 
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   Both GIDEON and PAHO/WHO 3 
   Either GIDEON or PAHO/WHO 1 
Peer reviewed evidence 
   Date of MAYV human occurrence 
   2011-2020 3 
   2000-2010 2 
   1999 and earlier 1 
Diagnostic procedure 
   PCR or viral culture or PRNT 3 
   Serological methods (not including PRNT) 2 
   Presumptive diagnosis or not specified 1 
Outbreaks and clinical cases 
   20+ cases from 2011-2020 6 
   20+ cases from 2000-2010 5 
   20+ cases 1999 and earlier 4 
   <20 cases from 2011-2020 3 
   <20 cases from 2000-2010 2 
   <20 cases 1999 and earlier 1 
If no case data: health expenditure in 2017 and adjacency 
   HE <100 USD and 2 or more neighbors 4 
   100 USD < HE <500 USD and 2 or more neighbors 3 
   HE <100 USD and 1 neighbor 2 
   100 USD < HE <500 USD and 1 neighbor 1 
Animal data 
   Infected animal from 2011-2020 3 
   Infected animal from 2000-2010  2 
   Infected animal 1999 and earlier 1 
Arthropod data 
   Positive arthropod from 2011-2020 3 
   Positive arthropod from 2000-2010 2 
   Positive arthropod 1999 and earlier 1 
Possible Evidence Consensus Score Categories (Maximum Possible Score: 21) 
   Very high evidence of MAYV presence 16-21 
   High evidence of MAYV presence 11-15 
   Moderate evidence of MAYV presence 6-10 
   Little to no evidence of MAYV presence 0-5 
 

Explanatory covariates  

We considered several variables for inclusion in our models based on both previous studies of and hypotheses about 
MAYV ecology. Rainfall data and remotely sensed variables from the MODIS platform were provided by the 
Malaria Atlas Project (https://malariaatlas.org/) after a gap-filling algorithm was used to account for cloud cover.15 
The variables were transformed to ensure matching spatial resolution of 2·5 arc-minutes (~5km) and matching 
extent. The variables were transformed to ensure that spatial resolution, extent, and boundaries were identical before 
modeling. Several variables described here were derived from NASA’s Moderate Resolution Imaging 
Spectroradiometer (MODIS) remote sensing platform.16      
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Temperature and rainfall play an important role in vector abundance and activity.17 Entomological surveys have 
demonstrated an association between Hg. janthinomys abundance and temperature18,19 and Alencar et al. reported 
that the mosquito’s presence was correlated with high temperatures ranging from 24�–30�.20 Several studies have 
also demonstrated that large diurnal temperature range can impact larval development time, adult survival, and 
reproductive output in Aedes and Anopheles populations21-23 and an ecological niche model demonstrated that mean 
diurnal range was one of the most important predictors of Hg. janthinomys distribution.24 Humidity and rainfall have 
also been shown to impact the density of adult Hg. janthinomys mosquito populations18,25-28 and Hg. janthinomys 
biting activity was shown to peak during intense rainfall in January.26 Due to the impact of temperature and rainfall 
on vector abundance and vectorial capacity, we included three climate variables in our model, namely night-time 
and daytime land surface temperature (LST) and cumulative rainfall. LST Night and LST Day are remotely sensed 
variables from the NASA MODIS MOD11A2 satellite.29 Annual LST Day and LST Night raster layers spanning the 
years 2000–2020 were used to calculate a single layer representing the mean values over this time period. We also 
used rainfall data from the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS),30 a quasi-global 
data set that incorporates satellite imagery at 0·05° resolution and meteorological station data to construct gridded 
rainfall estimates.  

In addition, Hg. janthinomys mosquitoes thrive in arboreal habitats (e.g., tropical rainforests) and oviposit in water-
filled natural plant cavities (e.g., tree holes or broken bamboo).31 Adult mosquitoes have predominantly been found 
in the forest canopy at heights of 16m and 30m.18 Therefore, the density of vegetation canopy and moisture supply 
may influence Hg. janthinomys abundance in a given area. To account for these factors, we included three covariates 
related to vegetation and surface moisture: enhanced vegetation index (EVI), tasseled cap wetness (TCW) and 
tasseled cap brightness (TCB). The EVI is a measure of vegetation canopy greenness displayed at a 500m spatial 
resolution32 and is derived from the MODIS MCD43B4 product.33 The EVI has been used as a covariate in previous 
niche models of arboviruses including Yellow Fever,34 chikungunya virus,12 and Zika virus.35 TCW and TCB, 
measures of surface moisture that are used to assess land cover change, were also generated from the MODIS 
MCD43B4 product.36  

Previous outbreaks of MAYV have occurred in towns close to the rainforest or jungle outposts in close proximity to 
the forest edge.37-39 MAYV most likely circulates in a sylvatic cycle involving canopy-dwelling mosquitoes and 
non-human primates, with occasional spill-overs into humans living close to the forest.40 Entomological surveys 
have demonstrated that Hg. janthinomys are predominantly found in forest canopies at heights of 16m and 30m.18 
Due to the strong impact of land cover on the probability of MAYV occurrence in a given area, we included two 
land cover covariates, namely evergreen broadleaf forest and urban/built-up, from the MODIS MOD13Q1 
product.41,42 These covariates represent the proportion of each raster grid cell (ranging from 0-100) that is covered 
by the land cover class in question, whereby a value of zero represents the absence of land cover and 100 represents 
complete coverage. Lastly, we included slope and elevation covariates that we accessed from the US Geological 
Survey’s Global Multi-resolution Terrain Elevation Data (GMTED).43 

Covariate selection 

We implemented a data-driven variable selection process in the R package SDMtune to identify variables for 
inclusion in our models. This process involves removal of highly correlated variables based on an algorithm that 
first ranks the variables by permutation importance and evaluates the correlation between the most important 
variable and the remaining variables. A leave-one-out Jack-knife test is then used to remove the variable that has the 
smallest impact on model performance according to the AUC. However, no variables met the threshold for 
exclusion based on a Spearman correlation coefficient of 0·8. Therefore, all variables were included in the analysis. 

Modelling approach 

We used boosted regression trees (BRT) to model the environmental suitability for MAYV occurrence. BRT is a 
machine learning approach that has been used extensively to develop risk maps of vector-borne pathogens.12,13,35,44,45 
This algorithm uses regression or classification trees to partition the dataset using recursive binary splits. It also 
incorporates boosting into the model-building process, a procedure that combines many simple models to improve 
overall model accuracy. The boosting algorithm is an iterative process that fits many small trees sequentially, 
building on previously fitted trees to improve model performance.46 This process incorporates a level of 
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stochasticity by randomly selecting a subset of the data to fit each tree, thereby reducing the model variance.46  BRT 
have several advantages including their ability to fit complex nonlinear relationships, handle missing data, and to 
accommodate many different types of covariates without any need for data transformation.46 

One of the most important aspects of modeling species distributions with presence-only data is the selection of 
pseudo-absence points that represent the range of environmental conditions where the species or pathogen was not 
detected. Random selection of pseudo-absence points may not be appropriate if the presence locations are spatially 
biased.47 In most cases, the detection of disease presence locations may be subject to sampling bias if some locations 
are more likely to be surveyed than others (e.g., locations that are closer to roads).48 Therefore, pseudo-absence 
points should be selected with a similar level of bias as the presence points to ensure that background and presence 
locations are biased in the same manner.48 Following the methods of previous modeling studies,11,49-51 we selected 
10,000 background points from the study region, biased towards more populous areas. Therefore, population density 
was used as a proxy for sampling bias. Pseudoabsence points were selected using the 2° method proposed by 
Barbet-Massin (2012),52 whereby each pseudo-absence point was at least 2° away from a presence location. In order 
to improve the model’s discrimination capacity, the pseudoabsence points were down-weighted to ensure that the 
weighted sum of presence records equaled the sum of weighted background points.52  

We subsequently fitted 100 BRT ‘sub-models’ to separate bootstraps of the dataset. The bootstrapped datasets were 
chosen with replacement, subject to the condition that a minimum of 25 presence and 25 pseudo-absence points 
were selected. This bootstrapping procedure allowed us to quantify the uncertainty across models and to increase the 
model’s robustness.53 Each sub-model was fit in R using the gbm.step procedure in the dismo package.54 This 
function uses cross-validation to identify the optimal number of trees for each sub-model to improve predictive 
capacity. The remaining BRT hyperparameters were held at their default values (tree complexity = 4, learning rate = 
0·005, bag fraction = 0·75, cross-validation folds = 10, step size = 10). The final prediction map represents the mean 
MAYV suitability of each 5 x 5 km pixel across our ensemble of 100 models. We also generated a map of the model 
uncertainty, represented by per-pixel standard deviation. In order to avoid extrapolating the model to regions far 
outside of the MAYV niche, the model predictions were restricted to the Americas. 

Two models were constructed. The model presented in the main text (“all-host”) included all human, arthropod, and 
non-human animal occurrence data (203 occurrence points overall and 170 points after the spatial thinning 
procedure). An additional model presented in the Supplementary materials (“human-only”) included only human 
occurrence data (160 occurrence points overall and 143 points after the spatial thinning procedure). Similar to a 
previous model of Marburg virus risk,51 we opted to use all occurrence points in the primary model to leverage all 
available data. We were also interested in exploring how the model predictions might change with the inclusion of 
multiple host types. We compared the output of the two models by subtracting the raster pixel values, allowing us to 
visualize the difference in predicted suitability between the human-only model and the all-host model. The all-host 
model is presented in the results below while the human-only model and comparison of model output is presented in 
Supplementary Materials. 

Model evaluation 

The predictive accuracy of the model was assessed using several performance metrics including the area under the 
receiver operator characteristic curve (AUC), sensitivity, specificity, Kappa statistic, and percent correctly classified 
(PCC). Metrics were calculated for each sub-model using 10-fold cross validation. The cross-validation procedure 
involved randomly splitting each bootstrapped dataset into 10 folds with approximately the same number of 
presence and absence records in each fold. The model was subsequently trained on nine of the folds and the 
withheld fold was used to evaluate the model performance. The performance metrics for each sub-model represent 
the mean values across the 10 folds. These values were then averaged across each of the 100 sub-models to generate 
an estimate of overall model performance.  
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Supplementary Figure 1. Map of environmental suitability MAYV occurrence using human-only data. 
Suitability ranged from blue (0- no suitability) to red (1- very high suitability). The inset map shows greater detail in 
Trinidad and Tobago.  
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Supplementary Figure 2. Difference in predicted environmental suitability between the all-host model and 
human-only model. This map was creating by subtracting the pixel-wise probability values in the all-host suitability 
model from the values in the human-only model. Red represents regions where the all-host model predicted higher 
suitability while black represents areas where the human-only model predicted higher suitability. White pixels 
represent agreement between the two models. 
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EVI = Enhanced vegetation index; LST = Land surface temperature; TCB = Tasseled cap brightness; TCW = Tasseled cap wetness. 

Supplementary Figure  3. Partial dependence plots of the two eight additional variables. The solid black line represents average response over 100 sub-models and the gray 
region represents one standard deviation. Tick marks represent values of each variable at occurrence location. Partial dependence plots for the two most important variables are 
presented in the main text (Figure 5).  
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Supplementary Table 2: Evidence consensus score by country 
Country Health Org. 

Status 
Date of 
Human 
Occurrence 

Diagnostic 
Procedure 

Outbreaks and 
Clinical Cases 

Health Expenditure 
and Adjacency 

Animal Data Arthropod Data Total Score 

Brazil 
1 3 3 6 N/A 3 3 19- Very high 

GIDEON only Most recent 
occurrence: 
2021 55 

RT-PCR 56  26 clinical cases 
in 2017-18 56 

Detected in 
horses in 2016 57 

Detected in 
mosquitoes 2018-19 58 

Venezuela 3 3 3 6 N/A 1 0 16- Very high 
GIDEON and 
PAHO alert 59 

Most recent 
occurrence: 
2016 60 

Isolation 60 77 clinical cases 
during outbreak 
in 2010 61 

Detected in 
sentinel hamster 
in 1999 62 

None detected 

Peru 1 3 3 6 N/A 2 0 15- High 
GIDEON only Most recent 

occurrence: 
2019 63 

RT-PCR and 
isolation 64 

86 clinical cases 
in 2016 65 

Detected in 
various animals 
in 2008 66 

None detected 

French 
Guiana 

3 3 3 3 N/A 1 0 13- High 
GIDEON and 
PAHO alert 67 

Most recent 
occurrence: 
2020 67 

RT-PCR 67 13 clinical cases 
in 2020 67 

Detected in 
various animals 
in 1994-95 68 

None detected 

Trinidad & 
Tobago 

1 3 3 3 N/A 0 3 13- High 
GIDEON only Most recent 

occurrence: 
2014 69 

RT-PCR 69 9 clinical cases 
in 2014 69 

None detected Identified by 
metatranscriptomics 
in 2018 70 

Bolivia 1 2 3 5 N/A 0 0 11- High 
GIDEON only Most recent 

occurrence: 
2007 71 

RT-PCR and 
isolation 71 

23 clinical cases 
from 2000-07 71 

None detected None detected 

Colombia 1 1 3 0 4 1 1 11- High 
GIDEON only Most recent 

occurrence: 
1966 72 

NT 73 No clinical 
cases 

Per capita CHE was 
$513; adjacent to 
Brazil, Venezuela, 
Peru 

Detected in 
primates in 
1957 73 

Isolated from 
mosquito in 1958-
60 74 

Haiti 1 3 3 3 N/A 0 0 10- Moderate 
GIDEON only Most recent 

occurrence:  
2015 75 
 

RT-PCR 75 5 clinical cases 
2014-15 75 

None detected None detected 

Ecuador 1 3 3 2 N/A 0 0 9- Moderate 
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GIDEON only Most recent 
occurrence: 
2019 76 

Isolation, RT-
PCR, or IgM 
seroconversion 
(not specified) 
71 

1 clinical case 
2000-07 71 

None detected None detected  

Guyana 1 1 2 0 5 0 0 9- Moderate 
GIDEON only Most recent 

occurrence: 
1955 77 

Serology (not 
specified) 77 

No clinical 
cases 

Per capita CHE was 
$296; adjacent to 
Brazil and Venezuela 

None detected None detected 

Panama 1 3 3 0 0 1 1 9- Moderate 
GIDEON only Most recent 

occurrence: 
2017 78 

NT 78 No clinical 
cases 

No neighbors Detected in 
various animals 
in 1974-76 79 

Isolated from 
mosquito in 1972-
79 80 

Suriname 1 1 3 0 3 0 0 8- Moderate 
GIDEON only Most recent 

occurrence: 
1964 81 

Isolation 82 No clinical 
cases 

Per capita CHE was 
$474; adjacent to 
Brazil and French 
Guiana 

None detected None detected 

Mexico 1 2 2 0 0 0 0 5- Low 
GIDEON only Most recent 

occurrence: 
2001 83 

IgM ELISA 83 No clinical 
cases 

No neighbors None detected None detected 

Paraguay 0 0 0 0 5 0 0 5- Low 
Neither No cases No cases No clinical 

cases 
Per capita CHE was 
$400; adjacent to 
Brazil and Bolivia 

None detected None detected 

Argentina 0 0 0 0 4 0 0 4- Low 
Neither No cases No cases No clinical 

cases 
Per capita CHE was 
$1128; adjacent to 
Brazil and Bolivia 

None detected None detected 

Chile 0 0 0 0 4 0 0 4- Low 
Neither No cases No cases No clinical 

cases 
Per capita CHE was 
$1456; adjacent to 
Bolivia and Peru 

None detected None detected 

Costa Rica 0 1 2 0 0 0 0 3- Low 
Neither Most recent 

occurrence: 
1968 84 

HI test 84 No clinical 
cases 

No neighbors None detected None detected 

Uruguay 0 0 0 0 1 0 0 1- Low 
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Neither No cases No cases No clinical 
cases 

Per capita CHE was 
$1590; adjacent to 
Brazil 

None detected None detected 

Dominican 
Republic 

0 0 0 0 1 0 0 1- Low 
Neither No cases No cases No clinical 

cases 
Per capita CHE was 
$462; adjacent to 
Haiti 

None detected None detected 

Belize 0 0 0 0 0 0 0 0- Low 
Neither No cases No cases No clinical 

cases 
No neighbors None detected None detected 

Guatemala 0 0 0 0 0 0 0 0- Low 
Neither No cases No cases No clinical 

cases 
No neighbors None detected None detected 

Honduras 0 0 0 0 0 0 0 0- Low 
Neither No cases No cases No clinical 

cases 
No neighbors None detected None detected 

Nicaragua 0 0 0 0 0 0 0 0- Low 
Neither No cases No cases No clinical 

cases 
No neighbors None detected None detected 

El Salvador 0 0 0 0 0 0 0 0- Low 
 Neither No cases No cases No clinical 

cases 
No neighbors None detected None detected 

HI: hemagglutination inhibition; NT: neutralization test; RT-PCR: Reverse transcription polymerase chain reaction; CHE: Current health expenditure
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 Supplementary Table 3. Evidence consensus by state (Brazil) 
Country Health Org. 

Status1 
Date of 
Human 
Occurrence 

Diagnostic 
Procedure 

Outbreaks and 
Clinical Cases 

Health Expenditure2 
and Adjacency 

Animal Data Arthropod Data Total Score 

Mato Grosso 
1 3 3 6 N/A 0 3 16- Very high 

GIDEON only Most recent 
occurrence: 
2017 85 

RT-PCR 86 68 positives by 
RT-PCR from 
2011-17 86-88 

No cases Mosquito pools 
positive by RT-
PCR and 
isolation in 2018 
89 

Goiás 
1 3 3 6 N/A 0 3 16- Very high 

GIDEON only Most recent 
occurrence: 
2017-18 56,90 

RT-PCR 56,90 104 positives by 
RT-PCR from 
2016-17 56,90 

No cases Mosquitoes 
positive by RT-
PCR in 2018-
2019 58 

Pará 
1 3 3 3 N/A 2 2 14- High 

GIDEON only  Most recent 
occurrence: 
2016 91 

RT-PCR 91 4 positives by 
RT-PCR in 2016 
91 

Infected animals 
in 2009 92 

Isolated from 
mosquitoes in 
2008 93 

Roraima 1 3 3 3 N/A 3 0 13- High 
GIDEON only Most recent 

occurrence: 
2012 94 

RT-PCR 94 7 positives by 
RT-PCR in 
2012 94 

 Infected 
animals in 2016 
57 

No cases 

Bahia 1 1 2 0 3 3 2 12- High 
GIDEON only Most recent 

occurrence: 
1984 95 

Serology 95 No outbreak or 
clinical cases 

Per capita CHE was 
$172; adjacent to 
Piauí and Goiás  

Infected animal 
from 2012-17 96 

One pool 
positive by RT-
PCR from 2009-
14 97 

Piauí 1 3 3 3 N/A 2 0 12- High 
GIDEON only Most recent 

occurrence: 
2016-17 98 

RT-PCR 98 One positive by 
RT-PCR from 
2016-17 98 

Infected animal 
from 2008-10 99 

No cases 

Mato Grosso 
do Sul 

1 2 3 2 N/A 3 0 11- High  
GIDEON only Most recent 

occurrence: 
2000 100 

Viral culture 100 One isolate in 
2000 100 

Infected 
animals from 
2012-14 101 

No cases 
 

Amazonas 1 3 3 3 N/A 0 0 10- Moderate 
GIDEON only Most recent 

occurrence: 
2016 

RT-PCR 102 13 positives by 
RT-PCR from 
2014-16 102 

No cases No cases 
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Maranhão 1 3 3 3 N/A 0 0 10- Moderate 
GIDEON only Most recent 

occurrence: 
2016-18 103 

RT-PCR 103 One positive by 
RT-PCR from 
2016-18 103 

No cases No cases 

Tocantins 1 3 3 3 N/A 0 0 10- Moderate 
GIDEON only Most recent 

occurrence: 
2017 104 

RT-PCR 104 6 positives by 
RT-PCR in 
2017 104 

 No cases No cases 

Acre 1 2 2 0 3 0 0 8- Moderate 
GIDEON only Most recent 

occurrence: 
2004 105 

Serology 105 No outbreak or 
clinical cases 

Per capita CHE was 
$258; adjacent to 
Amazonas and Peru 

No cases No cases 

São Paulo 1 3 2 0 1 0 0 7- Moderate 
GIDEON only Most recent 

occurrence: 
2017 106 

ELISA  106 No clinical 
cases 

Per capita CHE was 
$252; adjacent to 
Mato Grosso do Sul 

No cases No cases 

Amapá 1 1 2 0 3 0 0 7- Moderate 
GIDEON only Most recent 

occurrence: 
1995 107 

Serology 107 No outbreak or 
clinical cases 

Per capita CHE was 
$220; adjacent to 
French Guiana and 
Para 

No cases No cases 

Paraíba 1 1 3 0 0 2 0 7- Moderate 
GIDEON only Most recent 

occurrence: 
1964 108 

Plaque 
reduction NT 
108 

No outbreak or 
clinical cases 

No neighbors Infected animal 
from 2008-10 
99,109 

No cases 

Rio Grande 
do Sul 

1 0 0 0 0 2 3 6- Moderate 
GIDEON only No cases No cases No clinical 

cases 
No neighbors Infected animal 

in 2002 110 
Isolated from 
mosquitoes 2011 

Rondônia 1 0 0 0 3 1 0 5- Low 
GIDEON only No cases No cases No outbreak or 

clinical cases 
Per capita CHE was 
$225; adjacent to 
Bolivia, Amazonas, 
Mato Grosso 

Infected 
animals in 
1987-88 111 

No cases 

Rio de 
Janeiro 

1 3 1 0 0 0 0 5- Low 
GIDEON only Most recent 

occurrence: 
2019 112 

Not specified 
112 

No clinical 
cases 

No neighbors No cases No cases 

Pernambuco 1 0 0 0 1 2 0 4- Low 
GIDEON only No cases No cases No outbreak or Per capita CHE was Infected animal No cases 
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clinical cases $188; adjacent to 
Piaui 

from 2008-10 99 

Minas Gerais 1 0 0 0 3 0 0 4- Low 
GIDEON only No cases No cases No clinical 

cases 
Per capita CHE was 
$216; adjacent to 
Goias and Mato 
Grosso do Sul 

No cases No cases 

Alagoas 1 0 0 0 0 2 0 3- Low 
GIDEON only No cases No cases No outbreak or 

clinical cases 
No neighbors Infected animal 

from 2008-10 99 
No cases 

Rio Grande 
do Norte 

1 0 0 0 0 2 0 3- Low 
GIDEON only No cases No cases No clinical 

cases 
No neighbors Infected animal 

from 2008-10 99 
No cases 

Paraná 1 0 0 0 1 0 0 2- Low 
GIDEON only No cases No cases No outbreak or 

clinical cases 
Per capita CHE was 
$231; adjacent to 
Mato Grosso do Sul 

No cases No cases 

Ceará 1 0 0 0 1 0 0 2- Low 
GIDEON only No cases No cases No clinical 

cases 
Per capita CHE was 
$184; adjacent to 
Piaui 

No cases No cases 

Espírito 
Santo 

1 0 0 0 0 0 0 1- Low 
GIDEON only No cases No cases No clinical 

cases 
No neighbors No cases No cases 

Santa 
Catarina 

1 0 0 0 0 0 0 1- Low 
GIDEON only No cases No cases No clinical 

cases 
No neighbors No cases No cases 

Sergipe 1 0 0 0 0 0 0 1- Low 
GIDEON only No cases No cases No clinical 

cases 
No neighbors No cases No cases 

1 Due to lack of data granularity, the overall Health Organization Status score for the country of Brazil was applied to each administrative unit 
2 Mention Alternate data source
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