
 

 

Methods 

Patient cohort 

Patients diagnosed with CRC between 2004 and 2019, at the Uppsala University Hospital or 

the Umeå University Hospital, were eligible for the study. Patients that had i) a fresh frozen 

biopsy or surgical specimen that was estimated by a pathologist to have a tumour cell content 

of ≥20% and ii) a patient-matched source of normal DNA from whole blood or fresh frozen 

colorectal tissue stored in the biobank, were included. Clinical data was extracted from the 

national quality registry, the Swedish Colorectal Cancer Registry (SCRCR), and completed 

from medical records. Follow-up for alive patients was minimum 1 year and median 5 years 

(data lock 10th October 2020), with only one patient lost to follow up and 768 (72%) with 

complete 5-year follow up. Most patients included from June 2010 were drawn from the 

Uppsala-Umeå Comprehensive Cancer Consortium (U-CAN) biobank collections (Uppsala 

Biobank and Biobanken Norr)1. Sampling and analyses were performed under the ethical 

permits Uppsala EPN 2004-M281, 2010-198, 2007-116, 2012-224, 2015-419, 2018-490, and 

Umeå EPN 2016-219 and EPM 2019-566. Unfixed tissue materials from tumour and normal 

colon and rectum were handled on ice and frozen on the day of sampling or surgery2. Tissue 

pieces collected in Uppsala were embedded in Optimal Cutting Temperature (OCT) 

compound (Sakura, Japan) and stored at -70 °C. The tissue samples frozen in the Umeå 

University Hospital were frozen directly in pieces and stored at -70 °C, afterwards, embedded 

and cryo-sectioned for histology and tumour cell content confirmation. Haematoxylin-eosin 

(HE) stained sections from the frozen blocks were reviewed by a pathologist to confirm 

tumour histology and estimate tumour cell content. Patient-matched normal DNA samples 

were obtained from blood or frozen adjacent normal tissue. Normal RNA was obtained from 

120 patient-matched colon or rectum tissue samples.  

 



 

 

Tissue retrieval and nucleic acids extraction 

For Uppsala samples, five and eight cryosections of 10 µm each were used for RNA and 

DNA extraction, respectively. DNA was extracted using the NucleoSpin Tissue kit (cat. 

740952; Macherey-Nagel, Germany), and RNA was extracted using the RNeasy Mini Kit 

(cat. 74106; Qiagen, Germany). For tissue samples from Umeå, DNA and RNA were 

extracted with AllPrep DNA/RNA/miRNA Universal kit (cat. 80224; Qiagen, Germany). 

Matching normal DNA samples were derived from peripheral blood (522 patients) or adjacent 

normal tissue (541 patients). Normal DNA from blood samples was extracted using the 

NucleoSpin 96 Blood Core kit (cat. 740456; Macherey-Nagel, Germany) on a Genomics 

STARlet robot (Hamilton, USA). For normal samples derived from tissue, DNA and RNA 

were extracted with the same procedures as described for the tumour samples. DNA 

concentration was measured using the Qubit broad-range dsDNA assay kit in the Qubit 

system (Invitrogen, USA), and RNA concentration and quality was assessed with Bioanalyzer 

RNA 6000 Nano kit (Agilent, USA) for samples from Uppsala and Tape Station 2200 

(Agilent, USA) for samples from Umeå. RNA samples with RIN ≥7, 28s:18s ratio ≥0.8 and 

concentration ≥60 ng/µL were further analysed. 

 

Whole-genome sequencing and data processing  

The WGS libraries were constructed from 1,063 primary CRC tumours and their paired 

normal samples according to the manufacturer’s instructions for the MGIEasy FS DNA 

Library Prep Set (cat. 1000006987; MGI, China). The libraries were sequenced on a DIPSEQ 

platform (BGI, Shenzhen) and 100-bp paired-end sequencing was performed to yield data of 

≥60× read coverage for all samples. During WGS data pre-processing, low-quality reads and 

adaptor sequences were removed by SOAPnuke (v2.0.7)3 with parameters ‘-l 5 -q 0.5 -n 0.1 –

f AAGTCGGAGGCCAAGCGGTCTTAGGAAGACAA -r 



 

 

AAGTCGGATCGTAGCCATGTCGTTCTGTGAGCCAAGGAGTTG’. Sentieon Genomics 

software (version: sentieon-genomics-202010, https://www.sentieon.com/) was used to map 

and process high-quality reads for downstream analysis4, which included the following 

optimised steps: i) BWA-MEM (version: 0.7.17-r1188) with parameters ‘-M -K 100000000’ 

in alt-aware mapping model was used to align each tumour and normal sample to the human 

genome reference hg38 (containing all alternate contigs)5; ii) alignment reads were sorted by 

sort mode of Sentieon utility functions; iii) duplicate reads were marked by Picard 

(http://broadinstitute.github.io/picard/); iv) InDel realignment and base quality score 

recalibration for aligned reads were carried out by GATK6; v) and alignment QC was done by 

Picard. 

 

Somatic short variant calling 

Putative somatic SNVs, MNVs and/or INDELs were identified in each tumour-normal pair 

using multiple accelerated tools (TNhaplotyper, corresponding to MuTect27 of GATK3; 

TNhaplotyper2, corresponding to MuTect27 of GATK4; TNsnv, corresponding to MuTect8) 

and TNscope9 of Sentieon Genomics software (version: sentieon-genomics-202010.01). 

Passed somatic SNVs, MNVs and INDELs detected by at least two tools were retrained as 

ensemble somatic short variants for each paired normal-tumour samples. Allele depths of 

ensemble somatic short variants were re-calculated by TNhaplotyper2 (version: sentieon-

genomics-202010.01). High confidence ensemble somatic short variants (depth of tumour 

≥14, depth of normal ≥8, variant allele reads count of tumour ≥2, variant allele reads count of 

normal ≤2, variant allele fraction of tumour ≥0.005 and variant allele fraction of normal 

≤0.02) were selected for downstream annotation and analysis. These variants were annotated 

with VEP cache version 101 (corresponding to GENCODE v35) by Personal Cancer Genome 

Reporter (PCGR) (version: v0.9.1)10. 

https://www.sentieon.com/
http://broadinstitute.github.io/picard/


 

 

 

Somatic structural variants and copy number variation 

Somatic SVs were detected in each paired normal-tumour samples by BRASS (version: 

v6.3.4; https://github.com/cancerit/BRASS) with parameters ‘-j 4 –c 4 –s human –as GRCh38 

–pr WGS’, and ascatNgs11 (version: v4.5; https://github.com/cancerit/ascatNgs) with 

parameters ‘-g L -q 20 -rs 'human' -ra GRCh38 -pr WGS -c 4 -force -nobigwig’. Genome 

cache file was generated by VAGrENT12 (version: v3.7.0; 

https://github.com/cancerit/VAGrENT) with CCDS2Sequence.20180614.txt 

(https://ftp.ncbi.nlm.nih.gov/pub/CCDS/current_human/CCDS2Sequence.20180614.txt) and 

ensembl release-104 (http://ftp.ensembl.org/pub/release-104, 

Homo_sapiens.GRCh38.104.gff3.gz, Homo_sapiens.GRCh38.cdna.all.fa.gz, 

Homo_sapiens.GRCh38.ncrna.fa.gz). Other files for required parameters of BRASS and 

ascatNgs were extracted from CNV_SV_ref_GRCh38_hla_decoy_ebv_brass6+.tar.gz 

(ftp://ftp.sanger.ac.uk/pub/cancer/dockstore/human/GRCh38_hla_decoy_ebv/CNV_SV_ref_

GRCh38_hla_decoy_ebv_brass6+.tar.gz). The SVs present in normal samples were filtered as 

follows. Somatic CNVs were detected in each paired normal-tumour sample by facetsSuite 

(version: v2.0.8; https://github.com/mskcc/facets-suite). An image of facetsSuite was pulled 

from docker://stevekm/facets-suite:2.0.8 and ran with singularity (v3.2.0)13. We used the 

aligned sequence BAM file as input data and executed FACETS in a two-pass mode with 

default settings in the R package14. First, the purity model estimated the overall segmented 

copy number profile, sample purity and ploidy. Subsequently, the dipLogR value inferred 

from diploid state in the purity model enabled the high-sensitivity model to detect more focal 

events. Allele specific copy numbers for each high confidence ensemble somatic short 

variants were annotated using the wrapper script ‘annotate-maf-wrapper.R’ with high-

sensitivity output. Gene level copy number result was re-annotated with gencode v35. 

https://github.com/cancerit/BRASS
https://github.com/cancerit/ascatNgs
https://github.com/cancerit/VAGrENT
https://ftp.ncbi.nlm.nih.gov/pub/CCDS/current_human/CCDS2Sequence.20180614.txt
http://ftp.ensembl.org/pub/release-104
ftp://ftp.sanger.ac.uk/pub/cancer/dockstore/human/GRCh38_hla_decoy_ebv/CNV_SV_ref_GRCh38_hla_decoy_ebv_brass6+.tar.gz
ftp://ftp.sanger.ac.uk/pub/cancer/dockstore/human/GRCh38_hla_decoy_ebv/CNV_SV_ref_GRCh38_hla_decoy_ebv_brass6+.tar.gz
https://github.com/mskcc/facets-suite


 

 

Somatic copy number states were grouped into eight classes based on total copy number (tcn) 

and minor copy number (also known as lower copy number, lcn) estimated by FACETS, 

including wild type class (one copy per allele; tcn=2, lcn=1), homozygous deletions (tcn=0, 

lcn=0), loss of heterozygosity (LOH, tcn=1, lcn=0), copy-neutral LOH (tcn=2, lcn=0), gain-

LOH (tcn =3 or 4, lcn=0), gain (tcn =3 or 4, lcn ≥1), amp-LOH (tcn ≥5, lcn =0) and amp (tcn 

≥5, lcn ≥1). 

 

Extrachromosomal DNA (ecDNA) detection 

Amplicons were detected in each sample by PrepareAA (commit ba747ce; 

https://github.com/jluebeck/PrepareAA) with parameters ‘--ref GRCh38 -t 4 --cngain 

4.999999 --cnsize_min 50000 --downsample 10 --cnvkit_dir /home/programs/cnvkit.py --

run_AA’15,16. Image of PrepareAA was pulled from docker://jluebeck/prepareaa:latest and ran 

with singularity (version: v3.2.0). The amplicons were then classified by AmpliconClassifier 

(version: v0.4.4; https://github.com/jluebeck/AmpliconClassifier) with parameters ‘--ref hg38 

--plotstyle noplot --report_complexity --verbose_classification --annotate_cycles_file’17. The 

samples were classified based on which amplicons were present in the sample as previously 

described by Kim et al.18. 

 

Chromosomal instability signature quantification  

Activity of the 17 chromosomal instability (CIN) signatures presented by Drews et al.19 were 

quantified by CINSignatureQuantification (version: v1.0.0; 

https://github.com/markowetzlab/CINSignatureQuantification) with unrounded copy number 

segments from facetsSuite. Tumours with normalised activities larger than zero, in any CIN 

signature, were identified as CIN samples. 

 

https://github.com/jluebeck/PrepareAA
https://github.com/jluebeck/AmpliconClassifier
https://github.com/markowetzlab/CINSignatureQuantification


 

 

Microsatellite instability (MSI) detection  

The MSI status of CRC tumours was determined by running the MSIsensor2 tumour-normal 

paired module (v0.1, https://github.com/niu-lab/msisensor2) with parameters ‘-c 15 -b 4’. 

MSIsensor2 automatically detects somatic homopolymers and microsatellite changes and 

calculates MSI score as the percentage of MSI positive sites in all valid sites. Samples with 

MSI score ≥3.5 were considered MSI20. 

 

Identification of significantly mutated genes 

Compared with other cancer types, hypermutated tumours associated with MSI or POLE 

mutation are frequently found in CRC. To avoid signals of samples with lower mutation 

burden from being masked during downstream WGS analyses, we first separated samples into 

hypermutated and non-hypermutated based on total count of somatic short variants according 

to the formula described previously21: 

 

NSNV > Nmedian_SNV+1.5*IQR 

 

After a first round of calculations based on the above formula, mutation counts in each 

detected hypermutated sample were split into two separate artificial samples with equal 

number of mutations. This process was iterated until no hypermutated samples were detected. 

Outlier times indicate how many times a sample was called as hypermutated in this process. 

The mutational heterogeneity caused by increased mutation burden of hypermutated tumours 

can reduce the power to detect driver genes and affect the identification of mutational 

signatures22–24. To identify CRC driver genes, we ran dNdScv25 (commit dcbf8e5, 

https://github.com/im3sanger/dndscv) on the whole cohort and on hypermutated and non-

hypermutated samples separately. A list of a priori known cancer genes (to be excluded from 

https://github.com/im3sanger/dndscv


 

 

the indel background model) was constituted by COSMIC Cancer Gene Census26 (v95) and 

intOGen Compendium Cancer Genes (Release date 2020.02.01, 

https://www.intogen.org/)25,27–33. Covariates (a matrix of covariates -columns- for each gene -

rows-) were updated to covariates_hg19_hg38_epigenome_pcawg.rda (commit 9a59b89, 

https://github.com/im3sanger/dndscv_data). The reference database was updated to 

RefCDS_human_GRCh38_GencodeV18_recommended.rda (commit 9a59b89, 

https://github.com/im3sanger/dndscv_data). The dNdScv R package includes two different 

dN/dS-based algorithms, dNdSloc and dNdScv. The dNdSloc is like traditional dN/dS 

implementations, while dNdScv also takes into account variable mutation rates across genes 

and adds a negative binomial regression model using epigenomic covariates to infer the 

background mutation rate. The list of significant genes was selected by BH-adjusted P-values 

(qall_loc <0.1 or qglobal_cv <0.1) and merged from both dNdSloc and dNdScv. Long 

genes34, olfactory receptor genes and genes with transcript per million (TPM) >1 in less than 

10 samples were excluded from the potential driver gene list. Mutually exclusive or co-

occurring sets of driver genes were detected using the modified somaticInteractions function 

of Maftools35 (version: v2.12.0), which performs pair-wise Fisher’s Exact test to detect 

significant (Benjamini-Hochberg False Discovery Rate (FDR) <0.1) pairs of genes. 

 

Identification of broad and focal somatic copy-number variation 

To determine significantly recurrent broad and focal somatic copy-number variants, 

GISTIC2.036 (v2.0.23) was run on resulting segmentation profiles from facetsSuite high-

sensitivity models with parameters ‘-ta 0.3 -td 0.3 -qvt 0.25 -rx 0 -brlen 0.7 -conf 0.99 -js 4 -

maxseg 25000 -genegistic 1 -broad 1 -twoside 1 -armpeel 1 -savegene 1 -gcm extreme -

smallmem 1 -v 30’. A higher amplitude threshold according to GISTIC were used for focal 

copy number alterations classification, tumour and normal log2 ratio >0.9 for amplifications 



 

 

and <-0.3 for deletions36. Recurrently amplified or deleted regions were identified by GISTIC 

peaks and genes within each peak were summarized for further analyses. 

 

Mutational signature analysis  

Analyses of mutational signatures were performed by SigProfilerExtraction37 (version v1.1.4) 

with parameters ‘--reference_genome GRCh38 --opportunity_genome GRCh38 --

minimum_signatures 1 --maximum_signatures 40 --nmf_replicates 500 --cpu 12 --gpu True --

cosmic_version 3.2’. SigProfilerExtraction consists of two processes: de novo signature 

extraction and signature assignment24,38,39. Hierarchical de novo extraction of SBS, DBS, and 

ID signatures from all samples was followed by estimation of the optimal solution (number of 

signatures) based on the stability and accuracy of all 40 solutions. After signatures were 

identified, activities of each signature were estimated by assigning the number of mutations in 

each extracted mutational signature to each sample. SigProfilerExtraction also decomposed de 

novo signatures to the COSMIC40 signature database24 (version 3.2). The cosine similarity41 

between mutational signatures of the U-CAN and the GEL cohorts42, and U-CAN and 

PCAWG cohorts24 (COSMIC v3.3), were calculated with R (version v4.2.0). A de novo U-

CAN signature was considered novel if the cosine similarity to both GEL and PCAWG 

signatures was <0.85. The mutational signature associations between U-CAN decomposed 

signatures were calculated by Stats::cor (method = "spearman") and corrplot::cor_mtest 

(conf.level = 0.95, "spearman") in R (version v4.2.0), and those with FDR P <0.05 were 

considered statistically significant43. 

 

Analyses of non-coding somatic drivers in regulatory elements 

Regulatory elements were defined using SCREEN (Registry of cCREs V3, 

https://screen.encodeproject.org/), a registry of candidate cis-Regulatory Elements (cCREs) 



 

 

derived from ENCODE data44. Active cCREs annotated in 13 tissue samples (small intestine, 

transverse, sigmoid, left colon tissues) and 7 cell lines (CACO-2, HCT116, HT-29, LoVo, 

RKO, SW480 and HCEC 1CT) derived from colon were collected and downloaded from 

SCREEN, where cCREs are classified into six active groups (promoter-like signatures (PLS), 

proximal enhancer-like signatures (pELS), distal enhancer-like signatures (dELS), DNase-

H3K4me3, CTCF-only and DNase-only) based on integrated DNase, H3K4me3, H3K27ac, 

and CTCF data. Further, the list of genes possibly linked to a cCRE according to experimental 

evidence (e.g., Hi-C) was extracted from the cCRE Details page of the website. Driver 

analyses were performed by ActiveDriverWGS23,45 (commit 351ca77, 

https://github.com/reimandlab/ActiveDriverWGSR) with parameters ‘-mc 4 -rg hg38 -fh 300’ 

on non-hypermutated samples for each cCREs groups. The missense mutations in the analyses 

of regulatory regions were removed to avoid confounding signals from known cancer drivers. 

Mutated elements with a Benjamini-Hochberg FDR <0.05 were considered to be significant 

and were used in the following analyses45. To evaluate the functional effects of driver cCREs, 

we examined their prognostic value and compared the expression levels of their linked genes. 

Cox proportional hazards analyses were performed to identify prognosis-associated cCREs 

using the Survival R package (version v3.3-1). Furthermore, potential associations between 

each cCRE and the expression levels of their linked genes were analysed by comparing raw 

expression values between groups of mutated and wild type samples using a two-sided 

Wilcoxon rank sum test. An FDR adjustment was applied to the P-values from the Wilcoxon 

test and genes with FDR <0.05 were considered to be differentially expressed with statistical 

significance. Finally, cCREs that had an impact on expression of linked genes were compared 

according to survival effects. 

 

 



 

 

Mitochondrial genome somatic mutation and copy number estimation 

We used multiple tools in GATK (version 4.2.0.0) workflow to extract the reads mapped to 

the mitochondrial genome from WGS, perform the mitochondrial DNA (mtDNA) variants 

calling and filter the output VCF file based on specific parameters, according to the official 

description (https://gatk.broadinstitute.org/hc/en-us/articles/4403870837275-Mitochondrial-

short-variant-discovery-SNVs-Indels-). Further, false positive calls potentially caused by 

reads of mitochondrial DNA into the nuclear genome (NuMTs) were examined. These 

mutations normally have low variant allele frequency (VAF) but are highly recurrent in 

multiple tumours, as well as in matched normal samples. To remove these false positives, we 

employed stringent sample filtering, especially on variants with heteroplasmy <10%. We first 

performed two statistical tests as previously described46: i) the VAF of a mutation in the 

matched normal sequences needed to be <0.0034; and ii) the ratios of: 

 

Nmutnor/RDnor / (Nmutnor/RDnor+Nmuttum/RDtum) 

 

needed to be <0.0629. These cut-offs were adapted from the same study and set by the median 

results of all mutation candidates plus 2 times the interquartile range. Since the occurrence 

rate of tumour-specific NuMTs is about 2.3%47, we subsequently filtered the mutations whose 

frequency >0.023 in tumour samples. To avoid false negative calls in this step, the mutations 

with VAFmax <0.1 and VAFmedian <0.05 were checked, and the samples in which the mutation 

had VAF >0.05 were kept48. The sequencing mean depth for the mitochondrial genome was 

14,286x, allowing a better sensitivity for detection of somatic mutations at a very low 

heteroplasmy level, so the variants with 0.01<VAF<0.95 were used for the following 

analyses. For mtDNA copy number calculation, we used pysam (version 0.15.3) to filter and 

estimate the raw copy number of each sample. We then calculated the normalized copy 

number as previously described49. The survival best cut-point of mtDNA copy number was 

https://gatk.broadinstitute.org/hc/en-us/articles/4403870837275-Mitochondrial-short-variant-discovery-SNVs-Indels-
https://gatk.broadinstitute.org/hc/en-us/articles/4403870837275-Mitochondrial-short-variant-discovery-SNVs-Indels-


 

 

identified with surv_cutpoint (maxstat test: Maximally Selected Rank and Statistics) 

implemented in survminer (version 0.4.9). The associations between mutational signatures 

and mtDNA copy number were calculated by Stats::cor (method = "spearman") and 

corrplot::cor_mtest (conf.level = 0.95, "spearman") in R (version v4.2.0), and those with FDR 

P <0.05 were considered statistically significant43. 

 

Relative timing of somatic variants and copy number events 

For each non-hypermutated tumour, allele-specific copy-number-annotated high-confidence 

ensemble somatic short variants, and high-sensitivity copy-number events of autosomes 

(except the acrocentric chromosome arms 13p, 14p, 15p, 21p and 22p) were timed and related 

to one another with different probabilities using PhylogicNDT50 (commit 84d3dd2, 

https://github.com/broadinstitute/PhylogicNDT). Single patient timing and the event timing in 

the cohort were inferred using PhylogicNDT LeagueModel as previously described51. The 

driver gene list identified in this cohort was specified to run PhylogicNDT. 

 

RNA‐seq and determination of expression levels 

The rRNA was removed from total RNA using MGIEasy rRNA Depletion Kit (cat. 

1000005953; MGI, China) and sequencing libraries were prepared for the 1,063 primary CRC 

tumours and 120 adjacent normal tissue samples with MGIEasy RNA Library Prep Kit V3.0 

(cat. 1000006384; MGI, China) according to the manufacturer’s instructions. Sequencing of 2 

× 100 bp paired‐end reads was performed using a DIPSEQ platform (BGI, Shenzhen) with a 

target depth of 30 M reads per sample. Pre-processing of RNA-seq data, including removal of 

low-quality reads and rRNA reads, was carried out using Bowtie252 and SOAPnuke. Clean 

sequencing data was mapped to human reference GRCh38 using STAR53. Expression levels 

of genes and transcripts were quantified using RNA-SeQC (version: v2.3.6)54. Transcripts 

https://github.com/broadinstitute/PhylogicNDT


 

 

with expression level 0 in all samples were excluded from further analyses and the mRNA 

expression matrix (19765*1183) was converted to log2(TPM+1). 

 

Detection of oncogenic RNA fusions 

Gene fusions were detected by STAR-Fusion55 (version v1.10.0; https://github.com/STAR-

Fusion/STAR-Fusion) using clean FASTQ files with parameters ‘--FusionInspector validate --

examine_coding_effect --denovo_reconstruct --CPU 8 --STAR_SortedByCoordinate’ and 

Arriba56 (version: v2.1.0; https://github.com/suhrig/arriba) starting with BAM files aligned by 

STAR53 (version: v 2.7.8a; https://github.com/alexdobin/STAR). An image of STAR-Fusion 

was pulled from docker://trinityctat/starfusion:1.10.0 and ran with singularity (version: 

v3.2.0). Genome lib used in STAR-Fusion was downloaded from CTAT genome lib 

(https://data.broadinstitute.org/Trinity/CTAT_RESOURCE_LIB/__genome_libs_StarFv1.10/

GRCh38_gencode_v37_CTAT_lib_Mar012021.plug-n-play.tar.gz). Aligned BAM files for 

Arriba were generated as described in the user manual 

(https://arriba.readthedocs.io/en/latest/). Gene fusions from Arriba were then annotated by 

FusionAnnotator (version v0.2.0, https://github.com/FusionAnnotator/FusionAnnotator) and 

merged with results of STAR-Fusion. Merged results were then filtered and prioritised with 

putative oncogenic fusions by annoFuse57 (version v0.91.0; https://github.com/d3b-

center/annoFuse). 

 

Unsupervised expression classification – CRPS generation 

We used Seurat (version 4.1.0) to identify stable clusters of all CRC samples, and among MSI 

tumours58. Potential batch effects or source differences between samples were corrected by 

Celligner59 (https://github.com/broadinstitute/Celligner_ms), and the resulting matrix was 

imported into Seurat as scale data. Three different parameters were evaluated by repeating 

https://github.com/STAR-Fusion/STAR-Fusion
https://github.com/STAR-Fusion/STAR-Fusion
https://github.com/suhrig/arriba
https://github.com/alexdobin/STAR
https://data.broadinstitute.org/Trinity/CTAT_RESOURCE_LIB/__genome_libs_StarFv1.10/GRCh38_gencode_v37_CTAT_lib_Mar012021.plug-n-play.tar.gz
https://data.broadinstitute.org/Trinity/CTAT_RESOURCE_LIB/__genome_libs_StarFv1.10/GRCh38_gencode_v37_CTAT_lib_Mar012021.plug-n-play.tar.gz
https://arriba.readthedocs.io/en/latest/
https://github.com/FusionAnnotator/FusionAnnotator
https://github.com/d3b-center/annoFuse
https://github.com/d3b-center/annoFuse
https://github.com/broadinstitute/Celligner_ms


 

 

clustering with different k.param in FindNeighbors (10 to 30, step=5), number of principle 

components (10 to 100, step=5) and resolution in FindClusters (0.5 to 1.4, step=0.1). The 

stability of clusters was assessed by Jaccard similarity index and the preferred clustering 

result (resolution=0.9, PC=20, K=20) was determined by scclusteval60 (version 0.0.0.9000). 

 

Consensus molecular subtypes (CMS) classification 

For the CMS classification, three CMS classifier algorithms (CMSclassifier (version v1.0.0) 

with random forest prediction61, CMSclassifier-single sample prediction61, and CMScaller62 

(version v0.9.2)) were evaluated and results from the CMSclassifier-random forest was used. 

Expression data were processed using these three R packages separately or as combined, 

generating four sets of results. In the combined mode, the CMS subtype of each tumour 

sample was determined by at least 2 algorithms that predicted the same results, otherwise it 

was assigned as NA. Among all four sets of results, CMSclassifier-random forest predicted 

the most normal samples as NA and assigned more MSI samples to CMS1, indicating a lower 

false positive rate and a higher accuracy. 

 

Model building and validation of CRPS classification  

To validate the CRPS de novo classification, we built a classification model based on the deep 

residual learning framework, involving the following steps. i) Gene expression data was first 

converted into pathway profiles by single-sample gene set enrichment analysis (ssGSEA63) 

implemented in Gene Set Variation Analysis (GSVA64 (version v1.42.0), parameters 

‘min.sz=5, max.sz=300’) using MSigDB65–67 (version v7.4). We eventually obtained 30,049 

pathways for 1,183 samples, including 1,063 tumours and 120 adjacent normal samples. ii) 

RelieF implemented in scikit-rebate68 (version v0.62) was used to refine the obtained pathway 

features. The RelieF algorithm used nearest neighbour instances to calculate feature weights 



 

 

and assigned a score for the contribution of each feature to the CRPS classification. The 

features were then ranked by scores and the top 2,000 were selected for the model training. 

iii) We employed TensorFlow69 (version v2.3.1) to construct the supervised machine learning 

model with a 50-layer residual network architecture (ResNet50), whose 4 stacked blocks were 

composed of 48 convolutional layers, 1 max pool and 1 average pool layer. During model 

compilation, we used the Nadam algorithm as the optimiser in terms of speed of model 

training and chose Categorical Crossentropy as loss of function in the classification task. In 

order to train the model sufficiently, epochs were set to 500 and LearningRateScheduler in 

Tensorflow was used to control the learning rate precisely in the beginning of each epoch; 

finally, ModelCheckpoint in Tensorflow was used to save the model with the maximum F1 

score. iv) For the model training, the input data from 1,183 samples were divided into a 

training set (80%), a testing set (10%) and a validation set (10%). Batch size in Tensorflow 

was set to 6, corresponding to 5 clusters of CRPS and a normal sample cluster. To avoid bias 

caused by class imbalance during the learning process, Random OverSampling Examples 

algorithm in Imbalanced-learn70 (version v0.9.0) was applied to ensure that at least one 

sample from each CRPS class could be randomly selected for model training. Samples with 

class probabilities less than 0.5 were categorised as NA. In addition, the Shapley Additive 

exPlanations (SHAP)71 was applied to explain the model predictions on CRPS classifications, 

the molecular features of which could thus be interpreted. To test our CRPS clustering model, 

a total of 11 CRC data sets (n = 2,661 patients) from both NCBI GEO72 (GSE2109, 

GSE13067, GSE13294, GSE14333, GSE17536, GSE20916, GSE33113, GSE35896, 

GSE39582 and GSE42284) and NCI Genomic Data Commons73 (TCGA-COAD22, TCGA-

READ22) were uniformly processed from FPKM and transformed to pathway profiles with 

ssGSEA. After class prediction of these CRC samples by our CRPS clustering model, 

survival and pathway analyses were performed. Pathway analyses of CRPS from our dataset 



 

 

and from TCGA were performed with CMScaller62. The CRPS clustering model is available 

to use on https://github.com/SkymayBlue/U-CAN_CRPS_Model. 

 

Pathway analyses 

GSEA65 (version v4.2.3 desktop) and MSigDB66,67 (version v7.4) were used in pathway 

analyses, with the following settings: filter ‘geneset min=15 max=200’. We also used 

PROGENy74 (version 1.16.0) to investigate 14 oncogenic pathways in CRPS, as previously 

described. 

 

Hypoxia scoring and associations with mutational features 

Hypoxia scores were calculated for 1,063 CRC tumours and 120 normal samples, using the 

Buffa hypoxia signature75 as previously described76. In brief, samples with mRNA abundance 

above the median tumour value of each gene in the signature were given a Buffa hypoxia 

score of +1, otherwise they were given a Buffa hypoxia score of -1. The sum of the score for 

every gene in the signature is the hypoxia score of the sample. We used a linear model to 

analyse the associations between hypoxia scores and mutational features of interest in all 

tumours, non-hypermutated tumours and hypermutated tumours using R stats package 

(version v4.1.0). For each mutational feature tested in the cohort, a full model and a null 

model were created and both were adjusted for tumour purity, age at diagnosis and sex77. The 

equations for the two models were adapted from the previous study76 and shown below: 

 

Full = hypoxia ~ feature + age + sex + purity 

Null = hypoxia ~ age + sex + purity 

 

https://github.com/SkymayBlue/U-CAN_CRPS_Model


 

 

Comparisons between the two models were made using ANOVA testing, and hypoxia was 

considered statistically significantly associated with a mutational feature when FDR or 

Bonferroni adjusted P-values were <0.1. Bonferroni adjustment was only applied to P-values 

when fewer than 20 tests were conducted. The scaled residuals for all full models were 

calculated by the simulateResiduals function in the DHARMa package78 (version v0.4.5), and 

their uniform distributions were verified using the Kolmogorov-Smirnov test. Tested 

mutational features included mutational signatures, SNV, CNV and SV densities, driver 

mutations and subclonality. In the mutational signature analysis, the proportion of each 

signature in each tumour was used in the full model. To test the association between hypoxia 

and specific genetic alterations, we considered 22 metrics of mutational density in total, 

including: 10 SNV mutation counts of all regions, coding region, noncoding region, 

nonsynonymous, SNV, DNV, TNV, DEL, INS, and INDEL; 8 metrics of CNV mutational 

density which were adapted from the previous study by PCAWG76, including the percentage 

of genome with total copy-number aberrations (PGA, total), PGA gain, PGA loss, PGA 

gain:loss, average CNV length, average CNV length gain, average CNV length loss and 

average CNV length gain:loss; and 4 SV types, including deletion, inversion, tandem-

duplication, and translocation. Value of each decile for all 22 metrics were calculated with the 

R package dplyr79. Finally, in the subclonality analysis, clonal and subclonal mutations and 

numbers of subclones for each tumour were derived from PhylogicNDT as described above. 

 

Prediction of cell types in the tumour microenvironment 

The computational methods CIBERSORT80 (version: v1.04) and xCell81 (version: 1.1.0) were 

applied with default settings on TPM data for microenvironment estimation. The Intrinsic 

CMS (iCMS) subtype classification was performed as previously described82. In brief, 715 

marker genes of intrinsic epithelial cancer signature were directly obtained from the previous 



 

 

research. The iCMS2 marker genes were taken from lists of iCMS2_up and iCMS3_down, 

and iCMS3_up and iCMS2_down lists were used as iCMS3 markers. Subsequently, scores of 

iCMS2 and iCMS3 for each tumour were calculated with ‘ntp’ function in CMScaller R 

package. Samples were defined as indeterminate if permutation-based FDR was ≥0.05. 

Survival analyses 

OS and RFS curves were constructed using the Kaplan-Meier method and the differences 

between groups were assessed by the log-rank test, using “survminer” package in R (version 

v0.4.9). OS was defined as time from diagnosis of primary tumour to death or censored if 

alive at last follow-up, while RFS as time from surgery to earliest local or distant recurrence 

date or death, or censored if no recurrence or death at last follow-up. The OS analyses 

included all stage I–IV patients, whereas patients with stage IV at diagnosis were excluded in 

the RFS analyses. Separate OS analyses were also performed for stage I-III for some 

variables. Cox’s proportional hazards models were built to determine the prognostic impact of 

clinical and genomic features using "finalfit"/"survival" R packages (version v1.0.4/v3.3-1). 

Univariable Cox regression was performed on all identified coding or non-coding drivers and 

clinical variables, while multivariable Cox regression was applied on drivers that were 

statistically significant in the univariable analyses (P <0.05) with co-variates including 

tumour site, pre-treatment status, tumour stage, age groups, tumour grade, and hypermutation 

status. Forest plots were drawn using R “survivalAnalysis” (version v0.3.0) for visualising the 

prognostic value of tested features revealed by uni- or multivariable analyses. In the 

Supplementary tables showing associations with either OS or RFS, analyses showing P-

values <0.05 were marked in bold. No compensation for multiple testing was done in these 

analyses. 

 

 



 

 

Data availability 

Access to raw data and more detailed clinical information can be sought by contacting U-

CAN (https://www.u-can.uu.se/?languageId=1). The remaining data are available within the 

Article, Supplementary Information or available from the authors upon request. The patient 

identification numbers assigned to participants in this study were created solely for research 

purposes and are not known outside of this study. These IDs do not reveal the identity of the 

study subjects and are used solely for the purpose of data management and analysis. 

 

Code availability 

The CRPS clustering model is available to use on https://github.com/SkymayBlue/U-

CAN_CRPS_Model. 
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