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Abstract

Estimation of the impact of vaccination and non-pharmaceutical interventions (NPIs) on COVID-19
incidence is complicated by several factors, including the successive emergence of SARS-CoV-2 variants
of concern and changing population immunity resulting from vaccination and previous infection. We
developed an age-structured multi-strain COVID-19 transmission model framework that could estimate
the impact of vaccination and NPIs while accounting for these factors. We applied this approach to
French Polynesia, which unlike many countries experienced multiple large COVID-19 waves from multiple
variants over the course of the pandemic, interspersed with periods of elimination. We estimated that
the vaccination programme averted 54.3% (95% CI 54.0-54.6%) of the 6840 hospitalisations and 60.2%
(95% CI 59.9–60.5%) of the 1280 hospital deaths that would have occurred in a baseline scenario without
any vaccination up to May 2022. Vaccination also averted an estimated 28.4% (95% CI 28.2-28.7%) of
193,000 symptomatic cases in the baseline scenario. We estimated the booster campaign contributed
3.4%, 2.9% and 3.3% to overall reductions in cases, hospitalisations and hospital deaths respectively.
Our results suggested that removing, or altering the timings of, the lockdowns during the first two waves
had non-linear effects on overall incidence owing to the resulting effect on accumulation of population
immunity. Our estimates of vaccination and booster impact differ from those for other countries due
to differences in age structure, previous exposure levels and timing of variant introduction relative to
vaccination, emphasising the importance of detailed analysis that accounts for these factors.

Introduction

Since late 2020, multiple new severe acute respiratory coronavirus 2 (SARS-CoV-2) variants have emerged
and spread globally, of which the major variant groups (Alpha, Beta, Gamma, Delta, and Omicron) have
shown substantially different levels of transmissibility, severity and/or immune escape. At the same time,
first- and second-dose vaccinations and booster doses against COVID-19 have been rolled out in many coun-
tries around the world, drastically changing population-level immunity and reducing incidence of severe
COVID-19 outcomes [1–6]. In this context, estimating the impact of vaccination and non-pharmaceutical
interventions (NPIs) on COVID-19 incidence is challenging, because it is necessary to account for: differ-
ent variant properties, a complicated and ever-changing immune landscape from vaccination and previous
infection, and the timing of variant emergence relative to vaccination roll-out and previous epidemic waves.
Most existing modelling analyses of vaccination impact have not explicitly accounted for different variant
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properties and the array of different levels and types of immunity that now exist [1–4, 7], and thus may no
longer offer the best available evidence. Here we develop a framework that explicitly includes these different
factors and apply it to COVID-19 epidemic waves in French Polynesia.

As of early 2023, French Polynesia has experienced five waves of COVID-19 cases. The first, caused by
the wild-type virus, started in August 2020 and peaked in early November 2020. Transmission then declined
with the introduction of strict control measures, including a ban on gatherings in public places, mandatory
mask wearing and a curfew, until cases reached very low levels again in February 2021. This low level of cases
– driven by imports – was then maintained until mid-2021 when the rollout of the 1st and 2nd vaccine doses
occurred. Following the introduction of the Delta variant in June 2021, the country experienced a second
larger and sharper wave of cases, hospitalisations and deaths, with cases peaking in mid-August 2021. A
lockdown was implemented with the establishment of a curfew and confinement at home on the main island
groups (the Windward and Leeward Islands) in August 2021, and cases declined quickly back to low levels
in November 2021. The arrival of the Omicron BA.1/BA.2 variants in late December 2021 led to a relatively
large third wave of cases, but fewer hospitalisations and deaths than in the previous waves, which coincided
with the rollout of first booster doses. During the first trimester of 2022, incoming travellers were screened
for infection at the border using PCR (polymerase chain reaction)/antigen tests. The third wave had largely
subsided by April 2022. French Polynesia experienced a fourth wave of cases mainly caused by the Omicron
BA.5 and BA.4 variants between June and September 2022 [8] and a fifth wave mainly caused by the BQ.1.1
Omicron sub-variant in November and December 2022. During the third, fourth and fifth waves, no strong
NPIs (curfews or case isolation) were implemented.

To understand how immunity and control measures shaped observed dynamics in French Polynesia, we
fit an age-structured multi-strain COVID-19 transmission model to reported case, hospitalisation and death
data up to May 2022, as well as data from two seroprevalence surveys conducted in February 2021 and
November-December 2021. We then use the fitted model to estimate the impact of NPIs and vaccination on
numbers of COVID-19 cases, hospitalisations and deaths, and to estimate the immune status of the French
Polynesian population.

Results

Model fit

The fit of the model to the overall numbers of cases, hospitalisations, and deaths between July 2020 and
May 2022 is shown in Figure 1, and the fit of the model to the age-stratified numbers of confirmed cases,
hospitalisations and hospital deaths is shown in Figure S5 and S4, and to the age-stratified data from the
seroprevalence surveys in Figure S6. The model reproduces the overall patterns in the data, although it
does not fully capture the flatness of the first wave of hospitalisations and hospital deaths, underestimates
deaths among 60+ year-olds in the second wave, and overestimates hospitalisations in the third wave. The
estimated number of symptomatic cases over time corresponds closely to the numbers of confirmed cases
during the three waves, with a fitted reporting factor of 0.55 (95% CI 0.53–0.57) (Figure 1).

Impact of NPIs

We estimate the counterfactual impact that the lockdowns during the first two COVID-19 waves had on
the numbers of symptomatic cases, hospitalisations and deaths in each wave and overall by simulating the
model without the estimated reductions in the transmission rate corresponding to the lockdown periods in
the first and second waves (Figure S9). We run 500 simulations with parameter values drawn from the
posterior distribution of the parameters from the model fitting and compare the numbers of symptomatic
cases, hospitalisations and hospital deaths to those in simulations with the estimated reductions in the
transmission rate with lockdowns, to account for uncertainty in the estimated parameter values. This gives
the results shown in Table 1 and Figure 2.

The estimated overall numbers of symptomatic cases, hospitalisations and hospital deaths from fitting the
model to the observed data up to May 2022 are 138,000 (95% CI 137,000–139,000), 3120 (95% CI 300–3230)
and 510 (95% CI 493–526) respectively. We estimated that removing the lockdowns in both the first and
second waves would have had a non-linear effect on dynamics, and – assuming everything else had remained
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Figure 1: Fit of the model to the observed total numbers of confirmed cases, hospitalisations and hospital
deaths over time. Red dots show observed counts, black line and grey shaded area show median and 95%
CI of simulations of the fitted model, i.e. the uncertainty in the expected number of each outcome in the
model. Note that this does not include uncertainty in the reporting process and that there is a strong day-
of-the-week effect in the reporting that accounts for the much of the dispersion in the data. Note different
scales on vertical axes.

the same – would have led to fewer hospitalisations and hospital deaths overall (768 (95% CI 729–816) and
107 (95% CI 101–115) fewer, respectively) but a slightly higher number of symptomatic cases (600 (95% CI
100–1000) more). This scenario assumes that patients hospitalised during the first wave would have been
managed the same (in terms of treatment and ICU admission) had the number of hospitalisations in the first
wave been nearly twice as high. The non-linear effect on overall incidence is due to the first wave of infections
being much larger, resulting in greater build up of immunity in the population prior to the introduction of the
more severe Delta variant, and therefore a much smaller second wave of cases, hospitalisations and deaths
(with 31,000 (95% CI 30,000–32,300) fewer cases, 1430 (1370-1510) fewer hospitalisations, and 230 (95%
CI 220-242) fewer deaths). The impact on the third wave would have been relatively limited due to the
effects on the first two waves approximately cancelling each other out in terms of cumulative infections, and
the immune escape properties of the Omicron BA.1/BA.2 variants reducing the influence of immunity from
previous infection. Overall hospitalisations and deaths would have decreased, despite the increase in overall
cases, as the reduction in cases in the second wave would have been slightly greater than the increase in
cases in the first wave and there are more hospitalisations and deaths per case in the second wave than the
first due to the greater severity of the Delta variant.

We also considered the counterfactual impact that changing the timings of the lockdowns during the
first two waves would have had on incidence in each wave and overall (Supplementary Material §1.3). We
estimated that starting the first and second lockdowns 2 weeks earlier or later would have had relatively
little impact on overall numbers of cases, hospitalisations and deaths due to a similar non-linear cancellation
effect between infections in the first and second waves as for removing the lockdowns.
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Figure 2: Impact of lockdowns, vaccination programme and booster programme on numbers of COVID-19
symptomatic cases, hospitalisations, and hospital deaths. Solid lines and shaded areas show medians and
95% CI of 500 simulations of the model. Dashed black line and grey shaded area show median and 95% CI
of simulations of the fitted model.

Impact of vaccination

The counterfactual impact of vaccination on numbers of hospitalisations and deaths during each wave and
overall was estimated by simulating the fitted model without any vaccination, and comparing the numbers
of hospitalisations and deaths to those in simulations with the actual vaccination rollout (Table 1 and Figure
2). The vaccination programme is estimated to have averted 54,700 (95% CI 54,500-54,900) symptomatic
cases, 3710 (95% CI 3570–3860) hospitalisations and 770 (95% CI 740–799) hospital deaths overall, with
nearly all of these being averted during the second and third waves, since vaccination did not start until
mid-January 2021 when the first wave had largely subsided.

Under our base case assumption about the rate at which booster protection wanes, the booster campaign
is estimated to have had a moderate impact on the overall numbers of cases, hospitalisations and deaths,
reducing them by 4800 (95% CI 4800–4900), 92 (95% CI 89-95) and 17 (95% CI 17–18) respectively (Table 1
and Figure 2). However, these estimates are highly sensitive to the assumed booster waning rate. With a less
conservative assumption about the rate at which individuals lose all protection from boosters, the estimated
reductions in cases, hospitalisations and deaths are 8100 (95% CI 8000–8200), 213 (95% CI 202–221), and
44 (95% CI 43–46) respectively (see §1.4 in the Supplementary Material for further details).

Immune status of the population

The breakdown of the inferred immune status of the population over time and by age is shown in Figure
3. The three waves of cases are visible where the proportion recovered from infection increases sharply in
October 2020, August 2021, and February 2022. Based on the model, most infections in the Delta wave were
among unvaccinated uninfected individuals, while in the Omicron BA.1/BA.2 wave just under a half were
among individuals with 2nd dose protection or waned 2nd dose protection, either with or without immunity
from previous infection. The model also suggests that in May 2022 a very high proportion (89.4% (95% CI
89.1–89.5%)) of the population possessed either natural or hybrid (natural + vaccine-induced) immunity,
and only 2.6% the population were fully susceptible. Table 2 shows the full breakdown of the estimated
immune status of the population in May 2022. As expected, given prioritisation of older individuals in the
vaccine and booster rollouts, the proportion of the population that had only natural immunity in May 2022
decreased with increasing age, from over 95% among 0-9-year-olds to just over 20% among 70+ year-olds,
while the proportion with hybrid immunity from infection and a booster dose increased with age from 0%
among 0-9 year-olds to over 30% among 50+ year-olds.
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Figure 3: Inferred immune status of the population over time by age group. Coloured bands show median
estimates from 1000 simulations of the fitted model. Note that the fully susceptible category includes
individuals whose immunity from infection or vaccination has waned. Susc = suscceptible, Inf = infected,
Rec = recovered.

Table 2: Estimated immune status of the overall population on 6th May 2022

State Number, median (95% CI) Percentage, median (95% CI)
Fully susceptible 7190 (7070 – 7310) 2.56 (2.52 – 2.60)
Susceptible 1 dose 182 (179 – 186) 0.065 (0.064 – 0.066)
Susceptible 2 dose 2780 (2710 – 2850) 0.99 (0.97 – 1.01)
Susceptible waned 5470 (5350 – 5600) 1.95 (1.90 – 2.00)
Susceptible boosted 13500 (13200 – 13800) 4.81 (4.71 – 4.92)
Infected 813 (789 – 839) 0.29 (0.28 – 0.30)
Recovered unvacc 111000 (111000 – 111000) 39.5 (39.4 – 39.5)
Recovered 1 dose 2950 (2950 – 2950) 1.05 (1.05 – 1.05)
Recovered 2 dose 26800 (26800 – 26900) 9.55 (9.53 – 9.57)
Recovered waned 56900 (56800 – 57100) 20.3 (20.2 – 20.3)
Recovered boosted 53400 (53100 – 53700) 19.0 (18.9 – 19.1)

Discussion

We have used an age-structured multi-strain SARS-CoV-2 transmission model that accounts for different lev-
els of protection from vaccination and previous infection, waning of immunity, and different variant properties
(transmissibility and severity) to estimate the impact of vaccination and non-pharmaceutical interventions
on incidence of cases and severe outcomes in the first three waves of COVID-19 in French Polynesia. We have
estimated impact through comparison with counterfactual scenarios, including no lockdowns, earlier/later
introduction of lockdowns, no vaccination and no boosters.

The first two vaccine doses had a large estimated impact on incidence in the Delta and Omicron
BA.1/BA.2 waves, averting over 50,000 symptomatic cases, 3500 hospitalisations and nearly 800 deaths
up to May 2022 compared to a counterfactual scenario of no vaccination. Our estimate for the number of
deaths averted through vaccination in French Polynesia is much lower than that from a recent study estimat-
ing the global impact of vaccination at a country level [1], which estimated that 2120 (95% CI 1740–2570)
deaths had been averted up to 8th December 2021. There are a number of reasons for this difference. The
main source of the discrepancy is that our estimate is derived from fitting to reported daily hospital deaths
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(of which there were 552 between July 2020 and May 2022 with recorded date of death), whereas that from
[1] is based on an estimate of weekly excess mortality from a boosted regression tree model of global excess
deaths [9], which gave an estimated total of 920 (95% CI 790-1200) excess deaths between December 2020
and December 2021. We chose to fit to hospital deaths rather than all deaths (hospital deaths + community
deaths) as they are less sensitive to context bias. We assumed quality of patient care was the same during
the different waves and that the risk of death given hospitalisation remained constant. However, deaths in
the community are likely to have varied to a greater extent over the different waves, as there was considerable
fear and distrust of hospitalisation during the Delta wave when hospitals reached capacity, and less distrust
in healthcare in the first wave and less fear of severe outcomes during the Omicron BA.1/BA.2 wave. Given
extensive follow-up of hospitalised cases it is likely that under-reporting of hospital deaths in French Poly-
nesia was not as high as elsewhere [10]. We also fit to multiple other direct data streams (including reported
cases, hospitalisations and seroprevalence), whereas Watson et al. [1] only fit to estimated excess deaths, so
our estimate may be more robust. A further small source of difference is that we estimate hospital deaths
averted not all deaths averted, so the ∼5% of deaths in the community averted through vaccination are not
included in our estimates.

We estimated that the booster campaign had less of an impact on the BA.1/BA.2 wave than the first two
doses had on the Delta wave, in both absolute and proportional terms, despite similar numbers of infections
in the BA.1/BA.2 wave as in the Delta wave. Although this may seem surprising, e.g. when compared with
the estimated impact of the booster rollout in the UK [11], the estimated small effect size is influenced by a
combination of factors. These include the already high level of natural/hybrid immunity in the population
from previous infection and/or vaccination (Figure 3), the relatively low booster coverage during the wave
(<35% of the overall population and only >50% in individuals ≥50 years) (Figure 4), and the lower severity
of the BA.1/BA.2 variants.

Our results suggest that – all other things being equal – changing lockdown dates during the first two
waves by two weeks would have had limited impact on overall numbers of cases, hospitalisations and deaths.
This is because starting the first lockdown either earlier or later would have led to more infections prior
to the second wave and thus been compensated for by a smaller second wave due to greater population
immunity, and moving the second lockdown earlier or later would have had only a small impact on incidence
due to its relatively limited estimated effect on the transmission rate (Figure S9). In addition, incidence in
the Omicron BA.1/BA.2 wave would have been largely unaffected due to the limited net effect of changes
in the lockdowns on incidence in the first two waves.

We also estimated the composition of immunity from infection and vaccination in the population in May
2022. We estimated that 97% of the population had some form of immunity, predominantly either natural or
hybrid immunity (as opposed to only vaccine-induced immunity). From this we would expect that infection
incidence (and therefore hospitalisation and death incidence) after May 2022 would have remained low
without the advent of new variants with high levels of immune escape against Omicron BA.1/BA.2, which
has been the case, with the BA.5 wave being relatively small in terms of detected cases, hospitalisations and
deaths [12, 13]. Given that the rollout of 2nd booster doses to those aged over 60 years began in April 2022
we would expect incidence of infections and severe outcomes to remain low for some time if no new immune
escape variants are introduced.

There are some limitations to the analysis we have presented (see the Supplementary Material for an
extended discussion). We make the simplifying assumptions that mixing between age groups is homogeneous
for the whole French Polynesian population, despite the fact that the population is spread over many islands
in five archipelagos, and that the seroprevalence estimates from the sero-surveys on the main islands of
Tahiti and Moorea were representative of the seroprevalence on all the islands. However, ∼75% of the
population resides on the main islands of Tahiti and Moorea (and ∼69% on Tahiti), so these assumptions
are not unreasonable. We may underestimate the impact of the vaccination programme as we estimate
cases, hospitalisations and deaths averted from reported hospital deaths, which are considerably lower than
estimates of all-cause mortality and excess mortality [9, 14], and do not account for increased death rates
among hospitalised cases and in the community when hospitals reached capacity during the Delta wave. The
third wave was caused by a mixture of the Omicron BA.1 and BA.2 sublineages and there is evidence that
the BA.2 variant is more transmissible than the BA.1 variant [15–18], but we do not distinguish between
these subvariants when modelling the third wave, which may lead to some underestimation of the impact of
the booster programme.
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Nevertheless, the framework we have developed provides a means of estimating the impact of vaccination
and NPIs on COVID-19 incidence while accounting for the complex immune landscape that has developed
over the course of the pandemic from myriad different infection and vaccination histories at an individual
level. In particular, several different data streams can be incorporated in the inference to provide more
robust estimates of key unobserved processes. As a result, the framework could be useful for analysing other
countries’ data to estimate vaccination and NPI impact.

Methods

Data

Multiple data streams are used in the fitting of the model. Anonymised line lists of confirmed cases and
hospitalisations compiled by the Ministry of Health of French Polynesia with testing date and admission
date, and date of death for those that died, and 10-year age group were aggregated into age-stratified time
series of daily cases, hospitalisations and hospital deaths. Only 493 out of 74986 confirmed cases (0.66%)
were missing their age group, so these cases were treated as unreported cases, since under-reporting of
cases is accounted for in the model fitting (see Confirmed cases). As testing dates were missing for a large
number of cases early in the first wave and cases were numbered approximately sequentially by testing date
in the surveillance system, we imputed the missing dates as being between the testing dates of the nearest
numbered cases with recorded testing dates. Data from two sero-surveys, the first conducted by Cellule
Epi-surveillance COVID and the Health Department of French Polynesia in February 2021, the second by
Institut Louis Malardé in November-December 2021, was also used. This data is described in detail in [8] and
summarised in Table 3. Briefly, in February 2021, 463 unvaccinated adults aged 18-88 years on the islands of
Tahiti and Moorea were randomly selected and tested for anti-SARS-CoV-2 immunoglobulin type G (IgG)
antibodies with the Siemens SARS-CoV-2 IgG (sCOVG) test. Overall, 88 (19.0%, 95% CI 15.5–22.9%)
individuals had detectable IgG antibodies. In November-December 2021, 673 randomly selected individuals
aged ≥18 years on Tahiti were tested for antibodies against the SARS-CoV-2 N antigen (i.e. for evidence of
past infection) with the Roche Elecsys anti-SARS-CoV-2 assay, and 388 (57.7%, 95% CI 53.8–61.4%) were
positive. For the purposes of the modelling, we assume that the seroprevalence in the 20-29 years age group
in the model is the same as that in the 18-29 years age group in the data. We use data on the population of
French Polynesia by year of age in 2020 from the UN World Population Prospects [19] (for which the total
population was estimated to be 280,904) aggregated into 10-year age groups for the age group populations
in the model.

We use data on daily numbers of first, second and booster doses administered by age group (12-17, 18-29,
30-39, 40-49, 50-59, 60-69, 70+ years) collected by the Ministry of Health of French Polynesia to determine
the numbers of individuals moving between the different vaccination strata in the model. Since the model is
stratified into 10-year age groups, we split the doses in the 18-29 years age group in the data into the 10-19
and 20-29 age groups in the model according to population proportion (the proportions of 18-29 year-olds
that are 18-19 and 20-29 years old). Upon division by the population in each age group, this gives the
vaccination coverage by age and dose shown in Figure 4.

Model

We developed a deterministic age-structured multi-strain SEIR-type model of COVID-19 transmission with
stratification by vaccination status (Figure 5). The model is stratified into 8 age groups (0-9, 10-19, 20-29,
30-39, 40-49, 50-59, 60-69, 70+ years), and by 5 vaccination levels representing no vaccination, protection
from 1 dose, protection from 2 doses, waned protection from the 2nd dose and protection from a booster
dose.

In the model, individuals enter an exposed state upon infection with a particular variant, from where
an age-dependent proportion develop symptoms after a presymptomatic infection period, while the rest
progress to asymptomatic infection. Presymptomatic, symptomatic and asymptomatic individuals are all
assumed to be infectious, though asymptomatic individuals less so. Most symptomatic individuals and all
asymptomatic individuals recover naturally, but some symptomatic individuals develop severe disease that
can lead to hospitalisation. A proportion of these individuals die from the disease while in hospital or at
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Table 3: Seroprevalence in February 2021 and November-December 2021

Age group
(years)

Feb 2021 survey Nov-Dec 2021 survey

Participants
(n)

Seropositive
(n)

Seroprevalence
(%) (95% CI)

Participants
(n)

Seropositive
(n)

Seroprevalence
(%) (95% CI)

18-29 60 12 20 (10.8–32.3) 169 103 60.9 (53.2–68.3)
30-39 90 15 16.7 (9.6–26) 163 105 64.4 (56.6–71.7)
40-49 78 17 21.8 (13.2–32.6) 92 54 58.7 (47.9–68.9)
50-59 95 17 17.9 (10.8–27.1) 79 48 60.8 (49.1–71.6)
60-69 93 18 19.4 (11.9–28.9) 113 56 49.6 (40–59.1)
70+ 47 9 19.1 (9.1–33.3) 57 22 38.6 (26–52.4)
Total 463 88 19.0 (15.5–22.9) 673 388 57.7 (53.8–61.4)
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Figure 4: Vaccination coverage by vaccine dose. Dose 3 = booster dose.

home, while the remainder recover following treatment. Infected individuals are assumed to cease being
infectious upon recovery. Once recovered from infection individuals have immunity against reinfection with
the same variant that wanes over time, but only partial immunity against infection with a different variant.

Individuals in the susceptible, exposed, presymptomatic, asymptomatic and recovered states can be
vaccinated, providing them with increased levels of protection against infection, hospitalisation and death.
The different vaccination strata and their associated levels of protection are shown in Tables 4 and 5.

The model is further stratified to account for different histories of infection with two different variants:
the latest variant to have emerged and the previously dominant variant. Individuals can have been infected
by only the previous variant, only the current variant, or the previous variant and the current variant (in
either order), giving 4 possible infection histories. Once a new variant emerges the information stored in the
strata for the two variants is combined into the stratum for the first variant, and the information for the
new variant added to the second stratum.

Here we ignore transmission of the Alpha variant, as although Alpha was detected among travellers and
a small number of local cases in early 2021 through variant screening (Table 10), transmission of Alpha
remained localised and never became fully established. We therefore only explicitly model the introduction
and spread of the Delta and Omicron variants. We also do not distinguish between the Omicron BA.1 and
BA.2 sublineages, and model the introduction of Omicron and its sublineages as a single new variant.

Naturally-acquired immunity is assumed to wane slowly — individuals who have been infected are as-
sumed to return to being susceptible to infection with the same variant after an exponentially distributed
period with a mean of 6 years [11]. Immunity between SARS-CoV-2 variants is assumed to be asymmetric,
with infection with later variants conferring stronger protection against infection with earlier variants than
vice versa (see Force of infection and Table 6 for details). Changes in population-level serological status with
seroconversion and seroreversion following infection are modelled with a “parallel flow”.
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Figure 5: Model flow diagram. (A) SEIR-type transmission model structure with infectious states shown in
red and different vaccination strata shown in blue. Individuals in states inside dashed box and recovered from
infection (Rijk) can move between vaccination strata upon vaccination. (B) Vaccination strata flow diagram.
(C) Multi-strain model structure showing possible infection with first variant or second variant, or first then
second, or second then first. (D) Seropositivity model structure with “parallel flow” to transmission model
flow. Transition rates between states are shown on arrows. All symbols are defined in the Model equations
section and Tables 4, 6 and 8, and further details of the model structure are provided below. Subscripts
denote the age group (i ∈ {0 − 9, 10 − 19, 20 − 29, 30 − 39, 40 − 49, 50 − 59, 60 − 69, 70+} years), variant
(j ∈ {1, 2, 3, 4}, where j = 3 represents infection by variant 1 followed by infection by variant 2, and j = 4
vice versa), and vaccination stratum (k ∈ {1, 2, 3, 4}).

Demographic processes such as birth, natural death and migration are ignored in the model (i.e. the
population is assumed to remain constant in the absence of deaths from COVID-19). These processes occur
at a much slower rate than transmission processes and are therefore assumed to have a negligible impact on
the transmission dynamics over the timescales modelled.
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Vaccination

Details of the five vaccination strata in the model are shown in Table 4. Unvaccinated individuals move out
of the first vaccination stratum at a rate determined by the roll-out of the 1st vaccine dose, with an assumed
delay of 28 days for immunity from the 1st dose to develop. Likewise, movement into the second dose
vaccination stratum is determined by the roll-out of the second dose, with a delay of 14 days for the dose to
take full effect. Only non-symptomatic and non-hospitalised individuals, i.e. individuals in the S, E, IA, IP
and R states in the model, can be vaccinated. Protection from the second vaccine dose is assumed to wane
over an exponentially distributed period, with a mean duration of 6 months, after which individuals pass into
a ‘waned’ vaccine state, with lower levels of protection. They either remain in this state or receive a booster
vaccination and move into a ‘boosted’ vaccination state, with higher levels of protection. Protection from
the booster dose is assumed to wane slowly such that individuals eventually return to being fully susceptible.

In common with other transmission modelling studies [11, 20], we model vaccine protection against five
different outcomes:

1. infection, with effectiveness einf

2. symptomatic infection given infection, esympt|inf

3. severe disease given symptomatic infection, eSD|sympt

4. death given severe disease, edeath|SD

5. onward transmission if infected, eins

Vaccine effectiveness against symptomatic infection, severe disease and death are conditional on previous
outcomes and depend on overall vaccine effectiveness against infection, symptomatic infection, severe disease
and death (einf , esympt, eSD and edeath) as follows:

esympt|inf =
esympt − einf

1− einf

eSD|sympt =
eSD − esympt

(1− einf )(1− esympt|inf )

=
eSD − esympt

1− esympt

edeath|SD =
edeath − eSD

(1− einf )(1− esympt|inf )(1− eSD|sympt)

=
edeath − eSD

1− eSD

Estimates for einf , esympt, eSD and edeath for different vaccination strata and variants taken from [11] are
provided in Table 5 (see [11] for information on sources of these estimates). As the over 90% of the doses
given in French Polynesia were of the Pfizer-BioNTech vaccine, we use effectiveness values for that vaccine
for all doses given. We also assume that vaccine effectiveness is the same across all age groups.

Waning immunity

The model accounts for waning of natural and vaccine-induced immunity as described in the previous sections.
We assume the same rate of waning of natural and vaccine-induced immunity for all age groups and virus
variants. When immunity from previous infection or booster vaccination wanes, individuals return to being
fully susceptible, so immunity against different outcomes (infection, symptomatic infection, hospitalisation
and death) is assumed to wane at the same rate. We note that this is a strong simplifying assumption
as there is evidence to suggest that immunity against infection wanes more quickly than immunity against
severe outcomes [22], and that immunity against infection and severe outcomes wanes faster for Omicron BA.1
than Delta [21]. As there is no data that provides a direct measure of the rate of loss of all protection from
vaccination, we use the rate of waning of protection against hospitalisation as a proxy for the rate at which
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Table 4: Vaccination strata in the model

Vaccination
stratum

Dose
number

Vaccine effectiveness Mean duration References

V1 0 None Determined by vaccine roll-out
V2 1 Full 1st dose effectiveness

(28 days after 1st dose)
Determined by vaccine roll-out

V3 2 Full 2nd dose effectiveness
(14 days after 2nd dose)

6 months [20]

V4 2 Waned 2nd dose effective-
ness

Determined by vaccine roll-out

V5 3 Booster effectiveness −80/(365 log(0.818)) = 1.1 years,
−140/(365 log(0.923)) = 4.8 years

[11, 21] (sen-
sitivity)

Table 5: Vaccine effectiveness against different infection outcomes for different variants and levels of vacci-
nation

Outcome Variant Vaccine effectiveness (%)
Symbol 1 dose 2 doses 2 doses + waned 2 doses + booster

Infection Wild-type & Alpha
einf

70 85 48 95
Delta 62 80 45 91.4
Omicron 34.2 44.1 24.8 65.9

Symptoms Wild-type & Alpha
esympt

70 90 51 95
Delta 62 81 61 91.9
Omicron 34.2 46.9 46.7 67.6

Severe disease Wild-type & Alpha
eSD

85 95 65 99
Delta 92 96 84.2 99
Omicron 76.7 83.7 67.6 93.3

Death Wild-type & Alpha
edeath

85 95 66 99
Delta 92 96 84.2 99
Omicron 76.7 83.7 67.6 93.3

Infectiousness
if infected

Wild-type & Alpha
eins

47 47 30 37

Delta 24 37 24 37
Omicron 24 37 24 37

Delay to effect 28 days 14 days Immediate Immediate

Vaccine effectiveness estimates for Pfizer-BioNTech vaccine from [11].
*Assumed based on relative effectiveness against different outcomes for Delta due to limited evidence on
booster effectiveness against wild-type and Alpha variants.

individuals return to being fully susceptible following booster vaccination. Whilst a reasonable assumption,
this may still be overly conservative, so we also conduct a sensitivity analysis with different values of the
waning rate from the literature. Although we do not model variant-specific vaccine waning rates, we use
estimates of the change in protection against hospitalisation over time following booster administration for
Omicron BA.1 [21] for the booster waning rate in the analysis in the main text, since the booster campaign
in French Polynesia coincided with the Omicron BA.1/BA.2 wave, and compare this to a lower waning rate
assumed by Barnard et al. [11] in their model with a similar structure (Table 6). See §1.4 for results of the
sensitivity analysis.

12

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.29.23287906doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.29.23287906
http://creativecommons.org/licenses/by-nc-nd/4.0/


Parallel flow for serological status

So that we can fit to the data from the sero-surveys we include a “parallel flow” of compartments for
serological status in addition to those for infection status and clinical progression (Figure 5). We fit to
the data on prevalence of seropositivity against the N antigen on the SARS-CoV-2 virus according to the
Roche Elecsys anti-SARS-CoV-2 assay, as this tests only for positivity resulting from infection. After a pre-
conversion period (Tpre), individuals either seroconvert (TP ) with probability pP or not (TN ). Those that do
seroconvert eventually serorevert (to TN ) after an exponentially distributed time with mean 6.6 years [23].

Model equations

Force of infection

The relative susceptibility to infection with variant j of a susceptible individual in age group i in vaccination
stratum k is given by:

χijk = 1− einfijk ,

where einfijk is the vaccine effectiveness against infection with variant j in vaccination stratum k ∈ {1, 2, 3, 4, 5}
(see Table 5), and χij1 = 1, ∀i, j (i.e. there is no protection in unvaccinated individuals). The index j denotes
individuals’ infection histories, covering primary infection with one variant (j ∈ {1, 2}) and superinfection
(infection with one variant followed by infection with another) (j ∈ {3, 4}) as follows:

j =


1, if individuals have only been infected by 1st variant

2, if individuals have only been infected by 2nd variant

3, if individuals infected by 1st variant followed by 2nd variant (1 → 2)

4, if individuals infected by 2nd variant followed by 1st variant (2 → 1).

The relative infectiousness of an individual in age group i and vaccination stratum k infected with variant
j compared with an unvaccinated individual infected with the wild-type virus is given by:

ξijk = σj(1− einsijk )

where ξi11 = 1, ∀i, and σj is the relative transmissibility of variant j compared to the wild-type variant (and
we assume σ1 = σ4 and σ2 = σ3).

The infectiousness-weighted number of infectious individuals for variant j in age group i and vaccination
stratum k on day t is given by

Θijk(t) = ξijk (θAIA,ijk + IP,ijk + IC,ijk) .

where θA is the relative infectiousness of an asymptomatic infected individual compared to a symptomatic
individual in the same vaccination stratum infected with the same variant.

With these definitions, the force of infection on a susceptible individual in age group i and vaccination
stratum k from variant j on day t is:

λijk(t) =

{
χi1k

∑
i′ mii′(t)

∑
k(Θi′,1,k(t) + Θi′,2→1,k(t)), if j = 1,

χi2k

∑
i′ mii′(t)

∑
k(Θi′,2,k(t) + Θi′,1→2,k(t)), if j = 2.

where mii′(t) = β(t)cii′ is the symmetric time-varying person-to-person transmission rate from age group
i′ to age group i, composed of the time-varying transmission rate β(t) and the symmetric person-to-person
contact matrix cii′ between age groups. The contact matrix cii′ was parameterised using estimates of contact
rates between 5-year age groups for France from [24] averaged over 10-year age groups in the model with
population data for French Polynesia by year of age from the UN World Population Prospects [19]. Social
contact data for France was used due to the absence of estimates for French Polynesia and the fact that
French Polynesia is a French territory.
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The total force of infection on a susceptible individual in age group i and vaccination stratum k is then
the sum of the variant-specific forces of infection:

Λik(t) =
2∑

j=1

λijk(t).

Cross-immunity between variants is modelled via partial immunity to infection with the other variant follow-
ing infection with one variant, such that the force of infection on an individual in age group i and vaccination
stratum k recovered from infection with variant j is:{

(1− ηj)λi,3−j,k(t), if j ∈ {1, 2}
0, if j ∈ {3, 4}

where ηj is the cross-immunity of variant j with the other variant.
The time-varying transmission rate, β(t), represents temporal changes in the overall contact rates in the

population due to changes in restrictions and behaviour. We assume that β(t) is piecewise linear with 5
changepoints corresponding to changes in alert levels and the imposition of island-wide restrictions such as
curfews (Table 9 and Figure S9):

β(t) =


β1, if t ≤ t1

ti−t
ti−ti−1

βi−1 +
t−ti−1

ti−ti−1
βi, if ti−1 < t ≤ ti, i ∈ {2, . . . , 5}

β5, if t > t5.

(1)

Natural history parameters

Movement between model compartments is determined by parameters pX , defining the probability of pro-
gressing to compartment X, and rate parameters γX , defining the time individuals stay in compartment X,
which can vary with age group (i), variant (j) and vaccination status (k). Values of these parameters are
given in Tables 6 and 7 and information on how they are calculated is given below.

The probability of developing symptoms given infection is

pCijk = (1− e
sympt|inf
ijk )pCi

where pCi is the age-dependent probability of developing symptoms given infection for unvaccinated indi-
viduals.

The probability that an individual develops severe disease requiring hospitalisation given that they are
symptomatically infected is

pHijk = (1− e
SD|sympt
ijk )ωHjpHi

where pHi is the age-dependent probability of developing severe disease given symptomatic infection for
unvaccinated individuals and ωHj is the variant-dependent relative risk of severe disease. pHi is defined as:

pHi = ψHipHmax

where pHmax is the maximum probability of hospitalisation across all age groups and ψHi = 1 for the group
corresponding to the maximum.

The probability that a hospitalised individual will die is

pDijk = e
death|SD
ijk ωDjψDipDmax

where ωDj is the variant-dependent relative risk of death, pDmax is the maximum probability of death
given hospitalisation for unvaccinated individuals, and ψDi is the age-dependent relative risk of death for
unvaccinated individuals (such that ψDi = 1 for the age group for which the probability of death is pDmax).

The probability that an individual dies in the community given that they have severe disease is

pGijk = e
death|SD
ijk ωDjpG

where pG is the probability of death in the community given severe disease for unvaccinated individuals.
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Table 6: Fixed model parameters

Parameter Description Stratum, j Value Reference
γE Rate of progression from latent infection 0.5 [25, 26]
γA Rate of progression from asymptomatic infection 0.2 [25]
γP Rate of progression from presymptomatic infection 0.4 [25]
γC Rate progression from symptomatic infection 0.4 [25]
γG Rate of progression from severe illness to death in the

community
0.3 [26]

γH Rate of progression from severe illness to death in hospital 0.10 [26]
γpre Rate of seroconversion following infection 0.077 [20]
γP Rate of seroreversion following seroconversion Roche N assay 0.0004 [23]
γR Rate of waning of natural immunity following infection 0.00046 [11]
ηj Cross immunity to infection with new variant following

infection with variant j
Wild type/Alpha against in-
fection with Delta

0.95 [11, 20]

Delta against infection with
wild type/Alpha

1 [20]

Delta against infection with
Omicron

0.55 [11]

Omicron against infection
with Delta

1 [11]

pG Probability of death in the community given severe dis-
ease

0.053 Calculated from
data on total hos-
pitalisations and
community deaths

pDmax Maximum probability of death given hospitalisation 0.316 [27]
θA Relative infectiousness of asymptomatic individuals 0.5 [25]

Number of initial infections in seed age group (30-39-
years-old)

10 Assumed

Initial seeding pattern of initial seed size from t0 1 Assumed
σj Relative transmissibility of variant j vs wild type Delta 2.8 [11]

Omicron 3.5 [11]
Number of infections of variant j seeded in 0-39 age group Delta 10 Assumed

Omicron 10 Assumed
Seeding pattern of strain seed size infections from tDelta Delta 1 Assumed

Omicron 1 Assumed
ωCj Relative probability of symptomatic infection for variant

j vs wild type
Delta 1 Assumed

Omicron 1 Assumed
ωHj Relative probability of hospitalisation for variant j vs wild

type
Delta 1.6*1.85 = 2.96 [28, 29]

Omicron 0.555 [30]
ωDj Relative probability of death for variant j vs wild type Delta 1 Assumed

Omicron 1 Assumed
ζik(t) Rate of movement from vaccination group k to vaccination

group k+1 in age group i
Unvaccinated Determined

by vaccination
schedule

Vaccinated with 1 dose Determined
by vaccination
schedule

Vaccinated with 2 doses 0.0055 [11, 20]
Vaccinated & waned Determined

by vaccination
schedule

Boosted 0.0025, 0.00057 [11, 21] (sensitivity
analysis)

pP Probability of seroconversion following infection 0.85 [31]
psens Sensitivity of serological test 1 Assumed such that

proportion of in-
fected individuals
who develop a de-
tectable antibody
response (= propor-
tion that develop
response * test
sensitivity) is 0.85

pspec Specifity of serological test 0.99 [31]
κH Shape parameter for negative binomial hospitalisation ob-

servation process
20 Assumed

κD Shape parameter for negative binomial hospital death ob-
servation process

20 Assumed

κcases Shape parameter for negative binomial confirmed case ob-
servation process

2 Assumed
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Table 7: Fixed age-dependent model parameters

Age group (years) Probability of symp-
tomatic infection for age
group i [32]

Relative probability of
hospitalisation given
symptomatic infection for
age group i [27]

Relative probability of
death given hospitali-
sation for age group i
[27]

pCi ψHi ψDi

0-9 0.29 0.009 0.019
10-19 0.207 0.064 0.035
20-29 0.268 0.108 0.06
30-39 0.328 0.112 0.104
40-49 0.398 0.192 0.206
50-59 0.486 0.314 0.399
60-69 0.631 0.389 0.665
70+ 0.691 1 1

Table 8: Definitions of model compartments

Compartment Definition
Sik Number of susceptible individuals
Eijk Number of exposed (latently infected) individuals
IAijk Number of asymptomatic infected individuals
IP ijk Number of presymptomatic infected individuals
ICijk Number of symptomatic (clinical) infected individuals
Hijk Number of hospitalised individuals
Gijk Number of severely diseased individuals who will die at home
Dijk Number who have died from COVID-19
Rijk Number of recovered individuals
Tpreijk Number of individuals pre-seropositive against N antigen

TP ijk Number of individuals seropositive against N antigen
TNijk Number of individuals seronegative against N antigen

See Figure 5 for a flow diagram of the model. All symbols denote the numbers of individuals in each
compartment at time t, but the dependence on t has been dropped in the notation for convenience. i
denotes the age group, j the variant, and k the vaccination stratum.

Compartmental model equations

The compartmental model is a deterministic approximation to a stochastic age-structured multi-strain SEIR-
type transmission model in which draws from random variables are replaced by their expected values (using
the deterministic mode of the dust R package). This may have lower accuracy than an ODE formulation
and solver, but we expect that the error is minimal based on the model fits. The model compartments are
defined in Table 8. For completeness we provide the equations for the stochastic model here, and note that
the stochastic version of the model can be fitted and run by setting the option deterministic <- F in the
code.
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The compartments in the model are updated according to the following equations:

Sik(t+ dt) = Sik(t)−
2∑

j=1

nSEijk + nSVi,k−1 − nSVik +
2∑

j=1

nRSijk (2)

Eijk(t+ dt) = Eijk(t) + nSEijk + 1j>2 nREi,j−2,k − nEIAijk − nEIP ijk + nEVij,k−1

− nEVijk (3)

IAijk(t+ dt) = IAijk(t) + nEIAijk − nIARijk + nIAVij,k−1 − nIAVijk (4)

IP ijk(t+ dt) = IP ijk(t) + nEIP ijk − nIP ICijk + nIPVij,k−1 − nIPVijk (5)

ICijk(t+ dt) = ICijk(t) + nIP ICijk − nICRijk − nICHijk − nICGijk (6)

Hijk(t+ dt) = Hijk(t) + nICHijk − nHRijk − nHDijk (7)

Gijk(t+ dt) = Gijk(t) + nICGijk − nGDijk (8)

Dijk(t+ dt) = Dijk(t) + nHDijk + nGDijk (9)

Rijk(t+ dt) = Rijk(t) + nIARijk + nICRijk + nHRijk − nRSijk − 1j≤2 nREijk

+ nRVij,k−1 − nRVijk (10)

Tpreijk(t+ dt) = Tpreijk(t) + nEIAijk + nEIP ijk − nTpreTP ijk − nTpreTNijk (11)

TP ijk(t+ dt) = TP ijk(t) + nTpreTP ijk − nTPTNijk (12)

TNijk(t+ dt) = TNijk(t) + nTpreTNijk + nTPTNijk (13)

where nXYijk is the number of individuals in age group i and vaccination stratum k infected with variant j
(if they are in an infection state) moving from state X to state Y at time t (and nXYij0 = nXYij5, and we
have dropped the dependence on t from the notation for convenience); dt is the model time step, chosen to
be 0.25 days; and 1x is the indicator function for condition x.

17

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.29.23287906doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.29.23287906
http://creativecommons.org/licenses/by-nc-nd/4.0/


The flows between states are determined as follows:

pSEijk =
(
1− e−Λik(t)dt

) λijk(t)
Λik(t)

, j ∈ {1, 2} (14)

pSV ik = e−Λik(t)dt
(
1− e−ζik(t)dt

)
(15)

(nSEi1k, nSEi2k, nSVik, nSSik) ∼ Mult(Sik(t), pSEi1k, pSEi2k, pSV ik, 1−
∑
j

pSEijk − pSV ik) (16)

pEIA ijk = (1− pCijk)
(
1− e−γEdt

)
(17)

pEIP ijk = pCijk

(
1− e−γEdt

)
(18)

pEV ijk = e−γEdt
(
1− e−ζik(t)dt

)
(19)

(nEIAijk, nEIP ijk, nEVijk, nEEijk) ∼ Mult(Eijk(t), pEIA ijk, pEIP ijk, 1−
∑

X∈IA,IP ,V

pEXijk) (20)

(pIARijk, pIAV ijk) =
(
1− e−γAdt, e−γAdt(1− e−ζik(t)dt)

)
(21)

(nIARijk, nIAVijk, nIAIAijk) ∼ Mult(IAijk(t), pIARijk, pIAV ijk, 1− pIARijk − pIAV ijk) (22)

(pIP IC ijk, pIPV ijk) ∼
(
1− e−γP dt, e−γP dt(1− e−ζik(t)dt

)
(23)

(nIP ICijk, nIPVijk, nIP IP ijk) ∼ Mult(IP ijk(t), pIP IC ijk, pIPV ijk, 1− pIP IC ijk − pIPV ijk) (24)

pICHijk = pHijk(1− pGijk)
(
1− e−γHdt

)
(25)

pICGijk = pHijkpGijk

(
1− e−γHdt

)
(26)

pICRijk = (1− pHijk)
(
1− e−γHdt

)
(27)

(nICHijk, nICGijk, nICRijk, nICICijk) ∼ Mult(ICijk(t), pICHijk, pICGijk, pICRijk, 1−
∑

X∈H,G,R

pICXijk)

(28)

pHDijk = pDijk

(
1− e−γHdt

)
(29)

pHRijk = (1− pDijk)
(
1− e−γHdt

)
(30)

(nHDijk, nHRijk, nHHijk) ∼ Mult(Hijk(t), pHDijk, pHRijk, 1− pHDijk − pHRijk) (31)

nGDijk ∼ Bin(Gijk, 1− e−γGdt) (32)

γREijk = 1j≤2(1− ηj)λi,3−j,k (33)

pRSijk =
(
1− e−(γR+γREijk)dt

) γR
γR + γREijk

(34)

pREijk =
(
1− e−(γR+γREijk)dt

) γREijk

γR + γREijk

(35)

pRV ijk = e−(γR+γREijk)dt
(
1− e−ζik(t)dt

)
(36)

(nRSijk, nREijk, nRVijk, nRRijk) = Mult(Rijk(t), pRSijk, pREijk, pRV ijk, 1−
∑

X∈S,E,V

pRXijk) (37)

pTpreTP ijk
= pP

(
1− e−γpredt

)
(38)

pTpreTN ijk
= (1− pP )

(
1− e−γpredt

)
(39)

(nTpreTP ijk, nTpreTNijk, nTpreTpreijk) ∼ Mult(Tpreijk(t), pTpreTP ijk
, pTpreTN ijk

, 1− pTpreTP ijk
− pTpreTN ijk

)

(40)

nTPTNijk ∼ Bin(TP ijk(t), 1− e−γP dt) (41)

where nXXijk is the number of individuals in age group i and vaccination stratum k infected with variant
j (if they are in an infection state) who do not move from state X at time t.
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Model likelihood

The model likelihood is composed of the likelihoods for the different data streams that the model is fitted
to, namely the age-stratified time series of hospitalisations, hospital deaths and confirmed cases, and the
age-stratified seroprevalence data, as detailed below.

In the following, Y ∼ Bin(n, p) denotes that Y follows a binomial distribution with n trials and success
probability p, such that

P (Y = y) = PBin(y|n, p) =
(
n

y

)
py(1− p)n−y.

and the mean and variance of Y are np and np(1−p) respectively. Y ∼ NegBin(m,κ) denotes that Y follows
a negative binomial distribution with mean m and shape parameter κ, such that

P (Y = y) = PNegBin(y|m,κ) =
Γ(κ+ y)

y!Γ(κ)

(
κ

κ+m

)κ (
m

κ+m

)y

where Γ(k) is the gamma function, and the variance of Y is m+m2/κ.

Hospitalisations

We assume that the observed number of hospitalisations in each age group at time t, YHi(t), is distributed
according to a negative binomial distribution

YHi(t) ∼ NegBin(XHi(t), κH)

with mean
XHi(t) =

∑
j

∑
k

nICHijk

where the shape parameter κH determines the overdispersion in the observation process and thus accounts
for noise in the underlying data, and is taken to be 20. The contribution of the age-stratified hospitalisation
data to the likelihood is therefore:

LH =
∏
t

∏
i

PNegBin(YHi(t)|XHi(t), κH)

Hospital deaths

The observed number of hospital deaths in each age group at time t is assumed to be distributed according
to a negative binomial distribution:

YDi(t) ∼ NegBin(XDi(t), κD)

with mean
XDi(t) =

∑
j

∑
k

nHDijk

and overdispersion parameter κD, taken to be 20. The contribution of the age-stratified hospital death data
to the likelihood is thus:

LD =
∏
t

∏
i

PNegBin(YDi(t)|XDi(t), κD).

Confirmed cases

The daily number of confirmed cases in each age group is assumed to arise as the noisy under-reported
observation of a hidden underlying Markov process

Xcases,i(t) =
∑
j

∑
k

nEIP ijk
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such that it follows a negative binomial distribution

Ycases,i(t) ∼ NegBin(ϕcasesXcases,i(t), κcases)

with constant reporting factor ϕcases and shape parameter κcases. The corresponding likelihood contribution
is

Lcases =
∏
t

∏
i

P (Ycases,i(t)|Xcases,i(t), κcases, ϕcases) (42)

Seroprevalence

To fit the model to the age-stratified data from the two sero-surveys, we first calculate the number of
seropositive and seronegative individuals in each age group over 20 years-of-age in the model (i.e assume the
true serological status of all individuals is known):

XP i(t) =
∑
j

∑
k

TP ijk(t),

XNi(t) = Ni −
∑
j

∑
k

TP ijk(t), i ∈ {[20− 29), . . . , 70+}.

We then compare the observed number of seropositive individuals in each age group in the sero-survey,
YP i(t), with the number expected from the model based on the sample size Ytest,i(t) and the sensitivity
psens and specificity pspec of the serological assay:

YP i(t) ∼ Bin(Ytest,i(t), ωP (t))

where

ωP i(t) =
psensXP i(t) + (1− pspec)XNi(t)

XP i(t) +XNi(t)

is the apparent prevalence. The likelihood contribution of the sero-survey data is:

Lsero =
∏
t

∏
i

PBin(YP i(t)|Ytest,i(t), ωP i(t))

Full likelihood

The full likelihood is the product of the likelihoods for the hospitalisation, death, case and sero-survey data:

L = LHLDLcasesLsero.

Prior distributions for fitted parameters

The prior distributions chosen for the fitted parameters are shown in Table 9. We use relatively informative
gamma distributions for the transmission rate parameters βi ∼ Gamma(k, θ) (i = 1, 2, 3, 4, 5):

f(βi) =
1

Γ(k)θk
βk−1
i e−βi/θ, x > 0,

where Γ(·) is the Gamma function, with shape parameter k = 4 and scale parameter θ = 0.005 to ensure
that the basic reproduction number for the wild-type variant is in a sensible range. Targeted sequencing of
samples from local cases and travellers to screen for new variants was performed from late December 2020 in
French Polynesia (Table 10). Whilst this data is biased and so cannot be used to fit the variant proportions
in the model, it can be used to constrain the introduction dates of the different variants. We use continuous
uniform prior distributions for the introduction dates of the different variants, with the upper bounds of
the distributions for Delta and Omicron BA.1 chosen to match the earliest date each variant was detected
amongst local cases (since the variant cannot have been introduced into local circulation later than it was first
detected), and the lower bounds chosen as 40 days and 12 days earlier respectively based on the earliest date
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each variant was detected amongst travellers and the much higher growth rate of the Omicron BA.1 variant
(Tables 9 and 10). For the wild-type variant, we assume a lower bound of 20 days prior to the first reported
hospitalisation and an upper bound of 9 days later. We treat the introduction dates as continuous variables,
and distribute the initial number of infections of that variant in proportion to how far between time steps
the introduction date is. This helps to avoid mixing issues in the MCMC caused by treating the introduction
date as a discrete variable. For the maximum probability of severe disease across all age groups and the
symptomatic case reporting rate, we use completely uninformative priors, pHmax, ϕcases ∼ Beta(1, 1), where
the density for X ∼ Beta(a, b) is:

f(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1, x ∈ (0.1).

Table 9: Fitted model parameters prior and posterior distributions

Parameter Description Prior distribution Posterior median (95%
CI)

β(t) Transmission rate (per person) on day
t = YYYY-MM-DD

β1 2020-08-27: Moved to level 3 alert,
masking became obligatory

Gamma(4, 0.005) 0.0327 (0.0326, 0.0329)

β2 2020-10-24: Curfew established on the
islands of Tahiti and Moorea

Gamma(4, 0.005) 0.0217 (0.0215, 0.022)

β3 2021-06-01: Returned to level 1 alert,
borders reopened, international flights
increased

Gamma(4, 0.005) 0.0312 (0.0304, 0.0321)

β4 2021-08-02: Moved to stage 4 alert, be-
fore state of health emergency and cur-
few instigated

Gamma(4, 0.005) 0.0248 (0.0241, 0.0255)

β5 2021-11-15: Returned to level 1 alert,
curfew and state of health emergency
lifted

Gamma(4, 0.005) 0.028 (0.0278, 0.0283)

t0 Start date of original outbreak U[2020-07-20,2020-07-29] 2020-07-20 (2020-07-20,
2020-07-20)

tDelta Delta seeding date U[2020-05-20,2020-06-29] 2021-06-12 (2021-06-11,
2021-06-13)

tOmicron Omicron seeding date U[2021-12-01,2021-12-13] 2021-12-01 (2021-12-01,
2021-12-01)

pHmax Maximum probability of severe disease
requiring hospitalisation across all age
groups

Beta(1, 1) 0.0917 (0.0884, 0.0952)

ϕcases Symptomatic case reporting rate Beta(1, 1) 0.549 (0.532, 0.565)

Table 10: Earliest dates of detection of different variants from variant screening of local cases and travellers

Variant Earliest week detected
Local case Traveller

Alpha 2021-W6 (2021-02-08) 2020-W53 (2020-12-28)
Delta 2021-W26 (2021-06-28) 2021-W23 (2021-06-07)
Omicron BA.1 2021-W50 (2021-12-13) 2021-W49 (2021-12-06)
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MCMC algorithm

We use the accelerated shaping and scaling adaptive Markov Chain Monte Carlo (MCMC) algorithm of
Spencer [33] to infer the values of the fitted parameters θ = (β, t0, tDelta, tOmicron, pHmax, ϕcases), where
β = (β1, β2, β3, β4, β5). The algorithm adaptively shapes and scales the proposal matrix to achieve more
efficient mixing. We refer the reader to [33] for full details. The algorithm proceeds by repeating the following
steps:

1. At the ith iteration, draw new values of the fitted parameters from a multivariate normal proposal
distribution

θi ∼ N(θi−1, 2.38
2ci−1Σi−1/nθ)

where Σi−1 is the running estimate of the covariance matrix of the posterior distribution, nθ is the
dimension of the posterior density, and ci−1 is a scaling parameter that is tuned to achieve a desired
acceptance rate (see Step 4).

2. Accept θi with probability:

α(θi,θi−1) = min

(
1,

L(θi)P (θi)

L(θi−1)P (θi−1)

)
where P (θ) is the prior density of θ.

3. Calculate the running mean and covariance as:
if i = 1:

θ1 =
1

2

1∑
j=0

θj

Σ1 =
1

i0 + nθ + 3

(i0 + nθ + 1)Σ0 +
1∑

j=0

θjθ
T
j − 2θ1θ

T

1


if f(i) = f(i− 1) + 1, where f(i) = ⌊ i

2⌋:

θi = θi−1 +
1

i− f(i) + 1
(θi − θf(i)−1)

Σi = Σi−1 +
1

i− f(i) + i0 + nθ + 2

(
θiθ

T
i − θf(i)−1θ

T
f(i)−1 − (i− f(i) + 1)(θi−1θ

T

i−1 − θiθ
T

i )
)

such that the new observation replaces the oldest, and if f(i) = f(i− 1):

θi =
1

i− f(i) + 1
((i− f(i))θi−1 + θi)

Σi =
1

i− f(i) + i0 + nθ + 2

(
(i− f(i) + i0 + nθ + 1)Σi−1 + θiθ

T
i − (i− f(i))θi−1θ

T

i−1 − (i− f(i) + 1)θiθ
T

i )
)

such that a new observation is included, where i0 is a constant that determines the rate at which the
influence of Σ0 on Σi decreases.

4. Update the covariance scaling parameter ci:

ci = max

(
cmin, ci−1 exp

(
δ

istart − i
(α(θi,θi−1)− a)

))
where

δ =

(
1− 1

nθ

) √
2π exp(A2/2)

2A
+

1

nθa(1− a)

A = −Φ−1(a/2)

istart =
5

a(1− a)
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with Φ(·) the cumulative distribution function of the standard normal distribution, cmin is a minimum
value for the scaling parameter (to prevent the proposal matrix being shrunk too much, which can lead
to very slow mixing), and a is the target acceptance rate.

5. If | log(ci)− log(cstart)| > log(3), restart the tuning of the scaling parameter from its current value:

cstart 7→ ci

istart 7→
5

a(1− a)
− i.

We run the above algorithm with i0 = 100, c0 = cstart = 1, cmin = 1, and a target acceptance rate
of a = 0.234 for 50,000 iterations, with the first 5000 iterations discarded as burn-in and the remaining
iterations thinned by a factor of 10. Convergence is assessed visually from parameter trace plots.

Code

The code used in this analysis uses the odin, odin.dust, dust and mcstate R packages for simulating
discrete-time stochastic processes [34–37]. The model structure is similar to that of the COVID-19 transmis-
sion model in the sircovid R package [38], and some of the code from this package is reused. All data and
code used in the analysis is available online at https://github.com/LloydChapman/covid_multi_strain.

Ethical approval

Secondary data analysis of routinely collected COVID-19 data from French Polynesia was approved by the
London School of Hygiene and Tropical Medicine Observational Research Ethics Committee (ref 28129).
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