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Supplementary Information

Table S1: List of notations

Symbol Description
BaseInfer Current methodology to estimate reported rate
MdlInfer Our Minimum Description Length (MDL) framework to estimate reported rate
Calibrate Calibration procedure used in BaseInfer and MdlInfer
OM Epidemiological models used in BaseInfer and MdlInfer
BaseParam Baseline parameterizaton obtained by BaseInfer
MdlParam MDL parameterization identified by MdlInfer
SeroStudyTinf Total infections estimated by serological studies
BaseParamTinf Total infections estimated by BaseInfer
MdlParamTinf Total infections estimated by MdlInfer
ρTinf The performance metric comparing MdlInfer against BaseInfer in estimating total infections
NYT-Rinf New York Times reported infections
BaseParamRinf Reported infections estimated by BaseInfer
MdlParamRinf Reported infections estimated by MdlInfer
ρRinf The performance metric comparing MdlInfer against BaseInfer in estimating reported infections
RateSymp COVID-related symptomatic rate from symptomatic surveillance data
BaseParamSymp Symptomatic rate estimated by BaseInfer
MdlParamSymp Symptomatic rate estimated by MdlInfer
SeroStudyRate Cumulative reported rate estimated by serological studies
BaseParamRate Cumulative reported rate estimated by BaseInfer
MdlParamRate Cumulative reported rate estimated by MdlInfer
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In the supplementary materials, we first describe the datasets used in the paper. These include
the observed data used for epidemiological model calibration. We then describe the epidemiological
models used in the main paper in detail. Then, we elaborate on our Minimum Description Length
optimization formulation and the two-step algorithm, both of which we had briefly described in the
main paper. Finally, we present the results which were omitted from the main paper.

Data

New York Times reported infections [2]

This dataset (NYT-Rinf) consists of the time sequence of reported infections Dreported and reported
mortality Dmortality in each county across the U.S. since the beginning of the COVID-19 pandemic
(January 21, 2020) to current. For each county, the NYT-Rinf dataset provides the date, FIPS
code, and the cumulative values of reported infections and mortality. Here, we use the averaged
counts over 14 days to eliminate noise.

Serological studies [5, 1]

This dataset consists of the point estimate and 95% confidence interval of the prevalence of antibod-
ies to SARS-CoV-2 in 10 US locations every 3-4 weeks during March to July 2020. The serological
studies use the blood specimens collected from population. For each location, CDC collects around
1800 samples approximately every 3-4 weeks. Using the prevalence of antibodies and the population,
we can compute the estimated total infections and 95% confidence interval in the location. However,
we cannot compare this number with the epidemiological model estimated total infections directly
as mentioned in the main article Methods section. We account for this problem by comparing the
serological studies numbers with the estimated total infections of 7 days prior to the first day of
specimen collection period as suggested by the CDC serological studies work [5].

Symptomatic surveillance [8]

This dataset comes from Facebook’s symptomatic survey [8]. The survey started on April 6, 2020 to
current. As of January 28, 2021, there were a total of 16,398,000 participants, with the average daily
participants number of 55,000. The survey asks a series of questions designed to help researchers
understand the spread of COVID-19 and its effect on people in the United States. For the signal,
they estimate the percentage of self-reported COVID-19 symptoms in population defined as fever
along with either cough, shortness of breath, or difficulty breathing [8]. The dataset also includes
weighted version which accounts for the differences between Facebook users and the United States
population. In the experiments, we contrast the symptomatic rate trends inferred by our approach
against the weighted data from the survey.

Epidemiological model

SAPHIRE model

We use the SAPHIRE model [4] as one epidemiological model OM in our experiments. The com-
partmental diagram of SAPHIRE model is shown in Supplementary Fig. S1. It consists of 7 states
shown in Supplementary Table S2.
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The SAPHIRE model has 9 different parameters, which are listed in Supplementary Table S3.
Note that only two parameters are calibrated, while the rest are fixed. Following its literature [4], we
use Markov Chain Monte Carlo (MCMC) as the calibration procedure Calibrate for SAPHIRE.

In this article, we expect the epidemiological model to calibrate on both reported infections
Dreported and candidate total infections D. We compute the newly reported infections and unre-
ported infections as follows:

1. New reported infections= rP
Dp

: P
Dp

represents the number of new infections from presymp-
tomatic infections every day in OM. Here, we assume r proportion of new infections every day
will be that day’s new reported infections.

2. New unreported infections = (1−r)P
Dp

: Then, the 1− r proportion of new infections every day
will be that day’s new unreported infections.

SEIR+HD model

We also use the SEIR + HD model [6] as another epidemiological model OM in our experiments.
The compartmental diagram of SEIR + HD model is shown in Supplementary Fig. S2. It consists
of the following 10 states shown in Supplementary Table S4:

The SEIR + HD model has 21 different parameters, which are listed in Supplementary Table S5.
Note that only three parameters are calibrated, while the rest are fixed. Following its literature [6],
we use iterated filtering (IF) as the calibration procedure Calibrate for SEIR + HD.

Similarly to SAPHIRE model, we still expect the epidemiological model to calibrate on reported
infections Dreported and candidate unreported infections Dunreported. Specifically, we extend the
calibration procedure to infer two more parameters: α and α1 (proportion of new symptomatic
infections that are reported). We compute the newly reported infections and unreported infections
as follows:

1. New reported infections= α1 × (NIP IS +NIP IM ):

Inew sympt = NIP IS +NIP IM represents the number of new symptomatic infections every day
in OM. Here, we assume α1 proportion of new symptomatic infections will be that day’s new
reported infections.

2. New unreported infections = (1− α1)× (NIP IS +NIP IM ) +NEIA :

Then, the 1−α1 proportion of new symptomatic infections and new asymptomatic infections
every day will be that day’s new unreported infections.

Methodology

Terms used in MDL cost

By calibrating the epidemiological model OM on Dreported, we get the baseline paramterization
(BaseParam) Θ̂:

Θ̂ = Calibrate(OM, Dreported) (1)

By running the epidemiological model with Θ̂, OM will output the estimated reported infections
Dreported(Θ̂), estimated unreported infections Dunreported(Θ̂), and estimated total infections D(Θ̂) =
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Dreported(Θ̂) +Dunreported(Θ̂). We can also calculate the reported rate α̂reported as follows:

α̂reported =

∑
Dreported(Θ̂)∑

D(Θ̂)
(2)

Here, we sum over the daily sequence Dreported(Θ̂) and D(Θ̂) to calculate a scalar as the reported
rate for MDL formulation.

Similarly by calibrating OM on both Dreported and D, we get the candidate paramterization Θ
′ :

Θ
′
= Calibrate(OM, (D,Dreported)) (3)

By running the epidemiological model with Θ
′ , OM will output the estimated reported infec-

tions Dreported(Θ
′
), estimated unreported infections Dunreported(Θ

′
), and estimated total infections

D(Θ
′
) = Dreported(Θ

′
) +Dunreported(Θ

′
). Similarly, we can calculate the reported rate α

′
reported as

follows:

α
′
reported =

∑
Dreported(Θ

′
)∑

D(Θ′)
(4)

With the calibration process, Θ̂, and Θ
′ defined, we can next formalize the MDL cost.

Sender-receiver framework

Here, we use two-part sender-receiver framework based on Minimum Description Length (MDL)
principle. The goal of the framework is to transmit the Data in possession of the Sender S to the
receiver R using a Model. We do this by identifying the Model that describes the Data such
that the total number of bits needed to encode both the Model and the Data is minimized. The
number of bits required to encode both the Model and the Data is given by the cost function L,
which has two components: (i) model cost L(Model): The cost in bits of encoding the Model,
and (ii) data cost L(Data|Model): The cost in bits of encoding Data given the Model.

Model space: Other choice

In this work, the Data is Dreported. One idea for defining the Model space is to use Θ̂. With such
a Model, the receiver R can easily compute first Dreported(Θ̂) given Θ̂. Then the sender S will
only need to encode and send the difference between Dreported(Θ̂) and Dreported so that the receiver
can recover the Data fully. However, this has the disadvantage that slightly different Θ̂ could lead
to vastly different Dreported(Θ̂), and so the optimization problem will become hard to solve. To
account for this, we propose Model as Model = (D,Θ

′
, Θ̂) as described in the main article, which

consists of three components.

Model cost

With the model space Model = (D,Θ
′
, Θ̂), the sender S will send the Model to the receiver R

in three parts: (i) first send Θ̂, (ii) next send Θ
′ given Θ̂, and then (iii) send D given Θ

′ and Θ̂.
Therefore, the model cost L(D,Θ

′
, Θ̂) will also have three components

L(D,Θ
′
, Θ̂) = Cost(Θ̂) + Cost(Θ

′ |Θ̂) + Cost(D|Θ′
, Θ̂) (5)

Here, we will send the first component, Θ̂, directly, send the second component, Θ′ given Θ̂, via
sending Θ

′ − Θ̂, and send the third component, D given Θ
′ and Θ̂, via sending α′

reported × D −
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Dreported(Θ̂) (as described in the main article, both α′
reported ×D and Dreported(Θ̂) should be close

to Dreported, and the receiver could recover the D using Θ̂, α′
reported, and Dreported(Θ̂) since they

have already been sent). We further write the model cost in Equation (5) as below:

L(D,Θ
′
, Θ̂) = Cost(Θ̂) + Cost(Θ

′ − Θ̂|Θ̂) + Cost(α′
reported ×D −Dreported(Θ̂)|Θ′

, Θ̂) (6)

Data cost

Give the Model = (D,Θ
′
, Θ̂) and model cost above, next we will send the Data in terms of the

Model. Here, the Data is Dreported, and the data cost will have only one component:

L(Dreported|D,Θ
′
, Θ̂) = Cost(Dreported|D,Θ

′
, Θ̂) (7)

Here, we will send it via D−Dreported

1−α′
reported

−D(Θ
′
) (as described in the main article, both D−Dreported

1−α′
reported

and

D(Θ
′
) should be close to the total infections D, and the receiver could recover the Dreported using

D, α′
reported, and D(Θ

′
) since they have already been sent), and we further write the data cost in

Equation (7) as below:

L(Dreported|D,Θ
′
, Θ̂) = Cost(

D −Dreported

1− α′
reported

−D(Θ
′
)|D,Θ

′
, Θ̂) (8)

Total cost

The total cost is the sum of model cost L(D,Θ
′
, Θ̂) and data cost L(Dreported|D,Θ

′
, Θ̂):

L(Dreported, D,Θ
′
, Θ̂) = L(D,Θ

′
, Θ̂) + L(Dreported|D,Θ

′
, Θ̂)

= Cost(Θ̂) + Cost(Θ
′ |Θ̂) + Cost(D|Θ′

, Θ̂) + Cost(Dreported|D,Θ
′
, Θ̂)

= Cost(Θ̂) + Cost(Θ
′ − Θ̂|Θ̂) + Cost(α′

reported ×D −Dreported(Θ̂)|Θ′
, Θ̂)

+ Cost(
D −Dreported

1− α′
reported

−D(Θ
′
)|D,Θ

′
, Θ̂)

(9)

Cost derivation

Next, we derive the cost for each component and give our encoding method explicitly:

1. Cost(Θ̂): We represent Θ̂ as a vector of real numbers. We describe our encoding later below.

2. Cost(Θ
′ − Θ̂|Θ̂): We will encode the difference of two vectors as a vector of real numbers.

3. Cost(α′
reported × D − Dreported(Θ̂)|Θ′

, Θ̂): Here, we encode the difference between the two
time sequences: α′

reported ×D given Dreported(Θ̂).

4. Cost(D−Dreported

1−α′
reported

−D(Θ
′
)|D,Θ

′
, Θ̂): Again, we encode it as a difference between the two time

sequences: Dunreported

1−α′
reported

given D(Θ
′
).

Next, we describe the encoding cost of real numbers, vectors, and the difference between two time
sequences.

Cui. et al · 6



Encoding integers

To encode a positive integer n+, we encode both the binary representation of integer n+ as well as
the length of the representation log2 n

+. Following [7], the cost in bits of encoding a single integer
n is as follows:

Cost(n+) = log2 c0 + log∗(n+). (10)
where c0 ≈ 2.865 and log∗(n+) = log2 n

+ + log2 log2 n
+ + · · · as described in [7]. There are infinite

terms in log∗(n+) function since after we encode a number, we always need to encode its length as
another number, which could be repeated for infinite times. Additionally, if we want to transmit an
integer that can be either positive or negative, we can add another sign bit and therefore the cost
in bits for integers will be

Cost(n) = Cost(|n|) + 1. (11)

Encoding real numbers

Note that most real numbers (e.g. π or e) need infinite number of bits to encode. Hence, we
introduce a precision threshold δ. With threshold δ, we approximate a positive real number x+

with xδ which satisfies |x+ − xδ| < δ, and we encode xδ instead. To encode xδ, we encode both
the integer part ⌊x+⌋ as well as the fractional part xδ − ⌊x+⌋. Hence the cost in bits of encoding a
positive real number x+ is as follows:

Cost(x+) = Cost(⌊x+⌋) + log2
1

δ
(12)

where ⌊x+⌋ is the floor of x+ and therefore is a integer, whose encoding cost is Cost(⌊x+⌋) =
log2 c0 + log∗(⌊x+⌋). Additionally, if we want to transmit a real number that can be either positive
or negative, we can add another sign bit and therefore the cost in bits for real numbers will be

Cost(x) = Cost(|x|) + 1 (13)

Encoding vectors

To encode a vector Θ = [Θ[1],Θ[2], · · · ,Θ[n]], we encode every components one by one as real
numbers. Hence the cost in bits of encoding a vector Θ is as follows:

Cost(Θ) = Cost(Θ[1]) + Cost(Θ[2]) + · · ·+ Cost(Θ[n]) (14)

Encoding the difference between two time sequences

To encode the difference A−B = [At1 −Bt1 , At2 −Bt2 , · · · , Atn −Btn ] between two time sequences
A = [At1 , At2 , · · · , Atn ] and B = [Bt1 , Bt2 , · · · , Btn ], we encode every components one by one as
real numbers. Hence the cost in bits of encoding the difference is as follows:

Cost(A−B) = Cost(At1 −Bt1) + Cost(At2 −Bt2) + · · ·+ Cost(Atn −Btn) (15)

Problem statement

Now we have derived every cost involved in our problem, and we can finally state our problem as one
of estimating the total infections D as follows: Given the time sequence Dreported, epidemiological
model OM, and a calibration procedure Calibrate, find D∗ that minimizes the MDL total cost:

D∗ = argmin
D

L(Dreported, D,Θ
′
, Θ̂) (16)

We will give the algorithm to find such D∗ as follows:
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Algorithm

Before presenting our algorithm to find D∗, we will first address the problem of searching D∗ directly.
Note that D∗ is a time sequence of total infections instead of a scalar, naively searching D∗ directly
in large search space is intractable. Hence, we propose an alternate method: First, we can quickly
find a good reported rate α∗

reported since we can constrain D =
Dreported

αreported
to reduce the search space.

Then we can search for the optimal D∗ with α∗
reported from step 1 as constraints. Here, we write

down our two-step search algorithm to find the D∗ as follows:

1. Step 1: We do a linear search to find a good reported rate α∗
reported, which serves as an

initialization in the second step.

2. Step 2: Given the α∗
reported found in step 1, we use the Nelder-Mead [3] optimization to find

the D∗ that minimizes L(Dreported, D,Θ′, Θ̂) with α∗
reported constraints.

Step 1: Find the α∗
reported

In step 1, we search on αreported to find the α∗
reported as follows:

α∗
reported = arg min

αreported

L(Dreported,
Dreported

αreported
,Θ

′
, Θ̂) (17)

To be more specific, in the first step of our algorithm, we do a linear search on different αreported =

[0.01, 0.02, 0.03, · · · , 0.99] and calibrate the OM on D =
Dreported

αreported
, which means

Θ
′
= Calibrate(OM, (

Dreported

αreported
, Dreported)) (18)

Then we pick the α∗
reported that corresponds to the lowest total cost as the α∗

reported.

Step 2: Find the D∗ given α∗
reported

With α∗
reported inferred in step 1, we will next find the D∗ that minimizes the total cost.

D∗ = argmin
D

L(Dreported, D,Θ
′
, Θ̂) (19)

Since we have already found α∗
reported in step 1, we will only search the D∗ that satisfies∑

D∗ =

∑
Dreported

α∗
reported

(20)

To search for the optimal D∗, we leverage the popular Nelder-Mead search algorithm [3].
We give the pseudo-code for MdlInfer as follows:

Algorithm 1 MdlInfer
Input: Epidemiological model OM, calibration procedure Calibrate, reported infections time

sequence Dreported.
1: Calibrate baseline parameterization Θ̂ = Calibrate(OM, Dreported)

2: Step 1: Find α∗
reported = GetAlpha(OM,Calibrate, Dreported, Θ̂)

3: Step 2: Find D∗ = GetTotalInfections(OM,Calibrate, Dreported, α
∗
reported, Θ̂)

Output: Total infections D∗
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We also give the pseudo-code for GetAlpha and GetTotalInfections:

Algorithm 2 GetAlpha (Step 1: Find the α∗
reported)

Input: OM, Calibrate, Dreported, Θ̂.
1: The array to save the MDL cost: CostArray = [ ]
2: for αreported in the grid search space from 0.01 to 1 with step 0.01 do
3: D =

Dreported

αreported

4: Calibrate candidate parameterization Θ
′
= Calibrate(OM, (D,Dreported))

5: Save the MDL cost for αreported in CostArray[αreported] = L(Dreported, D,Θ
′
, Θ̂)

6: end for
7: Find the α∗

reported = argminαreported
CostArray[αreported]

Output: Reported rate α∗
reported

Algorithm 3 GetTotalInfections (Step 2: Find the D∗ given α∗
reported)

Input: OM, Calibrate, Dreported, α∗
reported, Θ̂.

1: Find the D∗ = argminD L(Dreported, D,Θ
′
, Θ̂). (using the Nelder-Mead algorithm).

Output: Total infections D∗

Why MdlInfer is better than BaseInfer

1. We introduce a latent variable D to help the calibration: With D and its corresponding
α′
reported, we can focus on a smaller search space by fixing the reported rate and get a better

fit on Dreported. In contrast, BaseInfer ignores the D but directly searches in the whole
parameter space for Θ̂, which is a complex problem in high-dimensional space since there are
multiple parameters to estimate simultaneously. As shown in results section (B), we fit the
observed Dreported better (measured by lower RMSE) in most regions.

2. We performed a principled model selection framework to search for the D. We carefully
designed our MDL cost to minimize the discrepancy in fitting Dreported. This MDL cost
ensures the generalizability of our learned D and α′

reported to avoid the overfitting of Dreported.
Specifically, as we described in the methods section, we attempt different Ds that correspond
to different reported rates in our algorithm. This can be viewed as a linear search on αreported,
which helps to avoid getting a locally optimal solution. Again, as shown in results section
(B), good generalizability leads to better forecasts of future reported infections.

MdlInfer identifies the ground truth parameters better than BaseInfer: Syn-
thetic experiments

Here, we use SAPHIRE and SEIR + HD model and its corresponding calibration procedure (Markov
Chain Monte Carlo and iterated filtering) to showcase that MdlInfer identifies the ground truth
parameters better than BaseInfer. Specifically, we use a synthetic parameterization Θgt to gen-
erate a synthetic reported infections curve, and then add different amounts of Gaussian noise to
this reported infections curve. We use these noisy curves as the observed data Dreported, and then
use both MdlInfer and BaseInfer to fit these curves. We hope that the MdlParam esti-
mated by MdlInfer could be closer to the Θgt than BaseParam estimated by BaseInfer. As
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shown in Supplementary Fig. S3, with increasing amount of Gaussian noise, both the root mean
squared error (RMSE) between BaseParam and Θgt, and the RMSE between MdlParam and
Θgt increase. However, the RMSE between MdlParam and Θgt increases slower than the RMSE
between BaseParam and Θgt. This shows MdlInfer always identifies the ground truth param-
eters Θgt better than BaseInfer. It also shows that MdlInfer is more robust to noise than
BaseInfer. We list the parameters in Supplementary Table S6 (for SAPHIRE model) and Sup-
plementary Table S7 (for SEIR + HD model).

Using MdlInfer to generate uncertainty estimates

Here, we also use SAPHIRE and SEIR + HD model and its corresponding calibration procedure
(Markov Chain Monte Carlo and iterated filtering) to showcase how to adapt the MdlInfer to
generate uncertainty estimates for the inferred parameters. Note that we need multiple estimated
parameters to generate uncertainty estimates and compute the mean value and standard error.
Hence, we start from multiple Θ̂i by running BaseInfer multiple times. Recall that our MDL
formulation builds a deterministic mapping from Θ̂ to Θ∗. Hence for each Θ̂i, we could find the
corresponding Θ∗

i using MdlInfer. Specifically, for each Θ̂i with probability Prob[Θ̂i], we can
find the corresponding Θ∗

i with the same probability Prob[Θ∗
i ]. Although the corresponding Θ∗

i for
different Θ̂i may overlap with each other (in fact, the ideal mapping is to map all Θ̂i to the ‘ground-
truth’ Θgt), this mapping always exists and is deterministic. Hence, given multiple Θ̂i estimated by
BaseInfer, we can find the corresponding Θ∗

i , and give the uncertainty estimates. Some examples
are shown in Supplementary Table S8 (for SAPHIRE model) and Supplementary Table S9 (for
SEIR + HD model). Here, we use a synthetic parameterization Θgt to generate a synthetic reported
infections curve and then add 5% Gaussian noise to this reported infections curve. We use the curve
with 5% Gaussian noise as the observed data Dreported. We run BaseInfer 10 times get multiple
Θ̂i, and then run MdlInfer with each Θ̂i to generate multiple Θ∗

i . Then we can use Θ∗
i to generate

the uncertainty estimates. Note that the variance for both BaseParam and MdlParam are small.

Experimental setup

Here we describe our experimental setup in more detail and present results on additional testbeds.

Total infections

The Results section in the main paper refers to BaseParamTinf , which represents the cumulative
total infections derived from the BaseInfer. It is computed as follows:

BaseParamTinf =
∑

D(Θ̂) (21)

Similarly, MdlParamTinf , which represents the cumulative total infections derived from MdlInfer,
is computed as follows:

MdlParamTinf =
∑

D(Θ∗) (22)

In Supplementary Fig. S4, we show additional results comparing the performance of MdlInfer
and BaseInfer in estimating total infections. Here, MdlInfer (red) gives a closer estimation of
total infections to serological studies (black) than BaseInfer (blue).
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Reported infections

In Supplementary Fig. S5, we present additional results comparing the performance of MdlInfer
and BaseInfer in forecasting future infections (forecast period). Here, MdlInfer (red) gives
a closer estimation of reported infections (black) than BaseInfer (blue) on various geographical
regions and time periods.

Symptomatic rate

The BaseInfer and MdlInfer also estimate the symptomatic rate BaseParamSymp and MdlParamSymp

respectively. We compare these against the Facebook symptomatic surveillance data RateSymp.
We calculate BaseParamSymp from Θ̂ as follows:

BaseParamSymp =
IS(Θ̂) + IM (Θ̂)

N
(23)

where IS(Θ̂) is the number of infections in severe symptomatic state, IM (Θ̂) represents the same in
mild symptomatic state, and N is the total population in this area.

Similarly MdlParamSymp is computed as follows:

MdlParamSymp =
IS(Θ

∗) + IM (Θ∗)

N
(24)

In Supplementary Fig. S6, we present additional results comparing MdlInfer and BaseInfer
in estimating trends of symptomatic rate. Here, MdlInfer (red) gives a closer estimation of the
trends of symptomatic rate (black) than BaseInfer (blue).

Cumulative reported rate

We also calculate the a dynamic reported rate from both BaseInfer and MdlInfer. Note that
this cumulative reported rate is different from αreported and α∗

reported, which are two scalars used in
MDL formulation. We calculate BaseParamRate from BaseParam Θ̂ as follows:

BaseParamRate =

∑
NYT-Rinf∑

D(Θ̂)
(25)

Similarly we calculate MdlParamRate from MdlParam Θ∗ as follows:

MdlParamRate =

∑
NYT-Rinf∑
D(Θ∗)

(26)

Non-pharmaceutical interventions simulation

We also use the BaseInfer and MdlInfer to perform non-pharmaceutical interventions simulation
on SEIR + HD model. Here, both the BaseInfer and MdlInfer are estimated on the observed
period. Then on the future period, we will consider the following five scenarios of isolation:

1. Isolate reported infections: We isolate the α1 fraction of severe symptomatic infections IS and
mild symptomatic infections IM .

2. Isolate both reported infections and symptomatic infections: Note that some reported infec-
tions are included in the symptomatic infections. Here, we isolate all severe symptomatic
infections IS and mild symptomatic infections IM .
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3. Isolate 25% presymptomatic and asymptomatic infections: We isolate 25% of presymptomatic
infections IP , asymptomatic infections IA, and all severe symptomatic infections IS and mild
symptomatic infections IM .

4. Isolate 50% presymptomatic and asymptomatic infections: We isolate 50% of presymptomatic
infections IP , asymptomatic infections IA, and all severe symptomatic infections IS and mild
symptomatic infections IM .

5. Isolate 75% presymptomatic and asymptomatic infections: We isolate 75% of presymptomatic
infections IP , asymptomatic infections IA, and all severe symptomatic infections IS and mild
symptomatic infections IM .

The infectivity of the patients in isolation is reduced by 50%.

Sensitivity analysis

We also perform sensitivity experiments to inspect the robustness of our non-pharmaceutical in-
terventions simulations for Minneapolis-Spring-20 in Supplementary Fig. S7. Here, we reduce the
infectiousness of the isolated infections to 3 different values: 0.4, 0.5, and 0.6, and repeat simulations
in each scenarios. Our results consistently show that only isolating reported or symptomatic infec-
tions is not enough to reduce the future reported infections. However, isolating both symptomatic
infections and some fraction of asymptomatic and presymptomataic infections leads to reduction in
reported infections in most settings.
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Figure S1: Compartmental diagram of SAPHIRE model [4]

Table S2: States of SAPHIRE model

State Meaning
S Susceptible
E Exposed
P Presymptomatic infectious
I Ascertained infectious
A Unascertained infectious
H Isolation in hospital
R Removed

Table S3: Parameters of SAPHIRE model

Parameter Meaning Value
b Transmission rate of ascertained cases Calibrated
r Ascertainment rate Calibrated
α Ratio of transmission rate for unascertained over ascertained cases 0.55
De Latent period 2.9
Dp Presymptomatic infectious period 2.3
Di Symptomatic infectious period 2.9
Dq Duration from illness onset to isolation 6
Dh Isolation period 30
N Population Set

Cui. et al · 13
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Figure S2: Compartmental diagram of SEIR+HD model [6].

Table S4: States of SEIR+HD model

State Meaning
S Susceptible
E Exposed
IP Pre-symptomatic
IS Symptomatic, severe
IM Symptomatic, mild
IA Asymptomatic
HD Hospitalized, eventual death
HR Hospitalized, eventual recover
R Recovered
D Dead

Table S5: Parameters of SEIR+HD model

Parameter Meaning Value
CA Relative infectiousness of asymptomatic 0.425
CP Relative infectiousness of presymptomatic 1
CM Relative infectiousness of mild symptomatic 1
CS Relative infectiousness of severe symptomatic 1
γ Preinfectious period 0.2857
λP Presymptomatic duration 0.6667
λA Infectious period for asymptomatic infections 0.1429
λS Time from symptom onset to hospitalizations (severe) 0.1818
λM Time from symptom onset to recovery (mild) 0.1818
ρR Time from hospitalization to recovery 0.0667
ρD Time from hospitalization to death 0.0752
N Population Set
Start date Start date of the epidemic Set
Work From Home start date Work from home start date Set
σWFH Work from home proportion of contacts remaining 0.8125
E0 Number of initial infections that began the epidemic Calibrated
α Proportion of infections that are asymptomatic 0.4875
δ Mortality rate among hospitalizations 0.1375
µ Proportion of symptomatic infections that require hospitalization 0.0656
β0 Transmission rate in the absence of interventions Calibrated
σ The proportional reduction on β0 under shelter-in-place Calibrated

Cui. et al · 14
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Figure S3: MdlInfer identifies the ground truth parameters better than BaseInfer.
The red and blue curves represent the RMSE between MdlParam and Θgt, and RMSE between
BaseInfer and Θgt when adding different amounts of Gaussian noise. Lower RMSE means better
performance. (A) uses SAPHIRE model and its corresponding MCMC calibration procedure for
both BaseInfer and MdlInfer, and (B) uses SEIR + HD model and its corresponding IF cali-
bration procedure for both BaseInfer and MdlInfer.
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Figure S4: MdlInfer (red) gives a closer estimation of total infections to serological
studies (black) than BaseInfer (blue). Note that both approaches try to fit the serological
studies without being informed with them. (A) The red and blue curves represent MdlInfer’s
estimation of total infections, MdlParamTinf , and BaseInfer’s estimation of total infections,
BaseParamTinf , respectively. The black point estimates and confidence intervals represent the
total infections estimated by serological studies [1, 5], SeroStudyTinf . (B) The performance metric,
ρTinf , comparing MdlParamTinf against BaseParamTinf in fitting serological studies is shown for
(A) for SEIR + HD model. Here, the values of ρTinf is 1.93.
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Figure S5: MdlInfer (red) gives a closer estimation of reported infections (black) than
BaseInfer (blue). We use the reported infections in the observed period as inputs and try
to forecast the future reported infections (forecast period). (A)-(H) The vertical grey dash line
divides the observed period (left) and forecast period (right). The red and blue curves represent
MdlInfer’s estimation of reported infections, MdlParamRinf , and BaseInfer’s estimation of
reported infections, BaseParamRinf , respectively. The black plus symbols represent the reported
infections collected by the New York Times (NYT-Rinf). (A)-(D) use SAPHIRE model and (E)-
(H) use SEIR + HD model. (I)-(J) The performance metric, ρRinf , comparing MdlParamRinf

against BaseParamRinf in fitting reported infections is shown for each region. (I) is for SAPHIRE
model in (A)-(D), and (J) is for SEIR + HD model in (E)-(H).
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Figure S6: MdlInfer (red) gives a closer estimation of the trends of symptomatic rate
(black) than BaseInfer (blue). (A)-(D) The red and blue curves represent MdlInfer’s
estimation of symptomatic rate, MdlParamSymp, and BaseInfer’s estimation of symptomatic
rate, BaseParamSymp, respectively. They use the y-scale on the left. The black points and
the shaded regions are the point estimate with standard error for RateSymp (the COVID-
related symptomatic rates derived from the symptomatic surveillance dataset [8, 9]). They use
the y-scale on the right. Note that we focus on trends instead of the exact numbers, hence
MdlParamSymp/BaseParamSymp, and RateSymp may scale differently.
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Figure S7: Our non-pharmaceutical interventions simulation results are robust. (A)-(C)
The vertical grey dash line divides the observed period (left) and forecast period (right). The
blue curve and other five curves represent the BaseInfer’s estimation of reported infections for
no NPI scenario and 5 different NPI scenarios described in the Results section. Here, we reduce
the infectivity of these isolated infections to 40% in (A), 50% in (B), and 60% in (C) in future
period. (D)-(F) The red curve and other five curves represent the MdlInfer’s estimation of
reported infections for no NPI scenario and 5 different NPI scenarios described in the Results
section. Similarly, we reduce the infectivity of these isolated infections to 40% in (D), 50% in (E),
and 60% in (F) in future period. The results are for Minneapolis-Spring-20 that we shown in main
article Fig. 5.
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Table S6: Performance of BaseInfer and MdlInfer in identifying Θgt for SAPHIRE
model

Noise level Parameter BaseParam (Θ̂) MdlParam (Θ∗) Θgt

0.05 b 0.4552 0.4879 0.5
0.05 r 0.2473 0.2220 0.2
0.1 b 0.4524 0.4774 0.5
0.1 r 0.2487 0.2315 0.2
0.2 b 0.4398 0.4825 0.5
0.2 r 0.2749 0.2417 0.2
0.5 b 0.4109 0.4670 0.5
0.5 r 0.2678 0.2315 0.2
1.0 b 0.4356 0.5164 0.5
1.0 r 0.3583 0.2887 0.2
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Table S7: Performance of BaseInfer and MdlInfer in identifying Θgt for SEIR+HD
model

Noise level Parameter BaseParam(Θ̂) MdlParam(Θ∗) Θgt

0.05 β0 0.6097 0.7189 0.8
0.05 α 0.0866 0.3110 0.5
0.05 α1 0.2745 0.1834 0.2
0.05 σ 0.2239 0.2769 0.3
0.1 β0 0.6207 0.8656 0.8
0.1 α 0.0745 0.6388 0.5
0.1 α1 0.2810 0.3021 0.2
0.1 σ 0.2548 0.2022 0.3
0.2 β0 0.5905 0.9530 0.8
0.2 α 0.0446 0.6663 0.5
0.2 α1 0.2640 0.3354 0.2
0.2 σ 0.2806 0.2561 0.3
0.5 β0 0.5971 1.0059 0.8
0.5 α 0.0426 0.7027 0.5
0.5 α1 0.2770 0.3116 0.2
0.5 σ 0.2604 0.2271 0.3
1.0 β0 0.5933 1.0020 0.8
1.0 α 0.0243 0.7032 0.5
1.0 α1 0.3887 0.3539 0.2
1.0 σ 0.1735 0.1906 0.3
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Table S8: Using MdlInfer to generate uncertainty estimates for SAPHIRE model

Running time Parameter BaseParam (Θ̂) MdlParam (Θ∗) Θgt

1 b 0.4529 0.4696 0.5
1 r 0.2505 0.2414 0.2
2 b 0.4539 0.4789 0.5
2 r 0.2599 0.2311 0.2
3 b 0.4526 0.4692 0.5
3 r 0.2504 0.2409 0.2
4 b 0.4527 0.4691 0.5
4 r 0.2504 0.2409 0.2
5 b 0.4538 0.4681 0.5
5 r 0.2496 0.2412 0.2
6 b 0.4520 0.4684 0.5
6 r 0.2516 0.2417 0.2
7 b 0.4508 0.4694 0.5
7 r 0.2528 0.2407 0.2
8 b 0.4527 0.4675 0.5
8 r 0.2504 0.2415 0.2
9 b 0.4541 0.4775 0.5
9 r 0.2499 0.2316 0.2
10 b 0.4530 0.4678 0.5
10 r 0.2503 0.2418 0.2
mean ± std b 0.4528 ± 0.0009312 0.4705 ± 0.003879 0.5
mean ± std r 0.2506 ± 0.0008981 0.2393 ± 0.003980 0.2
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Table S9: Using MdlInfer to generate uncertainty estimates for SEIR+HD model

Running time Parameter BaseParam(Θ̂) MdlParam(Θ∗) Θgt

1 β0 0.5971 0.9255 0.8
1 α 0.0426 0.6739 0.5
1 α1 0.2770 0.2988 0.2
1 σ 0.2604 0.2834 0.3
2 β0 0.5947 0.7342 0.8
2 α 0.0505 0.2510 0.5
2 α1 0.2723 0.2406 0.2
2 σ 0.2720 0.2642 0.3
3 β0 0.6286 0.7190 0.8
3 α 0.0676 0.2358 0.5
3 α1 0.2757 0.2482 0.2
3 σ 0.2528 0.2704 0.3
4 β0 0.6079 0.6995 0.8
4 α 0.0842 0.2360 0.5
4 α1 0.2862 0.2350 0.2
4 σ 0.2846 0.2673 0.3
5 β0 0.5959 0.9324 0.8
5 α 0.0406 0.5913 0.5
5 α1 0.2847 0.2903 0.2
5 σ 0.2743 0.2561 0.3
6 β0 0.6242 0.9111 0.8
6 α 0.0740 0.5576 0.5
6 α1 0.2680 0.2893 0.2
6 σ 0.2383 0.2516 0.3
7 β0 0.9313 0.8088 0.8
7 α 0.4831 0.4750 0.5
7 α1 0.2797 0.2656 0.2
7 σ 0.2425 0.2655 0.3
8 β0 0.6265 0.7963 0.8
8 α 0.0972 0.4459 0.5
8 α1 0.2825 0.2673 0.2
8 σ 0.2561 0.2680 0.3
9 β0 0.6690 0.7084 0.8
9 α 0.2084 0.2326 0.5
9 α1 0.2709 0.2360 0.2
9 σ 0.2865 0.2660 0.3
10 β0 0.6485 1.0348 0.8
10 α 0.0953 0.7135 0.5
10 α1 0.2797 0.2896 0.2
10 σ 0.2304 0.2655 0.3
mean ± std β0 0.6524 ± 0.0957 0.8270 ± 0.1109 0.8
mean ± std α 0.1244 ± 0.1280 0.4412 ± 0.1815 0.5
mean ± std α1 0.2777 ± 0.0057 0.2661 ± 0.0237 0.2
mean ± std σ 0.2598 ± 0.0184 0.2658 ± 0.0080 0.3
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Table S10: Parameter list for Minneapolis-Spring-20 for SAPHIRE model

Time period Parameter BaseParam(Θ̂) MdlParam(Θ∗)

Mar 6-Apr 16 b 0.5167 0.6485
Mar 6-Apr 16 r 0.1440 0.0825
Apr 17-May 21 b 0.4838 0.4707
Apr 17-May 21 r 0.1857 0.0853
May 22-Jun 20 b 0.2873 0.2894
May 22-Jun 20 r 0.1210 0.0788
Jun 61-Jul 14 b 0.4263 0.4413
Jun 61-Jul 14 r 0.1406 0.0996
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Table S11: Parameter list for South Florida-Spring-20 for SAPHIRE model

Time period Parameter BaseParam(Θ̂) MdlParam(Θ∗)

Mar 6-Mar 25 b 1.2708 1.3448
Mar 6-Mar 25 r 0.0349 0.0895
Mar 26-Apr 4 b 0.5656 0.5400
Mar 26-Apr 4 r 0.0282 0.0694
Apr 5-Apr 28 b 0.3295 0.2974
Apr 5-Apr 28 r 0.0250 0.0672
Apr 29-May 28 b 0.0394 0.3596
Apr 29-May 28 r 0.0237 0.0688
May 29-Jun 27 b 0.7250 0.5773
May 29-Jun 27 r 0.0214 0.0682
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Table S12: Parameter list for Philadelphia-Spring-20 for SAPHIRE model

Time period Parameter BaseParam(Θ̂) MdlParam(Θ∗)

Mar 6-Mar 25 b 1.3602 1.3434
Mar 6-Mar 25 r 0.1538 0.2358
Mar 26-Apr 14 b 0.5006 0.4890
Mar 26-Apr 14 r 0.1705 0.2684
Apr 15-Apr 24 b 0.3583 0.3512
Apr 15-Apr 24 r 0.1221 0.1930
Apr 25-May 24 b 0.3421 0.0980
Apr 25-May 24 r 0.3297 0.1576
May 25-Jun 13 b 0.3052 0.2923
May 25-Jun 13 r 0.0827 0.1378
Jun 14-Jul 15 b 0.3839 0.3679
Jun 14-Jul 15 r 0.0891 0.1499
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Table S13: Parameter list for San Francisco-Spring-20 for SAPHIRE model

Time period Parameter BaseParam(Θ̂) MdlParam(Θ∗)

Feb 23-Mar 17 b 0.5270 0.9031
Feb 23-Mar 17 r 0.6531 0.2675
Mar 18-Apr 3 b 0.4834 0.5280
Mar 18-Apr 3 r 0.8883 0.17081
Apr 4-May 13 b 0.3141 0.3325
Apr 4-May 13 r 0.7888 0.1603
May 14-Jun 18 b 0.3741 0.4157
May 14-Jun 18 r 0.8364 0.1802
Jun 19-Jul 4 b 0.3530 0.1926
Jun 19-Jul 4 r 0.8322 0.3671
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Table S14: Parameter list for Minneapolis-Spring-20 for SEIR+HD model

Time period Parameter BaseParam(Θ̂) MdlParam(Θ∗)

Mar 6-Apr 16 β0 0.5190 0.6826
Mar 6-Apr 16 α 0.0266 0.4789
Mar 6-Apr 16 α1 0.0970 0.0942
Apr 17-May 21 β0 0.2116 0.2227
Apr 17-May 21 α 0.0441 0.1426
Apr 17-May 21 α1 0.1862 0.1565
May 22-Jun 20 β0 0.1181 0.1095
May 22-Jun 20 α 0.4169 0.06278
May 22-Jun 20 α1 0.3154 0.1244
Jun 61-Jul 14 β0 0.1562 0.1891
Jun 61-Jul 14 α 0.0309 0.0569
Jun 61-Jul 14 α1 0.3697 0.1256
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Table S15: Parameter list for South Florida-Spring-20 for SEIR+HD model

Time period Parameter BaseParam(Θ̂) MdlParam(Θ∗)

Mar 6-Mar 25 β0 0.7996 1.0543
Mar 6-Mar 25 α 0.0891 0.3651
Mar 6-Mar 25 α1 0.1979 0.1897
Mar 26-Apr 4 β0 0.3185 0.6882
Mar 26-Apr 4 α 0.0184 0.7532
Mar 26-Apr 4 α1 0.1985 0.2233
Apr 5-Apr 28 β0 0.1176 0.0972
Apr 5-Apr 28 α 0.0719 0.1268
Apr 5-Apr 28 α1 0.1721 0.0799
Apr 29-May 28 β0 0.1286 0.1561
Apr 29-May 28 α 0.0803 0.0387
Apr 29-May 28 α1 0.2015 0.0890
May 29-Jun 27 β0 0.1955 0.2495
May 29-Jun 27 α 0.0489 0.0690
May 29-Jun 27 α1 0.3379 0.0808
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Table S16: Parameter list for Philadelphia-Spring-20 for SEIR+HD model

Time period Parameter BaseParam(Θ̂) MdlParam(Θ∗)

Mar 6-Mar 25 β0 0.8777 1.0582
Mar 6-Mar 25 α 0.0665 0.4069
Mar 6-Mar 25 α1 0.1481 0.1330
Mar 26-Apr 14 β0 0.2500 0.2443
Mar 26-Apr 14 α 0.0147 0.0300
Mar 26-Apr 14 α1 0.1688 0.2475
Apr 15-Apr 24 β0 0.1642 0.1603
Apr 15-Apr 24 α 0.0347 0.0340
Apr 15-Apr 24 α1 0.1432 0.2092
Apr 25-May 24 β0 0.1798 0.1225
Apr 25-May 24 α 0.5218 0.0392
Apr 25-May 24 α1 0.1857 0.2086
May 25-Jun 13 β0 0.1576 0.1186
May 25-Jun 13 α 0.4397 0.2285
May 25-Jun 13 α1 0.2282 0.2470
Jun 13-Jul 15 β0 0.2263 0.2290
Jun 13-Jul 15 α 0.5223 0.5333
Jun 13-Jul 15 α1 0.3152 0.3208
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Table S17: Parameter list for San Francisco-Spring-20 for SEIR+HD model

Time period Parameter BaseParam(Θ̂) MdlParam(Θ∗)

Feb 23-Mar 17 β0 0.5380 0.5161
Feb 23-Mar 17 α 0.0916 0.0793
Feb 23-Mar 17 α1 0.1155 0.1178
Mar 18-Apr 3 β0 0.2484 0.2415
Mar 18-Apr 3 α 0.1255 0.0753
Mar 18-Apr 3 α1 0.1935 0.1839
Apr 4-May 13 β0 0.2401 0.1481
Apr 4-May 13 α 0.7488 0.2411
Apr 4-May 13 α1 0.3872 0.1800
May 14-Jun 18 β0 0.1871 0.1991
May 14-Jun 18 α 0.1325 0.1465
May 14-Jun 18 α1 0.1476 0.1559
Jun 19-Jul 4 β0 0.2227 0.1856
Jun 19-Jul 4 α 0.0813 0.0331
Jun 19-Jul 4 α1 0.1566 0.1725

Cui. et al · 31



Table S18: Parameter list for Minneapolis-Fall-20 for SAPHIRE model

Time period Parameter BaseParam(Θ̂) MdlParam(Θ∗)

Sep 10-Oct 9 b 0.4155 0.4047
Sep 10-Oct 9 r 0.1180 0.2877
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Table S19: Parameter list for South Florida-Fall-20 for SAPHIRE model

Time period Parameter BaseParam(Θ̂) MdlParam(Θ∗)

Oct 15-Nov 14 b 0.4707 0.4373
Oct 15-Nov 14 r 0.0561 0.2372
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Table S20: Parameter list for Philadelphia-Fall-20 for SAPHIRE model

Time period Parameter BaseParam(Θ̂) MdlParam(Θ∗)

Sep 16-Oct 15 b 0.3933 0.4008
Sep 16-Oct 15 r 0.2492 0.2474
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Table S21: Parameter list for San Francisco-Fall-20 for SAPHIRE model

Time period Parameter BaseParam(Θ̂) MdlParam(Θ∗)

Oct 10-Nov 9 b 0.4097 0.4179
Oct 10-Nov 9 r 0.2489 0.2369

Cui. et al · 35



Table S22: Parameter list for Minneapolis-Fall-20 for SEIR+HD model

Time period Parameter BaseParam(Θ̂) MdlParam(Θ∗)

Sep 10-Oct 9 β0 0.1888 0.3883
Sep 10-Oct 9 α 0.0441 0.9145
Sep 10-Oct 9 α1 0.9983 1.5852
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Table S23: Parameter list for South Florida-Fall-20 for SEIR+HD model

Time period Parameter BaseParam(Θ̂) MdlParam(Θ∗)

Oct 15-Nov 14 β0 0.2709 0.5404
Oct 15-Nov 14 α 0.1063 0.9473
Oct 15-Nov 14 α1 0.4658 2.7961
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Table S24: Parameter list for Philadelphia-Fall-20 for SEIR+HD model

Time period Parameter BaseParam(Θ̂) MdlParam(Θ∗)

Sep 16-Oct 15 β0 0.2400 0.2883
Sep 16-Oct 15 α 0.2341 0.6342
Sep 16-Oct 15 α1 1.1527 0.5294
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Table S25: Parameter list for San Francisco-Fall-20 for SEIR+HD model

Time period Parameter BaseParam(Θ̂) MdlParam(Θ∗)

Oct 10-Nov 9 β0 0.1987 0.4608
Oct 10-Nov 9 α 0.0823 0.7612
Oct 10-Nov 9 α1 1.1611 1.0386
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