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Real-time estimates of reproduction numbers 

The estimates of transmissibility underpinning Figs 3-6 of the main text use the maximally 

informed posterior distributions 𝐏(𝑅𝑗(𝑡)|𝐼1
𝑇),  which provide a real-time estimate for 𝑅𝑗(𝑡) at 

the present, 𝑅𝑗(𝑇), but informs earlier 𝑅𝑗(𝑡) estimates using past and future (i.e., 𝐼𝑗(𝑠): 𝑡 ≤

𝑠 ≤ 𝑇) incidence data. This has only a minor effect on their qualitative interpretation about 1 

as shown in [1] and allows us to summarise the entire time series of estimates with a single 

plot. However, to ensure that our claims are representative of what would be made based on 

real-time estimates we perform additional sensitivity analyses at key time points for the case 

study of COVID-19 for 20 cities in Israel in Fig A. 

There we limit 𝑇 (endpoints of panels) to various times that coincide with the growth of the 

Delta strain (dot-dashed black) and infer the standard and risk averse reproduction numbers 

𝑋̂(𝑡) for 𝑋 = 𝑅,𝐸, as well as their corresponding probabilities of resurgence 𝐏(𝑋̂(𝑡) > 1). 

As expected, and in line with the results in Fig 5 of the main text, we find that the risk averse 

𝐸 would support an earlier initiation of the booster campaign (start time shown by a dashed 

grey vertical line) than the standard effective 𝑅. There are also substantial lags until when 𝑅 

signals resurgence (𝐏(𝑋̂(𝑡) > 1) >
1

2
), at which point the Delta strain has already become 

firmly established. The larger credible intervals of 𝐸 for the second panel reflect that several 

cities had very small incidence. In contrast, 𝑅 somewhat over-smooths this effect. 

General risk averse properties of E 

In the main text we showed that E has risk averse properties because it is the solution of an 

E-optimal design that tends to up-weight groups that are likely to cause resurgences. While 

the E-optimal property depends on the statistical renewal models we used, here we provide 

two explanations as to why E will maintain its risk averse properties even when applied more 

generally. First, assume that we hold the 𝑅𝑗 of our groups constant and project forwards in 
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time (a standard assumption when forecasting infectious diseases [2,3]). As time passes, we 

would find that the rank (by magnitude) of the Λ𝑗 becomes progressively correlated with the 

rank of the 𝑅𝑗. This means that the group with the largest local reproduction number tends, 

eventually, to also have the largest circulating infection count.  

Consequently, we gain some predictive insight if we can meaningfully assign weights to 

match the ranks of the 𝑅𝑗 while incorporating local estimate uncertainty. E does this directly 

by setting weights to match the fractional rank of 𝑅𝑗 and factors in 𝑅𝑗 estimate uncertainties 

within its weighted formulation. In reality, the 𝑅𝑗 will change with time but E will also update 

to reflect these variations. Hence, E provides some predictive insight into what can happen 

given the current state of local groups and encodes a risk averse property since statistically 

riskier groups (i.e., groups with larger 𝑅𝑗 that have higher chances of rapid spread and lower 

chances of infections naturally fading out) will dominate those forecasts.  

Second, E is the contraharmonic mean of the 𝑅𝑗. This is equally a Lehmer mean with power 

𝑞 = 2. Lehmer means are defined as (∑ 𝑅𝑗
𝑞𝑝

𝑗=1 )(∑ 𝑅𝑗
𝑞−1𝑝

𝑗=1 )
−1

[4] and commonly applied in 

signal processing as envelope detectors (i.e., they highlight peaks in waveforms). Further, 

these means interpolate between the arithmetic mean (𝑞 = 1) and the maximum of their 

inputs (𝑞 → ∞), which respectively relate to D and the max 𝑅𝑗 metrics that we explored in 

the main text. Accordingly, E will always have a risk averse property without being overly 

sensitive like means with larger 𝑞, which include the max 𝑅𝑗 statistic. In contrast, R, which is 

a weighted form of the 𝑞 = 1 mean has no guaranteed resurgence detection properties. 



 

Fig A: Real-time analysis of COVID-19 Delta strain dynamics in Israel. We repeat the 

analysis of Fig 5 of the main text but truncate our analysis to key points in the time series to 

provide real-time or prospective estimates of transmissibility. Left panels provide mean 

estimates 𝑋̂(𝑡) and their 95% credible intervals for standard (red, 𝑅) and risk averse (blue, 

𝐸) reproduction numbers. The dot-deashed black line indicates the proportion of Delta strain 

cases (values are between 0-1, these are shown on right panels but scaled up on left panels 



for comparison) and the grey dashed line shows when the booster campaign began. Right 

panels plot corresponding resurgence probabilities 𝑷(𝑋̂(𝑡) > 1). 

 

Fig B: Risk averse reproduction numbers for COVID-19 in Norway. We plot cases by 

date of positive test (and in log scale) in (A) for 𝑝 = 12 districts in Norway for COVID-19 in 

2021 from [5] with summed incidence in black. We also plot these curves in Fig C below. As 

in Fig 5 of the main text, we infer standard, 𝑅̂(𝑡), maximum group, max 𝑅̂𝑗(𝑡), mean, 𝐷̂(𝑡), 



and risk averse, 𝐸̂(𝑡), reproduction numbers (with 95% credible intervals) using EpiFilter [6] 

in (B) with the serial interval distribution estimated in [7]. We plot intervention relaxation and 

implementation times from [5] as vertical dashed lines. We assume stable reporting and that 

generation times are well approximated by serial intervals. (C) integrates posterior estimates 

from (B) into resurgence probabilities 𝑷(𝑋̂(𝑡) > 1). All the reproduction numbers evidence a 

need for intervention imposition earlier than November but 𝐸̂(𝑡) signals this need notably 

earlier than 𝑅̂(𝑡). The max 𝑅̂𝑗(𝑡) estimate is not informative. All other estimates support the 

intervention relaxation time and emphasise the need for sustained boosters. 

 

Fig C: Incidence curves for 6 empirical COVID-19 datasets. We plot new infections 𝐼𝑗(𝑡) 

over time 𝑡 for 6 case studies (data sourced from [8–13]) covering diverse countries, regions 



and states. Each dataset involves infections from 𝑝 groups, which we illustrate in grey. The 

black solid line, which is scaled down to be visible, shows the sum of infections from all 

groups. These curves underlie the results in Figs 6-7 of the main text and in some scenarios 

show local infection increases that propagated into wider-scale resurgences. Vertical dashed 

lines show the periods over which we investigate resurgence signals in Fig 7. 
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