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ABSTRACT 

Most advanced cancers are treated with drug combinations. Rational designs aim to 

identify synergistic drug interactions to produce superior treatments. However, metrics of drug 

interaction (i.e., synergy, additivity, antagonism) apply to pre-clinical experiments, and there has 

been no established method to quantify synergy versus additivity in clinical settings. Here, we 

propose and apply a model of drug additivity for progression-free survival (PFS) to assess if the 

clinical efficacies of approved drug combinations are more than, or equal to, the sum of their 

parts. This model accounts for the benefit from patient-to-patient variability in the best single 

drug response, plus the added benefit of the weaker drug per patient. Among FDA approvals for 

advanced cancers between 1995-2020, we identified 37 combinations across 13 cancer types 

where monotherapies and combination therapy could be compared. 95% of combination 

therapies exhibited progression-free survival times that were additive, or less than additive. 

Among a set of phase III trials with either positive or negative results published between 2014 

and 2018, every combination that did improve PFS was expected to succeed by additivity (100% 

sensitivity) and most failures were expected to fail (78% specificity). This study has two key 

findings. First, a synergistic effect (more than additive) is neither a necessary nor even a 

common property of clinically effective drug combinations. Second, the predictable efficacy of 

many of the best drug combinations established over the past 25 years suggests that additivity 

can be used as a design principle for novel drug combinations and clinical trials. 
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INTRODUCTION 

The most effective known treatments for many types of cancer involve combination 

therapy. Because of the vast number of possible combinations, prioritizing drug combinations 

that are most likely to succeed in the clinic is a critical need1–3. Historically, combinations were 

designed empirically based on single-agent activity and non-overlapping toxicity4. In recent 

decades, understanding of oncogenic mechanisms has favored the design of drug combinations 

based on molecular reasoning. Rational combination design often aims to identify synergistic 

drug interactions, whereby two or more drugs enhance each other’s efficacy to produce a more 

than additive anti-tumor effect5–7. Accordingly, the National Cancer Institute’s Clinical Trial 

Design Taskforce recommends that phase I trials of novel combination therapies have a rationale 

for pharmacological or biological interaction3. Many clinical trials of novel combinations are 

motivated by synergy in cell lines or mice, with the hope that synergy will also occur in humans 

(Suppl. Table 1). Empirically, pre-clinical synergy is not significantly associated with clinical 

success8. Some combination therapies are found to be superior to monotherapy (or N+1 drugs are 

superior to N), yet a positive clinical trial does not confirm synergistic interaction, as superior 

efficacy could result from additive, more than additive, or less than additive effects.  This is not a 

semantic difference: it concerns whether a mechanism of positive drug interaction is needed to 

develop clinically effective combination therapies. To determine whether a drug combination has 

an effect that is ‘more than the sum of its parts’ it is necessary to calculate the sum of its parts. 

Yet, such a calculation has not been performed for clinical metrics of anti-tumor efficacy, such 

as duration of progression-free survival (PFS). Without a method to distinguish between additive 

and synergistic clinical efficacy, beliefs for or against the necessity of synergy have been based 

on vague expectations, not quantitative evidence9. 
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In pre-clinical experiments, pharmacological interactions – antagonism, additivity, and 

synergism – have rigorous quantitative definitions10. Since its origin in 1913, drug additivity has 

been understood in terms of ‘dose addition’ or ‘effect addition’11, most often by Loewe’s dose-

additivity model12, Bliss’ effect-independence model13 (which is addition of fractional cell kill 

on a log-scale), or models that synthesize both definitions14,15. These pre-clinical definitions do 

not readily apply to patient data. Here we propose and test a null hypothesis for drug effect 

addition applicable to oncology trials: a drug extends time to progression by the same amount 

when used as a single-agent as when added to a combination (compared with the control arm). 

This has a plain arithmetic meaning as in 5 + 5 months = 10 months, which corresponds to a 

clinical benefit because 10 is greater than 5. Addition of PFS times corresponds to the pre-

clinical Bliss model under simplifying assumptions about kinetics of tumor regrowth (Suppl. 

Notes, Suppl. Fig. 1). However, clinical trials do not measure fractional cell kill, and therefore 

what can be directly tested is whether PFS times are numerically additive, which is a null 

hypothesis that does not depend on assumptions about underlying mechanisms.  

 

Though ‘addition’ is easily defined, the challenge of understanding drug additivity in a 

clinical context is that cancer therapies are variably effective across patients and so cannot be 

adequately described as a single quantity. Previous models have considered inter-patient 

variation in therapeutic effect, because multiple drugs can increase the chance of response even 

without additivity. In 1961, Frei et al16 presented a model of independent drug action to estimate 

the fraction of patients that respond to combination therapy (Pab) based on monotherapy response 

rates (Pa, Pb): Pab = 1 – (1–Pa)(1–Pb). This calculates the chance that at least one drug induces a 

response and is therefore a model of ‘highest single agent’ (HSA) that does not account for 
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multiple drug effects ‘adding up’ in individual patients (Suppl. Fig. 2; note the formula is the 

same as Bliss’ but biological meanings are different because a patient is not a cell17). In 2017, 

Palmer & Sorger adapted independent drug action to PFS, to compute PFS distributions expected 

from an increased chance of single-drug response; like Frei, this did not consider additive 

effects18. Since its publication, the Palmer-Sorger model has been validated by many phase III 

trials, including ten FDA approvals of combination immunotherapies in which observed PFS 

distributions were statistically indistinguishable from the model prediction19. We observed that 

some combination therapies surpass this model of HSA, but it did not distinguish between 

superiority arising from additivity or synergy18. 

 

Here we present a model for clinical drug additivity that synthesizes both concepts above, 

by adding PFS times sampled from Kaplan-Meier distributions. This provides a null hypothesis 

to test for non-additive efficacy of drug combinations in patient populations. We apply this 

model to PFS results from all combination therapy trials in advanced cancers that led to FDA 

approval between 1995 and 2020, for which matched combination and monotherapy data are 

available. We find the model of additivity accurately matches the clinical efficacy of most 

approved drug combinations; only 5% were significantly more than additive (at nominal P < 

0.05). We also find that additivity predicts the success of every positive trial analyzed, and 

predicts the failure of most negative trials. These findings of additivity do not dispute established 

evidence of clinical efficacy, even though ‘synergy’ is often misleadingly interchanged with 

effectiveness. Our analyses show that most clinically effective drug combinations owe their 

success to having effective ingredients, rather than to being ‘more than additive’. This work 
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elucidates the mechanism of clinically effective drug combinations in oncology, providing a 

design principle for future regimen development and clinical trial design.  

 

RESULTS 

Definition of clinical additivity 

We defined clinical drug additivity as the sum of PFS benefits in individual patients. 

Cancer therapies are variably effective between patients, and therefore ‘drug additivity’ in 

human populations is a sum of variables. The sum of random variables is the convolution of the 

variables’ probability density functions. A familiar example of adding variables is rolling two 

dice, which illustrates how the resulting probability distribution is not calculated by adding 

probabilities, but by adding quantities; for PFS distributions the quantities are times (Fig. 1A). 

The Palmer-Sorger model corresponds to choosing the highest face value of two dice rolls18,19; to 

clarify its difference from additivity, it will hereafter be called ‘Highest Single Agent’ (HSA). 

The additivity model encompasses the benefit predicted by HSA, plus the added effect of the 

lesser agent. Unlike the example of dice, modeling PFS must account for partial correlations in 

sensitivities to cancer therapies, as observed in patients, patient-derived tumor xenografts, and 

cell cultures18,20. If drug sensitivities were uncorrelated, the model could be accomplished by the 

convolution integral21. However, the absence of an analytical method to convolve arbitrary, 

partially correlated distributions necessitates numerical methods. As in our prior model of HSA, 

this is achieved by simulating a cohort of virtual patients who are assigned single drug PFS times 

(PFSA, PFSB) by drawing samples from a partially correlated joint distribution of the clinically 

observed single-drug PFS distributions. In the HSA model, each patient is assigned the highest 

single effect: PFSAB = maximum (PFSA , PFSB). For the additivity model, PFS times are added, 
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with a correction to avoid counting twice the time to observe progression in the absence of 

effective therapy (PFSuntreated); thus, PFSAB = PFSA + PFSB – PFSuntreated (Fig. 1A and Methods). 

This correction accounts for the fact that progression is observable at scheduled radiological 

scans22, and in ‘placebo only’ or ‘best supportive care’ arms in advanced cancers, most patients 

exhibit disease progression by their first scheduled scan (Suppl. Fig. 3). Note that the difference 

between HSA and additivity models is the effect of the less effective agent per patient 

(minimum(PFSA , PFSB) – PFSuntreated), which is often small. 

 

Additivity explains the clinical efficacy of most approved combination therapies 

We searched FDA approvals to obtain a comprehensive list of combination therapies 

approved for advanced cancers between 1995 and 2020 (Fig. 1B). 84 drug combinations met the 

inclusion criteria. Assessing additive versus non-additive efficacy requires Kaplan-Meier curves 

of PFS for the control (standard-of-care) arm, the experimental single-agent arm, and the 

combination arm. When all three arms were not present in the same trial, we searched for clinical 

trials that studied the missing arm in a comparable cohort with identical or similar dosage 

(Suppl. Fig. 4). This yielded a total of 37 combination therapies across 13 cancer types, with 

data from 24,723 patients. 

 

Each combination therapy’s PFS distribution was compared with the HSA model and the 

additivity model, as calculated from clinically observed monotherapy PFS (Fig. 2, 3, Suppl. Fig. 

5). We consider a trial result to be consistent with a model if there is no statistically significant 

difference between observed and expected PFS by Cox proportional hazards (nominal 

significance level of 0.05), which is the standard method for comparing survival distributions in 
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trials. Note that when comparing observed and expected efficacy, a hazard ratio (HR) of 1 

indicates a predictable magnitude of benefit; it does not mean ‘no benefit’. 2 out of 37 

combinations (5%) were significantly superior to the additivity model, i.e., synergistic (Fig. 3A). 

25 of 37 combinations (68%) were statistically indistinguishable from the additivity model. Of 

these, 10 combinations were consistent with both HSA and additivity (Fig. 3B); these similarities 

are discussed below. 9 combinations (24%) were significantly inferior to additivity but consistent 

with HSA, and one combination (3%) was inferior to HSA (Fig. 3C). Across all trials, the 

benefit due to patient-to-patient variation in best single drug response (HSA model) improves 

PFS by 7% on average, and the added benefit of the lesser agent contributes a further 4%, for an 

average net benefit of 11% due to the additive effect of drug combinations. Attributing all 

remaining benefits to synergy, even when it is not statistically significant, explains 2% 

improvement in PFS on average. Thus, about five-sixths of the PFS benefits of combination 

therapies are due to additivity. 

 

Overall, drug additivity was the most accurate model. We assessed the goodness of fit 

using the coefficient of determination (R2) between the expected and observed PFS curves (Fig. 

4A, B). R2 across all 37 combinations were 0.93 and 0.95 for HSA and additivity, respectively. 

We further assessed goodness of fit as the mean signed difference, which was on average +3.7% 

for HSA (observed effect was better than model) and -1.7% for additivity (observed effect worse 

than model) (Fig. 4C). By Akaike Information Criterion (AIC) the additivity model was 1022 

more likely to explain the data (≈24,000 patient events) than HSA.  
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Additivity predicts the success or failure of trials  

To assess if the additivity model can predict the ability of combination therapies to 

significantly improve PFS in phase III trials, we first examined approved combinations over a 

25-year interval (1995 to 2020), and next examined both positive and negative trials published in 

a 5-year interval. For each approved combination, a hazard ratio was calculated for the expected 

combination therapy PFS versus the trial’s control arm (Cox proportional hazards model; ɑ = 

0.05). 100% of approved combinations were predicted to significantly improve PFS based on the 

additivity model, whereas the more conservative has model only predicted the success of 73%.  

 

We next asked if the additivity model can distinguish successful combinations from 

unsuccessful ones. We searched for all published phase III trials of combination therapies for 

advanced cancer in a 5-year interval (2014-2018) irrespective of positive or negative results, and 

identified trials with matching monotherapy data (Suppl. Fig. 6, Suppl. Table 3). Out of 36 

published trials that met search criteria, 27 significantly improved PFS compared with the 

control arm, while 9 did not. For each trial, we calculated the probability that combination 

therapy would significantly improve PFS versus the control arm, based on the predicted PFS 

distribution and the actual number of patients enrolled (Methods). Using P(success) = 0.5 as a 

threshold, 100% of successful combinations were predicted to succeed, and 78% of unsuccessful 

combinations were predicted to fail (Fig. 4D, E). The capacity to identify successful trials was 

significant (Fisher’s exact test, P = 4×10–6), with most successful combinations confidently 

expected to succeed and most unsuccessful trials confidently expected to fail (Fig. 4D). 

Measuring performance by area under the receiver operating characteristic curve (AUC), where 

AUC of 1 indicates perfect prediction, the additivity model has an AUC of 0.92 ahasHSA has an 
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AUC of 0.88 (Fig. 4E). Among two combination therapies that were predicted to improve PFS 

but unexpectedly did not, the first significantly improved PFS by site-based review (HR = 0.49, 

P = 0.01) but not by independent central review (HR = 0.78, P = 0.32)23, and the second 

significantly improved PFS in an unstratified test (HR = 0.78, P = 0.019) but not by a stratified 

test (HR = 0.81, P = 0.059)24. 

 

Finally, we examined the ability of the additivity model to estimate the magnitude of 

effect of a combination therapy, measured as the hazard ratio for disease progression or death 

compared with the control arm of the clinical trial. Merging data from 25 years of approved drug 

combinations and all published phase III trials of drug combinations over a 5-year timespan, we 

observed a significant correlation of 0.80 between observed and expected hazard ratios (Pearson 

correlation, P = 3×10-14, n = 58) (Fig. 4F). In conclusion, the additivity model has the potential 

to identify which combination therapies are likely to succeed or fail in clinical trials and to 

estimate hazard ratios of such trials from monotherapy efficacy. 

 

Synergistic combinations 

Two combination therapies exhibited significantly ‘more than additive’ PFS, 

10albociclibciclib plus letrozole in hormone receptor-positive / HER2-negative (HR+/HER2-) 

advanced breast cancer25 (P = 0.023), and daratumumab plus lenalidomide plus dexamethasone 

in relapsed or refractory multiple myeloma26 (P = 0.0001) (Fig. 3A). Both drug combinations 

were justified by pre-clinical evidence of synergy25,27, in the first case by a 3 to 10-fold 

potentiation be10albociclibciclib and tamoxifen in three HR+ breast cancer cell lines28, and in 

the second case by an average of 5% more cancer cell lysis than expected by daratumumab plus 
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lenalidomide in a panel of primary samples29. These experimental data were not clearly distinct 

from other pre-clinical reports of synergy, although both combinations contained clinically active 

therapies and were formally predicted to succeed by additivity. Interestingly, three other 

combinations of CDK4/6 inhibition plus endocrine therapy for HR+/HER2- advanced breast 

cancer, simil11albociclibciclib and letrozole, were consistent with additivity. Underscoring‘that 

's’nergy' is not synonymous‘with 'ef’icacy', a randomized trial detected no significant difference 

in PFS between palbociclib–letrozole  (synergistic) and palbociclib–fulvestrant (additive) as 

initial therapy for HR+/HER2- advanced breast cancer30. Similarly, daratumumab plus 

lenalidomide plus dexamethasone was the only one among five daratumumab combinations for 

multiple myeloma that exhibited synergy. Data on daratumumab monotherapy has the substantial 

limitation of coming from patients with at least three prior lines of therapy31, whereas the 

combination therapy trial enrolled patients with a median of one previous line of therapy. 

Therefore, these data suggest two competing explanations: daratumumab is synergistic with 

lenalidomide plus dexamethasone (but not with bortezomib, carfilzomib, or pomalidomide plus 

dexamethasone), or daratumumab’s efficacy at the second line is underestimated by data from 

patients at a fourth or later line of treatment, which leads to a false positive finding of synergy. 

Finally, the observation that 5% of trials are more than additive at a significance level of 0.05 

implies a possibility for false positive signals. Using the Benjamini-Hochberg method to account 

for multiple hypothesis testing, only daratumumab plus lenalidomide plus dexamethasone was 

synergistic at a false discovery rate of 5% (Suppl. Table 1). 
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Similar predictions of additivity and HSA 

For several combinations, observed PFS was consistent with both the HSA and additivity 

models because they made similar predictions. This scenario arises when one or both therapies 

have highly variable PFS times, such that patients are unlikely to have a similar magnitude of 

benefit from two different drugs. When patients experience similar magnitudes of drug effect 

(e.g., 5 + 5 = 10), the prediction of additivity is much greater than HSA (10 vs. 5), but with 

dissimilar effect sizes (e.g., 10 + 1 = 11), additivity and HSA models are similar (11 vs. 10). This 

phenomenon can be demonstrated by simulation (Suppl. Fig. 7A) and is empirically observable 

as a negative correlation (Pearson r = -0.55; P = 0.0005) between the variability of the 

monotherapy PFS distributions (�𝜎𝜎𝐴𝐴2 + 𝜎𝜎𝐵𝐵2) and the difference between HSA and additivity 

models (Suppl. Fig. 7B).  

 

Analysis by shared characteristics 

We next asked if any features of combination therapies are associated with differences 

from additivity, which might be more sensitively detected by leveraging the statistical power of 

many similar combinations. We analyzed combinations that do or do not contain immune 

checkpoint inhibitors, or anti-angiogenesis agents, or agents having monotherapy approval in the 

same disease. We also divided drug combinations into those having the largest or modest 

improvements over control arms (HR below or above 0.61, which was the median of all trials 

analyzed). Among these eight groups, six were indistinguishable from additivity, including the 

most effective combination therapies (smallest HRs). Two groups were significantly less than 

additive, being combinations with a new drug that lacked monotherapy approval, and 
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combinations with a smaller improvement over the control arm (Wilcoxon signed-rank test, 

nominal P = 0.008 and P = 0.014, respectively) (Suppl. Fig. 8). 

 

Limitations 

Our analysis has limitations in common with previous uses of the HSA model18,19, the 

most important being the availability of monotherapy data. 45 approved drug combinations could 

not be analyzed because there is no published data on the efficacy of one or more constituent 

drugs at matching doses (Suppl. Table 2). Of 37 combinations with available monotherapy data, 

in 17 cases monotherapy data were from patients who had experienced more prior therapy. 

Because therapies are less effective in more heavily pre-treated cancers, the use of these data 

may overestimate the appearance of synergy. Therefore, the observed scarcity of synergy is more 

robust when considering limitations in available data. Our analysis only applies to combinations 

that were tolerated without major reductions in dosage. In cases where dose-matching 

monotherapy data does not exist, we are unable to assess whether or not drug combinations have 

additive efficacy. Dose-matched data might be systematically lacking in drug combinations with 

overlapping toxicities, which may therefore contain unrecognized cases where synergy 

compensates for dose reductions necessitated by toxicity. To our understanding this hypothesis 

can be neither confirmed nor refuted by existing clinical data (Suppl. Notes). Although 100% 

sensitivity is robustly demonstrated by 25 years of approvals, specificity (ability to predict 

failures) is difficult to measure with certainty because negative results are often not published32. 

Additivity predicts combinations of individually inactive drugs to fail, which means the true 

value of specificity could be lower if trials of inactive drugs are more often published, or higher 

if trials of inactive drugs are less often published. Suppl. Notes provide extended answers to 
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potential questions about these models, including why we analyzed PFS, how censoring was 

addressed, and why correlation is not predictive of success. All data sources and their limitations 

are described in Suppl. Tables. 

 

DISCUSSION 

Across 25 years of FDA approvals of combination therapies for advanced cancer, dose-

matched monotherapy data shows that 95% of combination therapies exhibited PFS distributions 

that were equal to the sum of their parts, or less. These findings do not suggest these are not 

effective combination therapies; additivity means that they are as effective as expected. Drug 

combinations often generate non-additive cellular phenotypes. Our findings do not refute such 

experimental observations but imply that humans rarely experience ‘more-than-additive’ 

durations of tumor control. The key conclusions of this study are that the clinical efficacies of 

most approved drug combinations are predictable from the efficacy of their constituents and that 

drug-drug interactions are therefore not necessary to make clinically effective combination 

therapies. 

 

We caution against interpreting these findings as an adverse judgment of combination 

therapies; such a perception could arise from the common but erroneous belief that synergistic 

drug combinations are more effective than additive drug combinations6. The effect of a 

synergistic combination can be written as A + B + I where A and B are individual drug effects 

and I is the extra effect due to synergistic interaction. The effect of an additive combination of 

different drugs can be written as C + D. If all single drugs were equally effective (A=B=C=D) 

then the synergistic combination would be most effective. However, at clinically relevant doses 
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in humans, some drugs are more effective at treating cancers than others. Due to this simple fact, 

observing synergy between therapies A and B provides no information about the relative efficacy 

of combinations AB versus CD (I>0 does not imply that A+B+I > C+D). Thus, our observation 

that most approved combinations are additive in no way makes them inferior to hypothetical 

synergistic combinations. Rather, these findings are useful because they suggest that combined 

drug efficacy can be prospectively estimated by additivity. 

 

In pre-clinical experiments, additive PFS would correspond to a combination effect that 

is stronger than monotherapy, but not formally synergistic (Suppl. Fig. 1, Suppl. Notes). It is 

notable that even under the additivity model, the weakest of two agents often ‘adds nothing’ in 

many patients, such that they benefit only from the most effective agent. As such, if pre-clinical 

models represented drug responses in patients, approved drug combinations could often exhibit 

no benefit over monotherapy in a single tumor model. However, diverse panels of models would, 

and do, show that combination therapies improve population-level response because some 

individuals are more sensitive to one therapy and some are more sensitive to another18,33. We do 

not think our findings are cause to doubt the value of pre-clinical models, such as cell cultures or 

tumor xenografts, because these demonstrate each of the clinical phenomena central to our 

analysis. These features include: (i) extensive patient-to-patient (or culture-to-culture) variability 

in drug sensitivity; (2) that additivity is a good predictor of the net efficacy of drug 

combinations; and (3) that synergy chiefly occurs among weak drugs, or over narrow 

concentrations, and is not predictive of overall efficacy34. We therefore do not suggest changes to 

pre-clinical systems, only the metrics that are prioritized in such experiments. 
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A mechanistic rationale is widely seen as necessary to justify trials of combination 

therapy2,3,6,7. Mechanistic understanding has a key role in developing safe and effective 

therapies, which are needed to build new combinations. In specific contexts, finding synergistic 

interactions remain worthy goals, such as to inhibit redundant or bypass oncogenic signals35,36. In 

general though, a more than additive effect is neither a necessary element nor even a common 

one among the best combination therapies established in the past quarter of a century. Therefore, 

the properties of approved combinations refute the dogma that drug combinations need to be 

justified by a mechanism of interaction. The non-quantitative use of the word ‘synergy’ in 

clinical settings to mean ‘better than monotherapy’ (similarly in some animal experiments) may 

have caused an accidental conflation of clinical benefit with drug-drug interactions. A perception 

that synergy is required for clinical efficacy pressures pre-clinical research to choose model 

systems, drug doses, and modes of analysis that maximize the potential to observe drug synergy 

in experiments. Synergy metrics quantify the difference between observed effect and effect 

expected by additivity, which is appropriate to detect interactions. However, prioritizing drug 

combinations for interaction has an unintended effect of penalizing combinations of highly 

effective agents, because a large additive effect is subtracted. Indeed, the largest datasets on drug 

combinations in cancer cells show that synergy most frequently occurs among weak drugs or at 

sub-inhibitory doses34,37. Our results support efficacy-based design as a complement to 

mechanism-based design for the development of combination therapies. Put simply, a 

combination effect of ‘1+1 = 3’ demonstrates an interesting interaction but ‘10+10 = 20’ has a 

larger effect. 
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The additive effect of most approved combinations does not mean that developing 

superior combination therapies is easy. First, we have analyzed combinations that were given at 

full monotherapy doses (a frequent property of approved combinations), but novel combinations 

can entail toxicities that necessitate lower doses and lower efficacy. Tolerability remains a key 

challenge. Second, many trials add a drug with little single agent activity, which may not 

improve survival by additivity. Third, novel combination therapies should not only be better than 

one constituent, but better than the standard of care – the best-known treatment. We previously 

demonstrated this point using panels of patient-derived tumor xenografts, and just 5% of all 

possible drug combinations were expected to be significantly superior to the best monotherapy18. 

 

The accuracy of the additivity model and scarcity of synergy suggests that tumor 

heterogeneity, not drug-drug interaction, is the major source of benefit of approved combinations 

of cancer therapies. The model of clinical additivity can be understood as describing both inter-

patient and intra-tumor heterogeneity. Inter-patient variability was simulated by sampling single-

drug effects from clinically observed distributions, which generates a spectrum of combination 

responses across patients. Here we observed that, on average, more than half of the 

improvements in PFS (+7% out of +13% total) are explained by patient-to-patient variability 

(HSA; the Palmer-Sorger model18), and in many trials, this is the entire benefit. Next, adding 

single-drug PFS times is the plain meaning of addition, but it also corresponds to the Bliss 

independence model which describes the ability of drug combinations to overcome intra-tumor 

heterogeneity17,38 (Suppl. Fig. 1, Suppl. Notes). As described previously18,20, tumor 

heterogeneity may explain the seeming inconsistency between pre-clinical synergies and clinical 

additivity. In vitro experiments show that synergy depends on dosage and occurs variably across 
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heterogeneous panels of cell lines34,37. Synergy may therefore arise at certain concentrations in a 

fraction of patients, as it does in cell cultures, without significantly affecting survival in 

populations. 

 

Phase III trials are the decisive final step in establishing superior cancer treatments, and 

unfortunately few have positive results. The consistency between 25 years of practice-changing 

trial results and the additivity model suggests that it could be useful for the prospective design of 

phase III trials of combination therapies. By estimating survival distributions, the additivity 

model can predict the likelihood of success of novel drug combinations in different cancer types 

and inform trial designs and statistical analyses. Thus, the model of drug additivity has the 

potential to improve the rate of success of phase III trials and accelerate progress in cancer 

treatment.  

 

METHODS 

Data Collection 

We searched all drug combinations FDA-approved for advanced cancers between 1995 

and 2020, from FDA Oncology / Hematologic Malignancies Approval Notifications 

(https://www.fda.gov/drugs/resources-information-approved-drugs/oncology-cancer-

hematologic-malignancies-approval-notifications) and centerwatch.com 

(https://www.centerwatch.com/directories/1067-fda-approved-drugs) (Fig. 1B).  

We sought combinations where the approval was based on a trial of ‘standard of care’ versus 

‘standard of care plus new agent’. We required Kaplan-Meier survival curves of PFS for the 

combination arm, the experimental single-agent arm, and the control (standard of care) arm. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 13, 2023. ; https://doi.org/10.1101/2022.10.21.22281013doi: medRxiv preprint 

https://www.fda.gov/drugs/resources-information-approved-drugs/oncology-cancer-hematologic-malignancies-approval-notifications
https://www.fda.gov/drugs/resources-information-approved-drugs/oncology-cancer-hematologic-malignancies-approval-notifications
https://www.centerwatch.com/directories/1067-fda-approved-drugs
https://doi.org/10.1101/2022.10.21.22281013
http://creativecommons.org/licenses/by-nd/4.0/


 19 

When all three arms were not available from the same trial, we searched clinical trial 

publications of all phases that included the missing arm based on the following criteria: (1) 

patients had the same disease, (2) dosage difference was less than 1.5-fold, and (3) the trial arm 

contained more than 30 patients. We collected PFS data from 39 clinical trials of FDA-approved 

combination therapies. Two combinations had a difference of more than three lines of therapies 

or had a mismatch in baseline patient characteristics that can potentially affect drug responses. 

These were analyzed in supplements and were removed from subsequent analyses. Biomarker-

positive subpopulations (e.g., PD-L1 expression for immune checkpoint inhibitors) were also 

analyzed in supplements. Kaplan-Meier plots were digitized using Digitizeit 2.5. 

 

To test models’ ability to discriminate between successful and unsuccessful drug 

combinations, we searched for all phase III trials in advanced cancers published in major clinical 

journals between 2014 and 2018. We searched PubMed using the term: “Neoplasms”[MeSH] 

AND (Clinical Trial, Phase III[ptyp]) AND (“2014/01/01”[PDAT] : “2018/12/31”[PDAT]) AND 

(“Ann Oncol”[jour] OR “Lancet”[jour] OR “Lancet Oncol”[jour] OR “JAMA”[jour] OR “JAMA 

Oncol”[jour] OR “J Clin Oncol”[jour] OR “J Natl Cancer Inst”[jour] OR “N Engl J Med”[jour]) 

AND (“progression-free”[title/abstract]) NOT (“neoadjuvant”[title] or “adjuvant”[title]) AND 

(“advanced”[title/abstract] OR “metastatic”[title/abstract] OR “extensive”[title/abstract] OR 

“recurrent”[title/abstract] OR “relapsed”[title/abstract] OR “refractory”[title/abstract]). We 

obtained PFS data on 36 combination therapies with matching monotherapy that satisfies all the 

criteria described above except the sample size > 30 criterion (Suppl. Fig. 6). 
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Clinical definition of drug additivity 

For PFS as a metric of clinical efficacy, the plain meaning of ‘additivity’ is to add PFS 

times. This corresponds to a common pre-clinical definition of additivity. Specifically, among 

the two dominant definitions of drug additivity, Loewe’s model requires dose-response 

measurements and cannot apply to clinical data, but the Bliss independence model can be 

understood to correspond to clinically measured time to progression (PFS). The Bliss model 

defines non-interacting drug pairs as conferring independent probabilities of cell death. If tumor 

progression arises from the exponential growth of cancer cells that were not killed by drug 

treatment, this corresponds to the addition of PFS times of individual drugs (Suppl. Fig. 1, 

Suppl. Notes)39,40.  Like the Bliss and Loewe models, this ‘null model’ of additivity does not 

anticipate that real mechanisms are as simple as the null model but defines the efficacy expected 

in the absence of synergistic drug-drug interactions. In clinical practice, quantifying the PFS 

benefit of a drug must consider that progression takes time, even in the absence of effective 

therapy, and is observable at scheduled radiological scans. Therefore to ‘add’ the PFS benefits of 

drugs beyond the first scan, the equation for clinical additivity is PFSAB = PFSA + PFSB – 

PFSuntreated. In a variety of aggressive cancers, trials with a placebo-only or best supportive care 

arm show that most patients exhibit progression at their first scheduled, suggesting this time as a 

proxy for PFSuntreated (Suppl. Fig. 3). When the first scheduled scan time differed between the 

monotherapy arms, we subtracted the larger of the two to avoid overestimating the activity of the 

drugs.  

Simulation of HSA and Additivity Model 

We previously published a method to compute the PFS distribution of a combination 

therapy from the PFS distributions of its constituents18. The underlying theory was originally 
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named ‘independent drug action’ in 196113. For clarity, we refer to this model as ‘Highest Single 

Agent’ (HSA) because each patient’s PFS time is the longest of the two PFS times of constituent 

drugs. Constituents can be monotherapies or a combination of fewer drugs than the full 

combination. Briefly, this method uses PFS distributions of individual drugs (PFSA, PFSB) to 

generate a joint distribution,  with correlation as supported by experimental data18,19. For 

thasHSA model, each of the 5,000 data points from the joint distribution is assigned a 

combination therapy PFS equal to the longest PFS time (PFSAB = max(PFSA, PFSB))18. The 

additivity model is the same except combination PFS is the sum of PFS times, with a correction 

for scan interval (PFSAB = PFSA + PFSB – PFSuntreated), as defined above. 

Drug screens in cell lines and patient-derived xenografts (PDX) were used to estimate the 

correlation between drug responses33,41,42. We calculated the Spearman correlation between drug 

pairs using the area under the curve (AUC) for cell lines and the best average response for PDXs 

as drug response metrics (Suppl. Fig. 9). If a drug did not exist in the databases, it was 

substituted with another compound with the same mechanism of action (e.g., topotecan for 

irinotecan or oxaliplatin for cisplatin). We used all cancer types, where the drug was active 

(AUC < 0.8) in at least 10% of the cell lines if the correlation were similar within a cancer type 

and across all cancer types. We used cancer type-specific correlation otherwise. The average 

pairwise correlation (ρ=0.3 for drugs with different modalities and ρ=0.52 for cytotoxic 

chemotherapy combinations) of all active drugs in CTRPv243 was used when individual drug 

data was unavailable. For these combinations, the range of observed correlations covering 95% 

of all active drug pairs [-0.01, 0.64] corresponded to an average uncertainty of ± 2.29% and ± 

2.67% in PFS for additivithasnd HSA models respectively. Predictions were made over the 

timespan reaching the shortest follow-up time between the trial arms if both arms did not drop as 
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low as 5% PFS. Predictions were otherwise limited to the end of the follow-up of the 

combination arm. The generation of partially correlated distributions introduces small stochastic 

differences, and therefore for each model, we conducted 100 simulations and selected the one 

producing the median result at 50% PFS. Simulated and clinically observed PFS distributions 

were compared using Cox’s proportional hazards model44. For observed combination therapy 

arms, individual patient data were imputed from published Kaplan-Meier curves and at-risk 

tables45,46. For modeled PFS distributions, we created 500 patient events by dividing PFS curves 

into equal increments; the same process was required for trials that did not include an at-risk 

table. 

 

Model Performance 

To assess the quality of fit, 5,000 datapoints with equal time intervals were used to 

calculate the coefficient of determination (R2) and mean signed difference (MSD) between 

predicted and observed PFS distributions. For model selection, we calculated the Akaike 

Information Criterion (AIC) for each combinathas. The HSA and additivity predictions were 

fitted to three-parameter Weibull survival functions: 𝑆𝑆(𝑡𝑡) = 𝑐𝑐 + (1 − 𝑐𝑐)𝑒𝑒−�
𝑡𝑡
𝛽𝛽�

𝛼𝛼

, where α is the 

shape parameter, β is the scale parameter, and c is the cure rate. We then computed the 

probability density function (𝑓𝑓(𝑡𝑡)) based on the fitted parameters. We used the imputed 

individual patient data of the observed combination therapies’ PFS to calculate the likelihood of 

observing the patients eventhasnder the HSA or additivity model, which was defined as 𝐿𝐿 =

∏ 𝑓𝑓(𝑡𝑡𝑖𝑖)𝐼𝐼𝑖𝑖𝑆𝑆(𝑡𝑡𝑖𝑖)1−𝐼𝐼𝑖𝑖𝑖𝑖  where 𝑡𝑡𝑖𝑖 is the time of event i , 𝐼𝐼𝑖𝑖 =1 when the event is a failure, and 𝐼𝐼𝑖𝑖=0 

when it is a censoring. AIC was calculated as 2 –  2𝑙𝑙𝑙𝑙(𝐿𝐿) since there was only one parameter: the 
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correlation between drug responses. The relative likhashood of the HSA model compared to the 

additivity model was defined as exp (�𝐴𝐴𝐼𝐼𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻 − 𝐴𝐴𝐼𝐼𝐶𝐶𝐻𝐻𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴� /2). 

To assess the predictive power of thasadditivity and HSA models, we tested whether the 

model could predict the success of all combination therapies for which the phase III trial was 

published between 2014 and 2018. The expected PFS distributions were constructed based on the 

monotherapy data under each model, and the same number of patients in the actual combination 

arm were randomly sampled from the distributions. The simulated combination arm was then 

compared to the control arm by Cox proportional hazard model with a significance level of 0.05. 

This process was repeated 10,000 times for each combination to calculate the probability of 

significantly improving PFS.  

 

CODE AVAILABILITY 

All analyses were performed using Python 3.7 and R 4.3. The source codes can be retrieved from  

https://github.com/palmerlabunc/clinical-additivity. Instructions to reproduce the figures are also 

available from the repository. 

 

DATA AVAILABILITY 

All clinical trials included in the study are listed in Suppl. Table 1 and Suppl. Table 3. Source 

data, including digitally traced Kaplan-Meier survival curves, imputed patient event times, and 

predicted PFS dishasbutions under the HSA and additivity models can be retrieved from 

Figshare doi:10.6084/m9.figshare.22229677. 
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Figure 1. Concept of the HSA and additivity models and clinical trial selection process. (A) 

Cancer therapies elicit progression-free survival (PFS) times that vary between patients, and 

therefore ‘drug additivity’ in human populations is a sum of variables, like rolling two dice. 

Models of Highest Single Agent (HSA) and additivity correspond to choosing the highest of two 

results, or adding results, respectively. These models account for partial correlations in PFS 
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times, and only PFS times longer than the first scheduled radiological scan are added (disease 

progression detected at the first scan indicates no PFS benefit). Note, HSA and additivity can 

make similar predictions because their difference is the weakest drug effect per patient. (B) 

Pipeline of the clinical trial selection process. n, number of combination therapies.  

 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 13, 2023. ; https://doi.org/10.1101/2022.10.21.22281013doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.21.22281013
http://creativecommons.org/licenses/by-nd/4.0/


 35 

 

Figure 2. Most drug combinations approved for advanced cancers are as effective as 

expected by either the Highest Single Agent (HSA) or additivity model. Observed and 

expected PFS distributions were compared by the Cox proportional hazard test at a significance 

level of 0.05, for models of HSA and additivity. A hazard ratio of 1 means observed and 

expected PFS are equal. Error bars indicate 95% confidence intervals. Clinical trials are from 
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refs.25,26,47–83. BC, Breast Cancer; MM, Multiple Myeloma; CRC, Colorectal Cancer; CLL, 

Chronic Lymphocytic Leukemia; OC, Ovarian Cancer; TNBC, Triple-Negative Breast Cancer; 

ES-SCLC, Extensive-Stage Small Cell Lung Cancer; NSCLC, Non-Small Cell Lung Cancer; 

Bev., Bevacizumab; Atezo., Atezolizumab; 5-FU, 5-Fluorouracil; LV, Leucovorin; Dex., 

Dexamethasone; CPS, PD-L1 combined proportion score; TPS, PD-L1 tumor proportion score. 
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Figure 3. Progression-free survival (PFS) of combination therapies compared with 

predictions of HSA and additivity. (A) Combination therapies that are significantly more than 

additive; (B) statistically indistinguishable from additivity; and (C) significantly less than 

additive. Panel numbers correspond to numbers in Figure 2.  

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 13, 2023. ; https://doi.org/10.1101/2022.10.21.22281013doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.21.22281013
http://creativecommons.org/licenses/by-nd/4.0/


 39 

 

Figure 4. Additivity is a more accurate model than HSA and can predict the success of 

phase III trials. (A) Observed versus expected PFS under models of HSA and additivity, for 

combination therapies approved between 1995 and 2020. Each line represents a different 

combination therapy’s PFS over time. (B) Histogram of the goodness of fit (R2) between 

observed versus expected from HSA (left) and additivity (right). R2 below zero is shown at zero. 

Gray bars indicate combinations that are not consistent with the model. (C) Histogram of mean 

signed difference between observed and expected PFS distributions from HSA (left) and 
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additivity (right). Positive values indicate that observed PFS is better than expected PFS. (D) 

Predicted probability of significantly improved PFS according to the additivity model, for phase 

III trials of combination therapy published between 2014 and 2018. Combinations that improved 

PFS (green, n = 27) have high probability of success whereas combinations that did not improve 

PFS (purple, n = 9) have low probability of success. (E) Receiver operating characteristics 

(ROC) curve of predicting the success of phase III trials under additivity and HSA, for 36 phase 

3 trials published between 2014 and 2018. Black dot indicates P(success) > 0.5. (F) Correlation 

between observed and expected hazard ratios of combination therapies according to additivity 

(Pearson r = 0.80, P = 3×10–14, n=58). Hazard ratios for PFS were calculated in comparison to 

each clinical trials’ control arm. Data are approved combinations (1995-2020) as well as 

published phase III trials (2014-2018). Area above the diagonal is ‘less than additive’. 
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