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Abstract 
 
Background: Recent studies suggest that cardiac amyloidosis (CA) is significantly 
underdiagnosed. For rare diseases like CA, the optimal selection of cases and controls for 
artificial intelligence (AI) model training is unknown and can significantly impact model 
performance. 
 
Objectives: This study evaluates the performance of ECG waveform-based AI models for CA 
screening and assesses impact of different criteria for defining cases and controls. 
 
Methods: Models were trained using different criteria for defining cases and controls including 
amyloidosis by ICD 9/10 code, cardiac amyloidosis, patients seen in CA clinic). The models 
were then tested on test cohorts with identical selection criteria as well as population-prevalence 
cohorts. 
 
Results: In matched held out test datasets, different model AUCs ranged from 0.660 to 0.898. 
However, these same algorithms exhibited variable generalizability when tested on a population 
cohort, with AUCs dropping to 0.467 to 0.880. More stringent case definitions during training 
result in higher AUCs on the similarly constructed test cohort; however representative population 
controls matched for age and sex resulted in the best population screening performance.  
 
Conclusions: AUC in isolation is insufficient to evaluate the performance of a deep learning 
algorithm, and the evaluation in the most clinically meaningful population is key. Models 
designed for disease screening are best with matched population controls and performed 
similarly irrespective of case definitions.  
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Introduction 
 
Cardiac amyloidosis (CA), an underdiagnosed disease driven by myocardial deposition of 

misfolded amyloid protein, is a progressive condition responsible for substantial morbidity and 

mortality.1–4 While early epidemiological data suggested a very low prevalence, autopsy series 

have found transthyretin amyloid (ATTR) deposits in 20-40% of octogenarians.5, 6 CA has been 

reported to be the etiology in up to 13% of patients with heart failure with preserved ejection 

fraction (HFpEF), and ATTR CA is present in approximately 16% of patients with severe 

calcific aortic stenosis undergoing transcatheter aortic valve replacement.7–9 Newer data with 

more sensitive imaging suggest the prevalence might be as high as 1-2% of the general 

population.10 Regional disparities in CA diagnosis also exist and particularly impact black 

Americans, who are disproportionately affected by the hereditary form of ATTR but  are 

significantly undiagnosed.11 

 

CA is challenging to diagnose because the disease is often indolent, and the symptoms are often 

similar to those of more common cardiac conditions. The disease is frequently not recognized 

until it has progressed to advanced stages, at which point treatment options are more limited. 

Timely diagnosis is vital, as new highly effective targeted therapies have been introduced for 

both light chain (AL) and ATTR CA, and these treatments display the greatest benefit when 

started early in the disease course.12–14 Previous work has demonstrated artificial intelligence’s 

(AI) ability to precisely phenotype diseases and characterize subtle cardiac physiology.15–19 Deep 

learning models have therefore been proposed to screen for CA using a variety of different forms 

of input data.20–23 While such models have demonstrated strong performance, given the scarcity 

and underdiagnosis of CA, these models are often trained on limited datasets without external 
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validation, and further investigation into how cohort selection influences model performance is 

warranted.22–25 

 

In this study, we sought to evaluate the impact of case and control definitions in the training of 

an AI to identify CA. We chose electrocardiogram (ECG) waveforms for model input as ECGs 

are inexpensive, non-invasive, widely available, and frequently obtained during routine visits. A 

variety of selection criteria as well as different ways to balance characteristics between cases and 

controls in the training dataset were used to evaluate the impact of training design choices on AI 

model performance. By maintaining the same AI model architecture, type of input data, and site 

across the experiments, we sought to evaluate whether more or less stringent case and control 

definitions would impact population level screening performance. 

 

Methods 

Data sources and study population 

The study included ECGs from patients receiving care at Cedars-Sinai Medical Center between 

2005 and 2022. The data was split 80% for training/10% for internal validation/10% for testing 

on a patient level prior to model development such that all models developed, irrespective of 

inclusion and exclusion criteria, were trained on data from the train split and were evaluated on 

the held-out test split. All training cohorts were matched 1:10 on cases and controls coming from 

the training split. Models were evaluated on ECGs from the held-out test split, with cohorts 

matched cohort selection criteria as well as the entire test split (population prevalence). 
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ECG waveform data, acquired at a sampling rate of 500 Hz, were extracted as 10 second, 

12x5000 matrices of amplitude values. ECGs with missing leads were excluded from the study 

cohort. Associated clinical data for each patient, including demographic and clinical 

characteristics (e.g., age, gender, BMI, cardiovascular disease), were obtained from the 

electronic health record (EHR). Disease diagnoses were identified by International Classification 

of Diseases (ICD) 9th and 10th edition codes, which were also obtained from the EHR. The 

institutional review boards of Cedars-Sinai Medical Center and Stanford Healthcare approved 

the study protocol. 

 

AI Model Design and Training  

A convolutional neural network for ECG interpretation was designed to detect the presence of 

cardiac amyloidosis. The model architecture is similar to those previously described to evaluate 

post-operative outcomes and screen for chronic kidney disease.26, 27  The model was trained 

using the PyTorch Lightning deep learning framework to predict outcomes with the input of one 

12-lead ECG. If the same patient had multiple ECGs, each ECG was considered an independent 

example during training. Models were initialized with random weights and trained using a binary 

cross entropy loss function for up to 100 epochs with an ADAM optimizer and an initial learning 

rate of 1e-2. Early stopping was performed based on the validation dataset’s area under the 

receiver operating curve (ROC). The best model was determined based on population level 

screening performance in identifying cases in the hold-out test cohort. This model was used for 

downstream analysis in Table 3 and Table 4. 
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Case and Control Definitions and Test Populations 

Three progressively more selective definitions of amyloid were evaluated to understand the 

effect of case definition on model performance: The broadest case definition used were diagnosis 

of amyloidosis by ICD 9/10 code (n = 990) The second case definition was for CA, defined by a 

subset of patients from the first cohort but also having evidence of cardiac involvement (n = 

686). Cardiac involvement was defined as having an abnormal IVS measurement, brain 

natriuretic peptide (BNP), or troponin within 180 days of ECG. The third case cohort were 

patients seen in cardiac amyloid clinic (n = 168) with documented diagnosis by biopsy, 

Technetium-99m pyrophosphate (PYP) scintigraphy, or laboratory studies (serum free light 

chain, as well as serum and urine immunofixation) for monoclonal protein assessment.  

 

Different populations of non-amyloid patients were chosen as controls. Control cohorts chosen 

for comparison include all non-amyloid patients, non-amyloid patients with left ventricular 

hypertrophy, non-amyloid patients with heart failure, and non-amyloid patients with heart failure 

with reduced ejection fraction (HFrEF). In various experimental setups, cases and controls were 

matched on different combinations of age, sex, wall thickness, and QRS amplitude to understand 

how these variables affected model performance. Wall thickness measurements were obtained 

from the closest echocardiogram within 180 days of the ECG. Case and controls ratios were 

always 1:10, except for HFrEF, where a ratio of 1:4.5 was used as HFrEF cases were uncommon 

in the control set. 
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Statistical Analysis  

A hold-out test dataset which was never seen during model training was used to assess model 

performance. Model performance was assessed by testing on three different test cohorts: 1.) a 

cohort mirroring the training and internal validation criteria in definitions and ratios of case and 

controls, 2.) the general population with cases defined as patients with an ICD 9/10 codes for 

amyloidosis (Supplementary Table 1), 3.)  the general population with cases defined as amyloid 

clinic patients. The best model was determined based on population level screening performance 

in identifying cases in the hold-out test cohort. Model performance in identifying CA was 

assessed via area under receiver-operating curve (AUC). Two-sided 95% confidence intervals 

were computed using 10,000 bootstrapped samples for each metric. Statistical analysis was 

performed in R and Python.  

 

Results 

Population Characteristics 

Our primary cohort consisted of 1,344,372 ECGs from 341,989 patients at Cedars-Sinai Medical 

Center. Amyloidosis cases comprised 10,042 ECGs across 990 patients, with cardiac 

amyloidosis representing 7,507 ECGs across 686 patients, and clinic patients represented by 

2,256 ECGs from 168 patients. Demographics, comorbidities, and ECG characteristics are 

detailed in Table 1. Compared to controls, amyloid cases had a higher proportion of males, a 

higher proportion of black individuals, and the average age was older. 

 

Model Performance in Defined Cohort and Screening Population 
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After optimizing case and control selection criteria and matching, our final model identified CA 

with an AUC of 0.820 (95% CI: 0.782 - 0.857) in the general population and an AUC of 0.744 

(95% CI 0.721 - 0.767) in the matched held-out test set. The best model used cases with cardiac 

amyloidosis and controls matched by age and sex for model training, with both cardiac 

amyloidosis by ICD9/10 code definition and seen in CA clinics achieved similar performance 

(Table 2, Central Illustration).  

 

Performance of Varying Case and Controls 

When varying case definition, we found that stricter case inclusion criteria resulted in increased 

AUC when tested on the matched held-out test set (AUC increasing from 0.705 to 0.880 with 

increased stringency), however the improved performance did not generalize when tested on the 

population cohort (AUCs ranging from 0.702 to 0.728 with overlapping confidence intervals). 

Models in which cases and controls were matched for QRS amplitude performed the poorest of 

these matching combinations when tested on population level cohorts for both cardiac 

amyloidosis ICD definitions and clinic cases definitions. 

 

Models trained against controls that were phenotypically most distinct from amyloid resulted in 

the highest AUC in the matched test cohorts (for example, with HFrEF controls, the AUC was 

0.767 (95% CI: 0.745-0.789), while controls with greater overlap with amyloid demonstrated 

lower AUCs in the matched cohorts (Non-amyloid LVH controls resulted in an AUC of 0.660 

(95% CI: 0.642 - 0.736). However, these results on matched cohorts did not correlate with 

population level AUCs (Figure 1), particularly in models in which the inclusion criteria for 

controls during testing were significantly different from the general population. Models with 
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LVH controls generalized better to the population test sets (AUC 0.570) compared to models 

trained with HFrEF (AUC 0.467) or heart failure (AUC 0.517) controls.  

 

For all models, the choice of case definition in the held-out population test split significantly 

impacted AUC, as the AUC was consistently higher when cases were defined by clinic 

adjudication rather than by ICD9/10 definition (mean difference of 0.116 (0.068) across models). 

For downstream analyses, we chose the ICD9/10 definition of cases for evaluation of 

sensitivity/specificity as this difference in performance was likely due to later and more obvious 

phenotypes being seen in the clinic cohort; as we envision the use of such an algorithm for 

screening, the goal is to identify earlier cases.  

 

Secondary Analyses 

We sought to understand the utility of the model as a screening tool by measuring sensitivity, 

specificity, and predictive values at various screening thresholds (Table 3). At the Youden Index, 

the model showed a sensitivity of 0.609 (95% CI: 0.569 - 0.648) and specificity of 0.718 (95% 

CI: 0.714 - 0.721). PPV was 0.018 (95% CI: 0.016 - 0.020) while NPV was 0.995 (95% CI: 

0.995 - 0.996). With a chosen specificity of 0.974, an estimated additional 275 patients would be 

identified out of every 10,000 patients screened. Several populations are at higher risk for 

amyloidosis, and we examined model performance in these groups (Table 4). The AUC for 

males (0.756 (95% CI: 0.731 - 0.781)) and individuals greater than 60 years of age (0.739 (95% 

CI: 0.716 - 0.763)) were consistently high.   
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Given that identifying CA early is paramount to reaping the greatest benefit from new therapies, 

we sought to gauge the model’s ability to predict CA prior to diagnosis. Detailed model 

predictions of EKGs before clinical diagnosis date is shown in Figure 1. Overall, at the Youden 

index, the model detected disease in a significant proportion of EKGs at least 2 years before first 

diagnosis. With the strong relationship between QRS amplitude and LVH, EKGs carry 

information that can be leveraged to predict wall thickness. We show that deep learning can 

predict wall thickness with a mean absolute error of 2 mm (Figure 2). However, it should be 

noted that matching based on wall thickness measurements from echocardiograms or LVH (wall 

thickness > 1.2 cm) did not improve population screening performance of the model, and 

similarly wall thickness alone was insufficient to identify CA. 

 

Discussion 

In this study, we reaffirm prior analyses that cardiac amyloidosis can be identified in ECGs 

through AI evaluation.22, 23 Additionally, we also show that case and control selection influences 

model performance and generalizability, with more stringent inclusion criteria not always 

generalizing to the best model for population screening. We show that testing with clinic-derived 

lists of CA result in higher AUC, likely due the over-representation of later and more fulminant 

cases, however on a population level, models perform similarly in identifying patients with CA. 

AUC alone is an imperfect metric in assessing deep learning models, and the choice of cases and 

controls should be taken into account in training AI models. 

 

Choosing the training cohorts of an AI model is similar to designing a case-control study. 

Seemingly small choices in selection criteria can result in large impacts on the generalizability 
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and performance of the AI models, as AI models can identify shortcut variables and confounding 

influences and can therefore be biased towards more severe phenotypes. In the case of CA, clinic 

cohorts likely are enriched for more severe phenotypes, including patients who are being 

considered for advanced therapies, which might be easier to identify but not necessarily the 

optimal patients to identify via screening. These cases might not be representative of subtle early 

cases which one hopes to identify in disease screening and the model performance might be 

overestimated as more severe cases are easier to identify.  

 

As CA is a disease historically been considered rare, training of AI models for identifying CA is 

limited by having few well-phenotyped cases for model training. Fortunately, we see in our 

experiments that potentially less well-curated lists result in similar performance to models 

trained on well characterized clinic lists. The ability to train models even on less curated patient 

lists may then open the door for institutions without specific amyloid clinics to refine or train 

models for screening among populations at risk. Equally important is the choice of controls and 

how cases and controls are matched during model training. 

 

There are a few limitations of note. First, there are limitations to disease definitions by ICD9/10 

codes. While we show similar results with our curated clinic cohort, many patients with 

amyloidosis by ICD9/10 codes do not have confirmatory testing available for review in the 

electronic health record. Second, our selection of cardiac involvement requires selected 

laboratory testing or echocardiographic assessment to be done within 180 days, which might bias 

towards more severe or obvious cases of CA. While this is similarly true for patients in amyloid 

clinic, this degree of label noise might both result in false positives and false negatives. Further 
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work is required to bring these findings to the bedside. Importantly, given the underdiagnosis of 

amyloidosis, there are likely patients in the control cohort who have undiagnosed CA, limiting 

the potential model performance. Additionally, most models for screening of CA are restricted to 

a few centers, so validating this model at other centers is key to understanding the 

generalizability of these AI tools. Finally, a truly prospective study is necessary to gauge the true 

clinical impact of screening AI models.  

 

Conclusion 

Cardiac amyloidosis is an underdiagnosed progressive disease with phenotypic 

heterogeneity, and care should be taken in understanding how AI models are trained to screen for 

CA. In this study, we found selection of cases and controls significantly impacts model 

performance on a general population, with even less well-phenotyped case definition being able 

to train AI models. AUC alone is insufficient to assess the generalizability of these AI models, 

and further external validation as well as prospective validation is needed to understand the 

utility of screening AI models.  
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Figure Legend 

Central Illustration: Best CA Detection Models Trained with CA cases and Age & Sex 

Matched Non-amyloid Controls: Model performance was evaluated while training with 

different case and control definitions. The best model trained on cardiac amyloidosis cases and 

non-amyloid controls matched for age and sex. These results show that models trained on less 

stringent case definitions perform just as well, if not better, on a population level than highly 

phenotyped cases. These results open the door for centers without dedicated amyloid clinics to 

train models that could potentially be used as population screening tools. 

 

Figure 1 – Predicted Amyloid Probability before diagnosis: Probability of amyloid (y-axis) is 

shown here for ECGs taken before diagnosis to assess if the model can detect amyloidosis before 

date of clinical diagnosis. 

 

Figure 2a – Predicted LVPW Thickness: Prediction of Left Ventricular Posterior Wall  

(LVPW) Thickness from ECGs using a deep learning model. 

 

Figure 2b – Predicted IVS Thickness: Prediction of interventricular septal (IVS) thickness 

from ECGs using a deep learning model. 
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Table 1: Case and Control Demographics 
 Amyloid by ICD9/10 Cardiac Amyloidosis Curated Cardiac 

Amyloidosis Clinic  

Controls 

Number of ECGs 10,042 7,507 2,256 1,334,330 

Number of Patients 990 686 168 340,999 

Male Sex 70.17% (7046) 72.97% (5478)  85.55% (1930) 53.78% (715,999) 

Age (years) 70.62 (11.92) 70.44 (11.94) 70.26 (9.68) 63.83 (18.87) 

Black Race 23.76% (2380) 25.35% (1902) 23.96 % (540) 16.47% (218,049) 

Hypertension 48.46% (4866) 50.66 % (3803) 45.26% (1021) 31.46% (419,750) 

Diabetes Mellitus 23.02% (2312) 24.51% (1840) 28.65% (632) 15.57% (207,725) 

Coronary Artery Disease 45.32% (4552) 48.39% (3633) 43.34% (956) 24.51% (327,050) 

Heart 

Failure/Cardiomyopathy 

36.99% (3,715) 27.00% (2,027) 16.18% (357) 21.80% (290,898) 

IVS (cm)* 1.343 (0.396) 1.385 (0.392) 1.433 (0.410) 1.133 (0.491) 

LVPW (cm)* 1.318 (0.363) 1.358 (0.359) 1.376 (0.372) 1.106 (1.028) 

IVS or LVPW > 1.2 cm* 61.74% (4875) 68.27% (4546) 66.43% (1320) 34.98% (239,161) 

ECG Amplitude (mV)  .633 (.295) .632 (.310) .614 (.390) .695 (.618) 

Heart Rate (bpm) 81.63 (21.83) 83.65 (22.14) 86.25 (21.51) 80.89 (21.90) 

Abnormal ECG 63.92% (6418) 68.03% (5107) 61.92% (1397) 51.86% (691,990) 

Bundle Branch Block 
17.71% (1779) 18.90% (1419) 19.24% (434) 12.18% (162,481) 

Ischemia 
13.02% (1307) 14.80% (1111) 11.44% (258) 10.06% (134,230) 

Infarct 
29.74% (2986) 32.86% (2467) 29.48% (665) 17.79% (237,326) 
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Right Axis Deviation 
1.30 % (131) 1.48% (111) 1.51% (34) 0.69% (9243) 

Left Axis Deviation 17.21% (1728) 18.25% (1370) 17.33% (391) 9.393% (125334) 

Abbreviations: ECG – Electrocardiogram; IVS – Interventricular Septum, LVPW – Left Ventricular Posterior Wall; bpm – beats per minute; mV 

– millivolts;  
* Averages, Counts, and Percentages for these variables are based on the total number of patients with nearest laboratory testing or 

echocardiogram study within 180 days 
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Table 2: Model Performance in Defined Cohort and Screening Population 
 Cases Criteria Controls Criteria Matching Matched Cohort 

AUC 
 
 

Population AUC  
(Cases by ICD9/10) 

 
 

Population 
AUC (Cases 

by Clinic List) 
 

Varying 
Case 

Definition 

Amyloid by ICD9/10 Non-amyloid None 
0.705 

(0.679 - 0.730) 

0.702 

(0.677 - 0.727) 

0.844 

(0.803 - 0.88) 

Amyloid by ICD9/10 w/ 

Cardiac involvement 
Non-amyloid None 

0.750 

(0.726 - 0.773) 

0.728 

(0.706- 0.751) 

0.866 

(0.830 - 0.898) 

Curated Amyloid Clinic List Non-amyloid None 
0.880 

(0.844 - 0.912) 

0.720 

(0.695 - 0.744) 

0.880 

(0.844- 0.911) 

Varying 
Control 

Definition 

Amyloid by ICD9/10 
Non-amyloid 

HFrEF 
None 

0.767 

(0.745- 0.789) 

0.467 

(0.443 - 0.491) 

0.426  

(0.378- 0.476) 

Amyloid by ICD9/10 
Non-amyloid Heart 

Failure 
None 

0.650 

(0.625 - 0.674) 

0.517 

(0.491- 0.544) 

0.545  

(0.494 - 0.606) 

Amyloid by ICD9/10 Non-amyloid LVH None 
0.660 

(0.642 - 0.736) 

0.570 

(0.545 - 0.596) 

0.690  

(0.642 - 0.736) 

Varying 
Case to 
Control 

Matching 

Amyloid by ICD9/10 Non-amyloid Age and Sex 
0.682 

(0.656 - 0.708) 

0.698 

(0.674 - 0.722) 

0.861  

(0.828 - 0.892) 

Amyloid by ICD9/10 Non-amyloid 
Age, Sex, and 

Wall Thickness  

0.662 

(0.633 - 0.691) 

0.659 

(0.633 - 0.685) 

0.819  

(0.778 -  0.856) 

Amyloid by ICD9/10 Non-amyloid 
Age, Sex, and 

QRS amplitude 

0.677 

(0.633 - 0.691) 

0.636 

(0.609 - 0.662) 

0.775 

(0.730-0.818) 

 
Best 

Models 

Amyloid by ICD9/10 w/ 

Cardiac Involvement 
Non-amyloid Age and Sex 

0.744 

(0.721 - 0.767) 

0.733 

(0.711 - 0.754) 

0.820 

(0.782 - 0.857) 

Curated Amyloid Clinic List Non-amyloid Age and Sex 0.898  0.714 0.898  
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(0.868 - 0.924) (0.690 - 0.738) (0.870- 0.923) 
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Table 3: Assessing Model Utility As a Screening Tool at Different Thresholds 
 

Threshold Sensitivity Specificity PPV NPV 
Positives per 

10,000 screened 
 

0.101 

(Youden Index) 

 

0.609 

(0.569 -  0.648) 

0.718  

(0.714 - 0.721) 

0.018  

(0.016 - 0.020) 

0.995  

(0.995 - 0.996) 

2,853 

 (2,818 - 2,887) 

0.25 

 

0.212  

(0.178 - 0.246) 

0.974  

(0.973 - 0.975) 

0.064  

(0.053 - 0.076) 

0.993  

(0.993 - 0.994) 

275 

 (263 - 288) 

0.5 

 

0.076  

(0.056 - 0.100) 

0.997  

(0.996 - 0.997) 

0.162  

(0.120 - 0.207) 

0.992  

(0.992 - 0.993) 

40  

(35 - 45) 

0.7 

 

0.023 

(0.011 - 0.036) 

0.999  

(0.999 - 1.000) 

0.241  

(0.132 - 0.361) 

0.992  

(0.991 - 0.992) 

8  

(6 - 10) 
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Table 4: Assessing Model Performance in Population Subsets 
 

Population Subset N  Similar Cohort 

AUC 

N Population AUC Population 

Sensitivity 

Population 

Specificity 

All EKGs 

10,648 

0.744 

(0.721 - 0.767) 

134,845 0.733 

(0.712 - 0.755) 

0.609 

(0.569 -0.649) 

0.718  

(0.714 - 0.721) 

Male  

7,150 

0.760 

(0.733 - 0.787) 

71,476 0.756 

(0.731 - 0.781) 

0.669 

(0.622 - 0.716) 

0.691 

(0.686 - 0.696) 

!Age ≥ 60 8,536 0.764 

(0.735 - 0.784) 

84,648 0.739 

(0.716 - 0.763) 

0.651 

(0.606 - 0.695) 

0.686 

(0.682 - 0.690) 

African American Race 1,801 0.664 

(0.622 - 0.705) 

21,930 0.681 

(0.645 - 0.715) 

0.491 

(0.420- 0.560) 

.718 

(0.709 - 0.726) 

LVH Documented by 

Echo 

899 0.581 

(0.525 - 0.633) 

39,755 0.696 

(0.668 - 0.723) 

0.674 

(0.627 - 0.718) 

0.578 

(0.571 - 0.585) 

Normal Heart Rate 7,767 0.741 

(0.714 - 0.767) 

96,722 0.737 

(0.712 - 0.761) 

0.600 

(0.549 - 0.642) 

0.733 

(0.729 - 0.737) 

Heart Failure or 

Cardiomyopathy 

3,146 0.748 

(0.693 - 0.801) 

38,908 0.754 

(0.710 - 0.796) 

0.633 

(0.556 - 0.709) 

0.714 

(0.708 - 0.720) 

 
*Sensitivity and specificity were calculated using the Youden Index as the threshold 
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Central Illustration 
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Figure 1 
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Figure 2a 
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Figure 2b 
 
 
 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 31, 2023. ; https://doi.org/10.1101/2023.03.30.23287941doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.30.23287941

