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Abstract 

Background and Objectives  

Isolated/idiopathic REM sleep behavior disorder (iRBD) and Lewy body dementia (LBD) are 

synucleinopathies that have partial genetic overlap with Parkinson's disease (PD). Previous 

studies have shown that neuroinflammation plays a substantial role in these disorders. In PD, 

specific residues of the human leukocyte antigen (HLA) were suggested to be associated with a 

protective effect. This study examined whether the HLA locus plays a similar role in iRBD, LBD 

and PD. 

Methods 

We performed HLA imputation on iRBD genotyping data (1,072 patients and 9,505 controls) 

and LBD whole-genome sequencing (2,604 patients and 4,032 controls) using the multi-ethnic 

HLA reference panel v2 from the Michigan Imputation Server. Using logistic regression, we 

tested the association of HLA alleles, amino acids and haplotypes with disease susceptibility. We 

included age, sex and the top 10 principal components as covariates. We also performed an 

omnibus test to examine which HLA residue positions explain the most variance.  

Results 

In iRBD, HLA-DRB1*11:01 was the only allele passing FDR correction (OR=1.57, 95% 

CI=1.27-1.93, p=2.70e-05). We also discovered associations between iRBD and HLA-DRB1 70D 

(OR=1.26, 95%CI=1.12-1.41, p=8.76e-05), 70Q (OR=0.81, 95% CI=0.72-0.91, p=3.65e-04) and 

71R (OR=1.21, 95% CI=1.08-1.35, p=1.35e-03). In HLA-DRB1, position 71 (pomnibus=0.00102) 

and 70 (pomnibus=0.00125) were associated with iRBD. We found no association in LBD. 
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Discussion 

This study identified an association between HLA-DRB1 11:01 and iRBD, distinct from the 

previously reported association in PD. Therefore, the HLA locus may play different roles across 

synucleinopathies. Additional studies are required better to understand HLA's role in iRBD and 

LBD.   
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Introduction  

Isolated/idiopathic REM sleep behavior disorder (iRBD) is a prodromal synucleinopathy 

characterized by enactment of dreams, vocalization and absence of muscle atonia during REM 

sleep.1 iRBD is one of the strongest predictors for certain neurodegenerative disorders, as 

approximately 80% of patients will convert to Parkinson's disease (PD), Lewy body dementia 

(LBD) or multiple system atrophy (MSA) after 10-15 years on average following iRBD 

diagnosis.2 

Previous evidence has shown that iRBD and synucleinopathies share a partial genetic 

overlap.3 While specific loci (SNCA, GBA, TMEM175) were shared between these traits, distinct 

loci such as LRRK2 and MAPT for PD and APOE LBD were also identified.3 Furthermore, while 

the SNCA locus is important in PD, LBD and iRBD, the association with SNCA is driven by 

different variants for the different traits.3 Similar phenomenon occurs in the SCARB2 locus, 

where different variants are associated with PD or RBD.3 Understanding the shared genes and 

pathways and the genetic differences will lead to better characterization of these disorders. For 

instance, microglial activation, a form of neuroinflammation, was found in all these disorders.4-6 

However, the role of the immune system in their pathophysiology is poorly understood. 

Recently, a fine-mapping study of the human leukocyte antigen (HLA) locus in PD 

demonstrated a strong association of HLA-DRB1 amino acids 11V, 13H and 33H with reduced 

PD risk.7 Located on chromosome 6, the HLA locus is a highly polymorphic region with 

complicated linkage patterns. HLA plays an essential role in the adaptive immune system by 

presenting antigens to T-cells.  
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Since the role of the HLA locus is unknown in iRBD and LBD, this study aims to 

examine whether HLA variants may affect the risk for these disorders. We analyzed the 

association of different HLA alleles, haplotypes and amino acids in two cohorts of iRBD and 

LBD patients.  

 

Methods 

Study population 

iRBD and LBD cohorts from two previous genome-wide association studies (GWAS) were 

included in this analysis (Table 1).3,8 iRBD patients were diagnosed according to the 

International Classification of Sleep Disorders (2nd or 3rd Edition) with video 

polysomnography. LBD was diagnosed according to consensus criteria, as described elsewhere.8-

10 The iRBD cohort is composed of 1,072 patients and 9,505 controls with genotyping data from 

the OmniExpress GWAS chip (Illumina inc.). The control group includes six publicly available 

cohorts: controls from the International Parkinson's Disease Genomics Consortium (IPDGC) 

NeuroX dataset (dbGap phs000918.v1.p1), National Institute of Neurological Disorders and 

Stroke (NINDS) Genome-Wide genotyping in Parkinson's Disease (dbGap phs000089.v4.p2), 

NeuroGenetics Research Consortium (NGRC) (dbGap phs000196.v3.p1), Parkinson's 

Progression Markers Initiative (PPMI) and Vance (dbGap phs000394).  

The LBD cohort consisted of 2,604 patients and 4,032 controls with whole-genome 

sequencing data as described elsewhere.8 Study participants signed informed consent forms and 

the Institutional Review Board at McGill University approved the study protocol. 
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Quality control 

We performed standard GWAS quality control steps for both cohorts using PLINK v1.90. We 

excluded variants that were heterozygosity outliers (|F| > 0.15), sample call rate outliers (<0.95) 

and samples failing sex checks were also excluded. We determined genetic ancestry by merging 

samples with HapMap3 and clustering with principal components analysis (PCA). We only 

selected samples of European ancestry. A relatedness check was performed with GCTA11 to 

remove third-degree relatives or closer ones. Then, we performed several variant-level filtrations, 

such as removing call rate outliers (<0.95) and variants with significantly different missingness 

between cases and controls (p<0.0001). We also excluded variants that failed PLINK –test-

mishap (p<0.0001) and deviated from Hardy-Weinberg equilibrium (p<0.0001) in controls.  

HLA imputation 

Samples passing quality control were imputed on the Michigan Imputation Server with the four-

digit multi-ethnic HLA reference panel v212 using Minimac4 and phased with Eagle v2.4. This 

reference panel is composed of five global populations (n=20,349). Only alleles with imputation 

score (r2) above 0.8 were included.  We determined HLA haplotypes using haplo.stats R package 

(https://analytictools.mayo.edu/research/haplo-stats/), which employs an Expectation–

maximization (EM) algorithm. 

Power calculations 

We performed power calculations online for each cohort using CaTS to compute statistical 

power. (https://csg.sph.umich.edu/abecasis/gas_power_calculator/). We assumed a prevalence of 

1% for iRBD13 and 4% for LBD14. In iRBD, we had enough statistical power (>0.8) to detect an 

association (p=0.0005) with an odd ratio of 1.6 with a minor allele frequency (MAF) of 0.05. In 
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LBD, we had enough statistical power (>0.8) to detect an association (p=0.0005) with an odd 

ratio of 1.4 with a MAF of 0.05. 

Statistical analysis 

We performed logistic regression with an additive model on each HLA allele, haplotype and 

amino acid after adjusting for age at onset, sex and the top 10 principal components. We also 

performed an Omnibus test using the OMNIBUS_LOGISTIC module from HLA-TAPAS.12 All 

rare associations (carrier frequency < 1%) were excluded. A 5% false-discovery rate (FDR) for 

multiple testing was applied. 

Data availability 

Anonymized data not published within this article will be made available by request from any 

qualified investigator. 

Code availability 

All scripts used in this study can be found at https://github.com/gan-orlab/HLA_syn. 

 

Results 

After HLA imputation, we examined the association of HLA alleles, haplotypes and amino acids. 

HLA-DRB1*11:01 was the only allele passing FDR correction (OR=1.57, 95% CI=1.27-1.93, 

p=2.70e-05, Table 2). In addition, HLA-DRB1 70D, an amino acid present in DRB1*11:01, was 

associated with iRBD (OR=1.26, 95%CI=1.12-1.41, p=8.76e-05). We also found association 

with 70Q (OR=0.81, 95% CI=0.72-0.91, p=3.65e-04 and 71R (OR=1.21, 95% CI=1.08-1.35, 

p=1.35e-03). In HLA-DRB1, positions 71 (pomnibus=0.00102) and 70 (pomnibus=0.00125) were the 
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most associated with iRBD. DRB1*11:01 also tags three haplotypes: 

DQA1*05:01~DQB1*03:01~DRB1*11:01 (OR=1.40, 95%CI=1.16-1.70, p=5.17e-04), 

DQA1*05:01~DRB1*11:01 (OR=1.41, 95%CI=1.16-1.72, p=5.43e-04), 

DQB1*03:01~DRB1*11:01 (OR=1.36, 95%CI=1.13-1.64, p=1.04e-03).  

When we repeated the analysis at one-field (two-digit) resolution, e.g., treating 

DRB1*11:01 and 11:04 as the same, the association of DRB1*11 was not significant (p=0.004, 

Supplementary Table #1), suggesting that it is specifically the DRB1*11:01 allele associated 

with RBD. For LBD, no association was statistically significant after correction for multiple 

comparisons. We also examined the association of HLA-DRB1 33H, which was previously 

reported to be associated with PD (Supplementary Table #3).7 The MAFs of HLA-DRB1 33H in 

iRBD cases and controls were 0.125 vs. 0.149, respectively (p=0.499). Meanwhile, the DRB1 

33H allele frequency in both LBD cases and its controls was 0.145. 

 

Discussion 

This study shows an association between DRB1*11:01, DRB1 70D, 70Q and 71R on iRBD. We 

also identified HLA-DRB1 positions 71 and 70 via an omnibus test, which suggests that residues 

at those positions explain a large amount of variance. HLA-DRB1 position 70-74 is a strong risk 

factor for rheumatoid arthritis and is referred to as a "shared epitope" (SE).15 The SE, in 

combination with DRB1 11V, was associated with a protective effect for PD.16 The SE is 

composed of a Q/R-K/R-RAA sequence with important antigen-binding grooves. However, 

11:01 does not have the SE and there was no association between alleles with the SE (01:01, 

01:02, 04:01, 04:04, 04:05, 04:08, 10:01)16 and iRBD. These findings indicate that the effects of 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 3, 2023. ; https://doi.org/10.1101/2023.01.31.23284682doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.31.23284682
http://creativecommons.org/licenses/by-nc-nd/4.0/


position 70 and 71 may be independent of the SE. Additional studies examining the role of HLA-

DRB1 in PD and iRBD will be necessary. 

 In addition, DRB1 33H, a variant also associated with PD, was not significantly 

associated with iRBD or LBD. However, the difference in carrier frequency between iRBD cases 

and controls for DRB1 33H, similar to that seen in PD, suggests that our study may lack the 

power to detect this association in iRBD. A recent study has suggested a shared mechanism 

between PD, AD, amyotrophic lateral sclerosis and HLA-DRB1*04, harboring the 33H amino 

acid change.17 This subtype was associated with decreased neurofibrillary tangles in post-mortem 

brains. It also binds to a K311 acetylated Tau PHF6 sequence.17 These results exemplify the 

possibility of different HLA types with specific genetic variants that may affect the binding of 

substrates relevant for neurodegenerative disorders and activating inflammatory response. 

We could not replicate the association of a previous study of HLA antigens with 25 iRBD 

cases. This study showed a significant association between iRBD and DQB1*05 and 

DQB1*06.18 The most likely explanation for the discrepancy is that the previous study had 

reduced power to detect a true effect. Another study has suggested that HLA-DR expression was 

associated with iRBD.19 Fine-mapping and colocalization studies for these findings will be 

required once larger datasets of iRBD become available. Whether the mechanism underlying the 

associations with PD and iRBD is through functional effects of specific amino acid changes or 

due to different expressions of HLA genes in various brain tissues is still to be determined. 

Although the role of the immune system in synucleinopathies is still unclear, some 

potential mechanisms of effect may exist. The varying effects of HLA between prodromal and 

clinical stages could be associated with HLA presenting different antigens in different brain 
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regions. In LBD 20 and iRBD 21, activated CD4+ T-cells were shown to be dysregulated and 

associated with neuronal damage.  

Another possibility is that the varying effects between iRBD and PD originate in the 

gastrointestinal tract.22 For example, constipation, a common symptom in the early stages of PD, 

can aggravate or be caused by gut inflammation. In iRBD patients, one study showed a 

prevalence of constipation between 18-41%.22 Gut bacterial antigens can be exposed from aging-

related depletion of the gut lining. 23 HLA alleles may induce an immune response to self-

proteins from these antigens.  

Our study has several limitations. First, future replication studies with larger cohorts 

would be needed to increase statistical power since we do not have a replication cohort. Note that 

we used the most extensive available cohorts for iRBD and LBD.3,8 Due to the polygenicity of 

the HLA locus, various populations have different HLA allele frequencies. This study was done 

only on samples with European ancestry, and multi-ancestry analysis could provide more refined 

evidence on the role of HLA in synucleinopathies. The cohorts used in the study were also not 

matched for age and sex. However, we adjusted for these variables in the analysis. 

To conclude, we found an alternative HLA association of iRBD compared to PD and 

LBD. More experimental evidence is necessary to characterize the genetic landscape of 

synucleinopathies and the role of the immune system. 
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Table 1: Study population after quality control. 

Variable Isolated REM sleep behavior 
disorder 

Lewy body dementia 

Patients 
(n = 1,072) 

Controls 
(n = 9,505) 

Patients 
(n = 2,604) 

Controls 
(n = 4,032) 

Age (years), (SD) 60.54 (11.06) 63.49 (16.59) 74.36 (11.76) 72.63 (16.99) 
Male, number (%) 860 (80.22) 4824 (50.75) 1656 (63.59) 1967 (48.78) 
SD, standard deviation; n, number 

 

Table 2: HLA association in isolated REM sleep behavior disorder 

 MAF in 
cases 

MAF in 
controls 

Effect 
size 

SE p p (FDR) 

Alleles 
HLA-DRB1*11:01 0.0726 0.0472 0.450 0.107 2.70e-05 2.75e-03 

Amino acids 
HLA-DRB1 70D 0.505 0.444 0.231 0.0588 8.76e-05 2.09e-02 
HLA-DRB1 70Q 0.440 0.503 0.212 0.059 3.65e-04 4.41e-02 
HLA-DRB1 71R 0.545 0.496 0.188 0.059 1.35e-03 4.41e-02 

Haplotype 
DQA1*05:01~DQB1*03:01~DRB1*11:01 0.0924 0.0657 0.338 0.0975 5.17e-04 2.85e-02 
DQA1*05:01~DRB1*11:01 0.0933 0.0652 0.346 0.0999 5.43e-04 2.85e-02 
DQB1*03:01~DRB1*11:01 0.0989 0.0707 0.311 0.0949 1.04e-03 3.64e-02 
MAF, minor allele frequency; SE, standard error; p, p-value; FDR, false discovery rate for each group 
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