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Abstract 
Background:  Given the clinical heterogeneity of COVID-19 infection, we hypothesize the existence of 

subphenotypes based on early inflammatory responses that are associated with mortality and 

additional complications.  

Methods: For this cross-sectional study, we extracted electronic health data from adults hospitalized 

patients between March 1, 2020 and May 5, 2021, with confirmed primary diagnosis of COVID-19 

across five Johns Hopkins Hospitals. We obtained all electronic health records from the first 24h of 

the patient’s hospitalization. Mortality was the primary endpoint explored while myocardial 

infarction (MI), pulmonary embolism (PE), deep vein thrombosis (DVT), stroke, delirium, length of 

stay (LOS), ICU admission and intubation status were secondary outcomes of interest. First, we 

employed clustering analysis to identify COVID-19 subphenotypes on admission with only biomarker 

data and assigned each patient to a subphenotype. We then performed Chi-Squared and Mann-

Whitney-U tests to examine associations between COVID-19 subphenotype assignment and 

outcomes. In addition, correlations between subphenotype and pre-existing comorbidities were 

measured using Chi-Squared analysis.  

Results: A total of 7076 patients were included. Analysis revealed three distinct subgroups by level of 

inflammation: hypoinflammatory, intermediate, and hyperinflammatory subphenotypes. More than 

25% of patients in the hyperinflammatory subphenotype died compared to less than 3% 

hypoinflammatory subphenotype (p<0.05). Additional analysis found statistically significant 

increases in the rate of MI, DVT, PE, stroke, delirium and ICU admission as well as LOS in the 

hyperinflammatory subphenotype. 

Conclusion: We identify three distinct inflammatory subphenotypes that predict a range of 

outcomes, including mortality, MI, DVT, PE, stroke, delirium, ICU admission and LOS. The three 

subphenotypes are easily identifiable and may aid in clinical decision making.  
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Introduction  
 
Since the first coronavirus disease (COVID-19) case reported in December 2019 (1), it was clear that 
this disease has extraordinarily heterogenous patient presentations that lead to differing outcomes. 
The heterogeneity in the patient presentation makes it difficult for clinicians to predict which 
patients are likely to deteriorate, resulting in delayed treatment. A clearer understanding of patient 
heterogeneity and disease trajectory might help clinicians anticipate which patients are likely to 
require more aggressive and earlier treatments and which therapies will be most beneficial to a 
patient.  
 
One of the factors associated with worse outcomes is the presence of an overactive immune system 
such as a cytokine storm, a hyperinflammatory state secondary to excessive cytokine production 
(2,3). Additionally, research has shown that different types of immune-responses are associated with 
differing levels of disease severity (4). Although resolving this heterogeneity would allow for a more 
individualized treatment approach, it remains difficult to do so only using standard clinical features 
early on in the disease trajectory.   
 
Our primary objective was to discover distinct subphenotypes of COVID-19 that would be easily 
identifiable by a human practitioner early in the disease trajectory, providing order and structure to 
the heterogeneity mentioned above. Although there already exists limited literature on developing 
subphenotypes of COVID-19, previous studies either have low sample sizes, generate subphenotypes 
that are difficult to distinguish by clinicians, or are hard to understand in the context of immune 
responses (5–8). Our study aims to overcome these limitations and produce subphenotypes that can 
aid timely clinical decision-making and lead to better patient outcomes.  

Methods 
Data  

The data utilized for this study was taken from the JH-CROWN: The COVID PMAP Registry, which 

contains data from five Johns Hopkins Hospitals serving approximately 7 million people in the 

Maryland/Washington D.C. area and containing over 2,000 beds (9–12). The database was 

constructed directly from the clinical electronic health records and contains hospitalized adult 

patients (>18y) who were diagnosed with COVID-19 between March 5, 2020 and May 5, 2021. 

Diagnosis of COVID-19 was defined as the following: the detection of SARS-CoV-2 from any nucleic 

acid test of any specimen type with an Emergency Use Authorization from the U.S., patients who 

had been flagged as having COVID-19, or who had been diagnosed with suspected or confirmed 

COVID-19 at discharge (13). 

Patient Selection 

Within our study’s timeframe, there were 15,470 COVID-19 hospital stays from the JH-CROWN 

database that includes hospitalized patients with any COVID-19 diagnosis. We excluded patients who 

were hospitalized for other ailments but had COVID-19 as a secondary diagnosis (n = 8378). For 

example, a patient who was hospitalized for trauma following a car accident and contracted COVID-

19 while hospitalized would be excluded. Then, we excluded patients who have no recorded 

laboratory tests within the first 24 hours of admission (n = 16), leaving 7076 patients to be included 

in our study. To summarize, the 7076 patients examined in this study have primary diagnosis of 

COVID 19 and have recorded laboratory tests within the first 24 hours of admission.  Figure 1 

contains a graphical representation of the patient selection process.  
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In the CROWN dataset database, data were labeled with an admission identification, which is 

specific to each patient's hospitalization. If the patient were to be re-admitted, then they would 

receive a new admission identification. In this study, we treated each hospital admission as an 

independent sample. For patients with more than one hospitalization recorded, the mean time lapse 

between the discharge of a previous hospitalization and the start of the next hospitalization was 

42.35 days, supporting our assumption to treat each hospitalization stay as an independent sample.  

Patient's Data  

Data for each patient contained high dimensional and longitudinal data in three main categories of 

interest: demographic, comorbidities, and laboratory results. Demographic data included patient 

age, sex, and race. Laboratory data included a periodically recorded blood panel including specific 

biomarkers such as IL-6, prolactin, eosinophils, and others as listed in Supplemental Table 1. Only 

laboratory data gathered in the first 24 hours of admission were used in the clustering analysis.  

For laboratory data, we first omitted any data points that were marked as erroneous by the 

database. Then, we aggregated all the laboratory tests into summary statistics. We engineered 

features to include the minimum, maximum, mean, standard deviation, first, last, and total change 

of each of the laboratory tests over the first 24 hours of admission. We excluded any tests where 

more than 50% of the patient’s first 24h hospitalization did not have at least one value. 

Furthermore, for any two features with a Pearson’s correlation coefficient of greater than 90%, one 

feature was removed at random (Supplemental Table 1). Finally, we imputed any missing values for 

the remaining features using MissRanger (14), a random forest imputation package.  

Primary outcomes of interest measured was mortality. Secondary outcomes of interest include 

myocardial infarction (MI), pulmonary embolism (PE), deep vein thrombosis (DVT), delirium, stroke, 

length of stay (LOS), ICU admission, and respiratory features, such as Oxygen, High-flow Oxygen, 

ECMO and pressor use (Applicable ICD-10 codes in Supplemental Table 2). Comorbidities to examine 

were chosen based on the Elixhauser Comorbidity index (15). 

Consensus Clustering 

Clustering is an unsupervised machine learning tool aimed at separating heterogenous data into 

more homogenous subsets by grouping data according to their similarity. Simple clustering methods 

often assign data into groups randomly, compute a similarity index, and then aim to maximize this 

similarity index by rearranging patients into different groups. Then, the similarity index is 

recomputed with the new groups and the process is repeated. However, due to the random nature 

of the initial assignment, clustering algorithms are not guaranteed to reach a global optimum.  

To address this issue, we used ConsensusClusterPlus (16), a consensus clustering algorithm, to group 

our patients into distinct subphenotypes using only the aggregated laboratory results based on the 

first 24 hours of their admission. Consensus clustering is an algorithm run many times, and the 

outcome is decided by having each run “vote” on how the clusters should be assigned. By repeatedly 

clustering, we significantly reduced the effect of random chance on our results. We use a partition 

around medoids (PAM) clustering with a Gower distance due to both simplicity and ease of 

interpretability. Finally, to gain further insight into the clustering, we plotted the standardized values 

of each feature in each cluster compared to other clusters.  

 

Choosing the Optimal Number of Clusters 
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We considered a variety of methods to determine the optimal number of clusters. Traditionally, 

methods such as the “elbow method” have been used to assess the optimal number of clusters. 

However, it has been shown that the elbow plot as well as many other traditional cluster evaluation 

strategies can be unreliable when used in consensus clustering algorithms (17). Instead, 

Șenbabaoğlu et al. propose a metric called the proportion of ambiguous clustering (PAC) to 

determine the optimal number of clusters (17). This method involves plotting the cumulative 

distribution function (CDF) curve of a consensus matrix and finding the curve that has the lowest 

number of ambiguous clusters. However, their study was done on low dimensional artificial data 

that had easy to observe clusters. When we applied the PAC method to our high dimensional data, 

the metric suggested that the optimal number of clusters should be the same as the number of 

patients (Supplemental Figure 1); that is, each patient should be its own cluster. Obviously, this 

would account for all heterogeneity but would not be clinically tractable. Because of this, we took 

this metric into account but ultimately also used clinical significance to determine the optimal 

number of clusters.  

Cluster Nomenclature 

We used C-Reactive Protein values, which are a general indicator of the systemic inflammation level 

(18), to classify the clusters generated into different subphenotypes. We designated the cluster with 

the lowest, middle, and highest C Reactive Protein values as the hypoinflammatory cluster, 

intermediate cluster, and the hyperinflammatory cluster respectively. 

Standardized Mean Variable Analysis 

To understand the differences in feature values between clusters identified by an unsupervised 

machine learning model, we computed the standardized mean differences (SMD) of each feature. 

The SMD is a measure of the difference in mean values between two groups, standardized by the 

pooled standard deviation of the groups (Supplemental Equation 1). It is useful for comparing the 

means of different features, as it is unitless and can be interpreted as a relative difference between 

the means. To compute the SMD, we first calculated the mean and standard deviation of each 

feature for each cluster and then used these values to standardize the feature values within each 

cluster. Next, we calculated the difference in standardized means between each pair of clusters and 

plotted these differences as SMD plots (Figure 2, Supplemental Figures 2-3). These plots provide a 

clear visual representation of the relative differences in feature values between the clusters and can 

help to identify which features are most important for distinguishing between the clusters. These 

results can also be used to interpret the clusters and gain insights on the underlying structure of 

data. 

Comorbidity and Outcome Exploration 

We explored how the prevalence of various outcomes differ among the clusters. Patient stay 

identifiers were matched with the patients from the clustering experiment to various other tables 

containing patient outcomes. We then counted the number of patients with the specific outcome in 

various cluster and conducted statistical tests to determine significance of clinical subphenotype 

against the outcomes of interest. We conducted Chi Squared tests for categorial variables and 

Mann-Whitney U tests for continuous variables. Outcomes examined are mortality, pulmonary 

embolism, deep vein thrombosis, myocardial infarction, and stroke. The ICD-10 codes used to 

identify each outcome is specified in the supplemental material (Supplemental Table 2). 
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Using the same method as above, we explored the association of phenotype assignment with 

preexisting comorbidities. We chose to examine comorbidities that are listed in the Elixhauser 

Comorbidity Index.  

Results  
Starting with 15,470 adult COVID-19 positive patients, we followed the patient selection criteria as 

described above, which resulted in 7076 patients being included in the study (Figure 1). Following 

the cluster procedure above, we generated hypoinflammatory, intermediate, and 

hyperinflammatory subphenotypes with 2090, 3076, and 1910 patients in each subphenotype 

respectively. The hypoinflammatory patients had, on average, a younger mean age, a lower number 

of total comorbidities, lower rates of ICU admission, and a lower average hospitalization stay (Table 

1).   

To examine the features that drove the cluster decision algorithm, we plotted standardized variable 

values comparing the three clusters (Figure 2, Supplemental Figure 2 and Supplemental Figure 3). 

The hypoinflammatory clusters are characterized by high lymphocyte values but low neutrophil 

values, whereas the hyperinflammatory values are characterized by low lymphocyte values but high 

neutrophil values. Upon examining the levels of biomarkers, we discovered that many biomarkers 

have significant differences across the clusters (Table 2).  

To further define the clusters, we examined a detailed breakdown of the clinical outcomes during 

hospitalization in each cluster (Table 3). We found that the hyperinflammatory class had worse 

outcomes than the intermediate cluster, which, in turn, had worse outcomes than the 

hypoinflammatory subphenotypes. Of note, this relationship was not noted for pulmonary 

embolism.  

Discussion 
In this study, we clustered COVID-positive patients into three distinct subphenotypes based on 

inflammatory biomarkers collected within the first 24 hours of admittance to hospital. We found 

significant correlations between inflammatory subphenoypes and the occurrence of key 

complications during hospitalization (stroke, myocardial infarctions (MI), deep-vein thrombosis 

(DVT), delirium, and mortality). 

The hypoinflammatory subphenotypes are characterized by higher levels of lymphocytes and 

eosinophils despite having a lower C-reactive protein levels, which characterize overall 

inflammation. The hyperinflammatory clusters have the highest BUN (creatinine) ration as well as 

the highest neutrophil counts (Figure 2). 

Physiology of disease 

In characterizing the features associated with the discrete clusters, we identified features that 
appear consistent with current understandings of COVID-19 pathophysiology. We noted relative 
eosinophilia associated with the hypoinflammatory subphenotype. Notably, eosinopenia has been 
associated with poor outcomes in COVID-19 and recovery of eosinophil counts has been putatively 
associated with a favorable recovery trajectory (19).  Moreover, we observed the hyperinflammatory 
group had higher BUN-Creatine ratios. A common clinical measure of renal function, increases in 
BUN and serum creatinine in patients with COVID-19 have been strongly associated with increased 
rates of adverse outcomes (20). The causal relationship between renal function, volume status, and 
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COVID-19 remains to be elucidated, but it does appear this may be a hallmark of worse relative 
outcome.  

Clinical Utility 

Early recognition of COVID-19 inflammatory subphenotypes may facilitate clinical prognostication, 
enable better clinical decision-making, and manifest in better patient outcomes. By having only 
three subphenotypes that can be easily distinguished by biomarkers, the subphenotypes identified 
by our study may be easier to recognize than existing subphenotypes. For instance, Dubowski et al. 
produced 6 subphenotypes based on over 30 biomarkers as well as vital signs features (7). This is a 
significantly more complicated scheme than our subphenotypes, making it harder for providers to 
determine which subphenotype a given patient would belong in. On the contrary, a provider can 
easily determine whether a given patient would belong in our hyperinflammatory subphenotype by 
obtaining a blood panel and examining a few key features.  

In addition, our results suggest the possibility of a more personalized care routine for 
dexamethasone use. Severe COVID-19 patients may experience inflammatory organ injury due to 
strong host inflammatory responses, and dexamethasone is believed to mitigate this damage by 
attenuating the host inflammatory response (2,21,22). At the time of writing, current guidelines are 
based on the RECOVERY trial, which showed dexamethasone improved outcomes for hospitalized 
adult patients if they require oxygen therapy (23,24). However, literature has shown that 
dexamethasone can lead to a variety of potential side effects, such as dexamethasone-induced 
hypertension (25,26), osteonecrosis of the femoral head (27,28), ventricular hypertrophy (29), 
diabetes (30), and other complications. Our results show that although the 38.9% of 
hypoinflammatory patients receive oxygen therapy, these patients experience a different type of 
inflammatory response than the hyperinflammatory patients. Taken in conjunction with their better 
outcomes, it questions the current one-size-fits-all approach to glucocorticoids. More importantly, 
these results also suggest that any patient in the hyperinflammatory subphenotype may benefit 
from glucocorticoid treatments, even if they are not currently on oxygen.  

Clinical Trial Implications 

Our results carry significant impact for future design and implementation of anti-inflammatory and 
immune modulating clinical trials for COVID -19 patients. Even though these medications carry 
significant adverse effects (31), they continue to be prescribed for many hospitalized COVID-19 
patients (32). Our results point to a personalized approach that could be used to select patients in 
clinical trials of COVID-19 therapies. The inflammatory subphenotypes suggest that anti-
inflammatory and immune modulating therapies might be highly beneficial when treating patient in 
the hyperinflammatory subphenotype but ineffective or detrimental if used in patients in the 
hypoinflammatory subphenotype. Future studies are needed to verify this hypothesis.  

Strengths  
The COVID-CROWN database by the Precision Medicine Analytics Platform offers highly detailed 
information regarding the patients all throughout their hospital stay. The dataset contained data 
from 7076 study eligible patients who were treated in 5 different hospitals, which increases the 
generalizability of the results compared to single hospital studies. This highly detailed data allowed 
us to conduct an in-depth exploration of how the patient’s inflammatory status was related to their 
disease trajectory throughout their inpatient stay. We demonstrated that a patient’s outcome was 
tangibly related to their inflammation status and that the hyperinflammatory subgroups had 
significantly worse disease trajectories. In addition, our subphenotypes are easily identifiable using a 
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few key biomarker characteristics, making them potentially suitable to guide clinical decision 
making.  
 
Unlike other subphenotyping exercises, our study examined patients spanning over a year, which 
contained several waves of COVID involving different strains of SARS-CoV-2. This suggests that our 
study can be more resistant to bias for one strain. However, additional work should be done to 
update our model in light of more recent strains. 
 
Limitations 
We acknowledge that our study has limitations. One potential limitation is the lack of external 
validation. We were unable to overcome this due to challenges in identifying large-scale open access 
databases that contain similar detailed information as in the COVID-CROWN database. We also 
acknowledge that the COVID-19 pandemic response moved at a very fast pace. Certain treatments 
that may not have been available at the beginning of the pandemic became widely used towards the 
later stages. These treatments were not considered in our modeling approach. Additionally, there 
are limitations towards picking the number of optimal clusters. In our methodology section, we 
present evidence as to why traditional methods such as elbow plots or silhouette scores are 
inappropriate for consensus clustering. Furthermore, scores based on sampling or bootstrapping the 
data (i.e. Jaccard Coefficient) are also inappropriate due to the repeated sampling procedure already 
in consensus clustering.  

Conclusion 
In conclusion, we find three subphenotypes of COVID-19 that are easily distinguishable within the 

first 24 hours of hospital admission. The hyperinflammatory subphenotypes have significant 

increases when adverse outcomes occurred, including mortality, pulmonary embolism, stroke, deep 

vein thrombosis, delirium and myocardial infarction. Additional studies are needed to confirm the 

external validity of these results.  
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Figures 

 

Figure 1: Patient selection flowchart 
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Figure 2: Standardized Variable Plots of Hyper vs Hypoinflammatory Clusters. Standardized mean values are computed by 
taking the mean of a specific feature in a group and comparing to the mean of another group (solid lines) Faded lines 
represent comparisons of a cluster to all patients. 
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Tables 
 

Table 1: Cluster descriptions 

Results Hyperinflammatory Intermediate Hypoinflammatory p-value 

Cluster Descriptions         

Cluster Size 2090 3076 1910 4.97E-08 

# Of ICU Admits 250 (12.0%) 180 (5.9%) 50 (2.6%) 2.86E-32 

# Non Male 915 (43.8%) 1497 (48.7%) 1066 (55.8%) 4.53E-13 

median LOS(days) 7 5 4 1.03E-53 

survival 1562 (74.7%) 2904 (94.4%) 1865 (97.6%) 9.17E-127 

Age 67 (3.2%) 60 (2.0%) 54 (2.8%) 4.03E-107 

Respiratory Features         

Ventilator 445 (21.3%) 297 (9.7%) 71 (3.7%) 1.87E-70 

Oxygen 1366 (65.4%) 1876 (61.0%) 743 (38.9%) 7.14E-73 

ECMO 15 (0.7%) 7 (0.2%) 3 (0.2%) 0.00030055 

high flow 560 (26.8%) 458 (14.9%) 89 (4.7%) 1.09E-81 

pressors 368 (17.6%) 265 (8.6%) 62 (3.2%) 3.92E-53 

Comorbidities         

Depression 577 (27.6%) 842 (27.4%) 658 (34.6%) 4.97E-08 

Anemia Deficiency 1126 (53.9%) 1503 (48.9%) 986 (51.8%) 0.00167542 

Hypertension 1557 (74.5%) 2171 (70.6%) 1250 (65.7%) 7.06E-09 

Weightloss 511 (24.4%) 528 (17.2%) 364 (19.1%) 6.70E-10 

lymphoma 55 (2.6%) 84 (2.7%) 60 (3.2%) 0.57119295 

Coagulation deficiency 510 (24.4%) 737 (2.4%) 459 (24.1%) 0.93944303 

Alcohol use disorder 115 (5.5%) 214 (.7%) 236 (12.4%) 2.06E-16 

Congestive Heart Failure 659 (31.5%) 780 (25.4%) 451 (23.7%) 1.20E-08 

Renal failure 723 (34.6%) 916 (29.8%) 517 (27.2%) 1.18E-06 

Perivascular Disease 470 (22.5%) 557 (18.1%) 357 (18.8%) 0.00030055 

Solid Tumor without 
Metastasis  359 (17..2%) 436 (14.2%) 211 (11.1%) 2.59E-07 

AIDS 25 (1.2%) 73 (2.4%) 52 (2.7%) 0.00152586 

Paralysis 240 (11.5%) 243 (7.9%) 165 (8.7%) 4.73E-05 

Pulmonary circulation 
disorders 250 (1.2%) 305 (9.9%) 225 (11.8%) 0.03184051 

Hypertension with chronic 
complications 973 (46.6%) 1211 (39.4%) 703 (36.9%) 4.59E-10 

Chronic Peptide Ulcer 103 (4.9%) 135 (4.4%) 95 (0.5%) 0.5361094 

Psychoses  174 (8.3%) 292 (9.5%) 270 (14.2%) 9.79E-10 

Obesity 771 (36.9%) 1330 (43.3%) 863 (45.3%) 6.58E-08 

Blood loss anemia 158 (7.6%) 241 (7.8%) 162 (8.5%) 0.52275007 

Chronic pulmonary disease 697 (33.3%) 900 (29.3%) 622 (32.7%) 0.00312582 

Drug abuse 128 (6.1%) 203 (6.6%) 272 (14.3%) 8.10E-25 

Hypothyroidism 404 (19.3%) 491 (1.6%) 276 (14.5%) 0.00010953 

Metastatic Cancer 224 (10.7%) 268 (8.7%) 146 (7.7%) 0.00258804 

Fluid electrolyte disorders 1656 (79.2%) 2155 (70.1%) 1284 (67.4%) 5.38E-18 
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Liver Disease 278 (13.3%) 490 (15.9%) 390 (20.5%) 4.84E-09 

Rheumatoid arthritis  154 (7.4%) 192 (6.2%) 132 (6.9%) 0.27180647 

Neurological disorders 699 (33.4%) 881 (28.7%) 595 (31.3%) 0.00108518 

Diabetes with Chronic 
complications 834 (39.9%) 1114 (36.2%) 645 (33.9%) 0.00032622 

Valvular Disease 341 (16.3%) 427 (13.9%) 262 (13.8%) 0.02653807 

Diabetes without chronic 
complications 839 (40.1%) 1266 (41.2%) 752 (39.5%) 0.47546544 

 

 

Table 2: Results and Outcomes by cluster 

 Hyperinflammatory Intermediate Hypoinflammatory p-value 

Cluster Size 2090 3076 1910  
MI 226 (10.8%) 212 (6.89%) 98 (5.13%) 1.652e-11 

PE 125 (5.98%)  119 (3.87%)  97 (5.08%) 0.001942 

DVT 135 (6.45%) 117 (3.80%) 84 (4.40%) 4.285e-05 

Delirium 226 (10.8%) 212 (6.89%) 98 (5.13%) 1.652e-11 

Stroke 63 (3.01%) 62 (2.02%) 32 (1.68%) 0.009648 

 

Table 3: Mean of biomarker features used in clustering 

cluster Hyper Intermediate Hypo p vlaue 

Mean BUN: Creatinine Ratio 26.33 18.99 15.09 1.10E-319 

Mean C-Reactive Protein 48.28 19.67 12.53 6.45E-218 

Mean D-Dimer 3.26 2.12 2.18 5.56E-74 

Mean Eosinophil Percent 0.70 0.99 1.67 8.21E-169 

Mean Ferritin 1409.53 1149.92 1092.97 3.55E-63 

First INR PROTIME 1.22 1.15 1.18 2.44E-35 

Mean INR 1.23 1.16 1.18 6.39E-46 

First Lactate Dehydrogenase 493.31 414.97 363.72 8.24E-141 

Mean Lymphocyte percent 9.14 16.69 29.06 0 

Last Neutrophil ANC Number 9.47 5.27 3.52 0 

Mean Platelet Count 266.59 243.83 232.02 2.28E-27 

Mean WBC Count in Urine 34.58 26.55 34.50 1.66E-05 

Mean WBC Count 11.66 7.69 6.97 0 
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