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Abstract 

Subtyping of acute myeloid leukaemia (AML) has made significant progress, exemplified by the recent

classification updates by the World Health Organization and International  Consensus Classification.

AML  subclassification  is  predominantly  genetics-based,  despite  research  showing  the  benefits  of

transcriptomic  profiling  on  top  of  known  genetic  markers.  However,  a  comprehensive  survey  of

subtypes in AML defined by gene expression has yet  to be performed. To this end, we integrated

mRNAseq data from 1337 patients and five studies, with corresponding biological and clinical data. We

defined 19 gene expression-based subtypes, further stratifying AML. We found that KMT2A leukaemias

with fusion partners MLLT3, MLLT10 and MLLT1 clustered together, while KMT2A-MLLT4 displayed a

distinct  gene  expression  pattern,  suggesting  differences  in  their  aetiology.  We  discovered  a

transcriptional CEBPA subtype, of which only 40% had a CEBPA bZIP indel. Regardless of mutation

status, all patients within this CEBPA cluster had the same favourable outcome. We found four NPM1-

enriched transcriptomic subtypes, each with distinct co-mutation patterns and associated ex-vivo drug

responses.  Similarly,  we  identified  nine  AML  with  myelodysplasia-related  changes  (AML-MRC)

subtypes, dividing a subtype making up one-third of the AML patients into novel groups with different

outcomes and drug response profiles. In conclusion, we provide an unprecedented overview of the

transcriptomic subtypes in AML and illustrate their potential for AML diagnostics.
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Introduction

Acute  myeloid  leukaemia  (AML)  is  a  group  of  blood  cancers  caused  by  an  aggressive

proliferation of myeloid progenitor cells upon  acquiring genetic abnormalities.1,2 Systematic genomic

studies have identified many recurrent genetic abnormalities (RGA) in AML, including  chromosomal

aberrations, indels, and point mutations.3–7 Significant progress has been made in the classification of

AML and based on these RGAs, the current World Health Organization (WHO 2022) and International

Consensus  Classification  (ICC  2022)  define  several AML  subtypes,  as  well  as a heterogeneous

subtype  of  AML  with  myelodysplasia-related  changes  (AML-MRC).2,8 RGAs  are  essential  for  risk

stratification and increasingly guide targeted treatment of specific aberrations with new drugs.1,9 

AML  subclassification  is  currently  genetics-based,  but  a  wealth  of  transcriptomic  data  is

available with great potential to improve clinical AML subtyping.3–5,10–15 Exploring the transcriptome has

led to the discovery of the favourable CEBPA mutated AML subtype16,17, allowing for improved AML risk

stratification.  Furthermore,  gene  expression  profiling  distinguishes  at  least  two  classes  of  NPM1-

mutated AML with different drug responses18,19, showing how transcriptomics can improve treatment

selection.  For AML-MRC, similar  transcriptomic-based stratification would be beneficial  because an

adverse outcome characterises AML-MRC. At the same time, the current heterogeneity is problematic

for individualised treatment.20,21 While these studies underpin the potential of transcriptomic subtyping

on top of known genetic markers, a comprehensive survey of subtypes defined by gene expression in

AML is currently lacking.

Therefore, we integrated four publicly available and our in-house bulk mRNAseq datasets with

corresponding  mutation, fusion, and  cytogenetics data. We annotated the samples according to the

WHO 2022 and ICC 2022 guidelines to align with the latest clinical standards. By harmonising several

studies,  we  increase  statistical  power  and  give  an  unprecedented  overview  of  the  transcriptomic

landscape of  AML. We define  transcriptional  AML subtypes with  specific  marker  gene expression,

mutation statuses and states of maturation arrest. We show that these novel subtypes are clinically

relevant based on specific outcomes and ex-vivo responses to therapeutic agents.
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Methods

Transcriptomic data

For this study, we acquired transcriptional data of AML patients from blood or bone marrow from the

cohorts BEAT5 (n = 450), TARGET4 (n = 187), TCGA3 (n = 151), and Leucegene11–14 (n = 449), and our

earlier published in-house LUMC22 dataset (n = 100) (details in Supplemental Methods). The methods

of whole messenger transcriptome sequencing are available in each of the referenced studies. 

For BEAT, TARGET and TCGA the gene expression was already quantified, as described in

their  respective studies.  To harmonise the analysis pipeline we quantified gene expression for  the

Leucegene and LUMC data in a similar manner. We performed quality control and alignment as earlier

described22 and quantified gene expression using HTSeq23 with the GENCODE v22 annotations.24 

We then batch-corrected the gene expression data with Combat-Seq25 for the variables study,

sex and source tissue to allow for a combined analysis. The success of the batch effect correction was

quantified using the kBET measure.26 The expression data was normalised using DESeq2 with the

geometric mean and variance stabilising transformation.27

Genetic and patient data

We acquired corresponding genetic data for the transcriptomic samples in the form of mutation

calling,  fusion  calling and cytogenetics data,  patient  characteristics  on sex,  age,  blast  percentage,

French-American-British (FAB) classification, and survival data.

We harmonised the data by standardising gene symbols, FAB classification annotations, and

we subclassified samples according to the WHO 20222 and ICC 20228 using genetic data. Samples for

which we found no RGA – but that did have all mutation, fusion and karyotyping available – were

annotated as “AML, other RGA” for the WHO and “AML, NOS” for the ICC. We subclassified samples

with missing genetic data and no RGA found in the available data or no data as “Inconclusive”.

Clustering and differential gene expression analysis

For gene expression-based clustering, we generated a nearest neighbour graph using the 2000 most

variable genes as per the median absolute deviation, on which clustering was performed using the
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Leiden algorithm.28 We performed the clustering as an iterative process till  the clustering captured

genetic AML classes in individual clusters as well as possible.

Differential  gene expression analysis  between the clusters  was performed using DESeq227,

using  the uncorrected  gene counts as input.  We performed a  one versus  rest  analysis  to  identify

differentially  expressed  genes  in  one  cluster  compared  to  all  others  combined.  We  included  the

variables study, sex and source tissue in the analysis to correct for their effect.

Genetic aberration enrichment analysis

We performed an enrichment analysis to evaluate if aberrations occurred more in a cluster than

in others. To filter, we removed aberrations that were only found in one study or that occurred in less

than one per cent of the samples. We tested for enrichment per aberration by performing a Fisher-exact

test for one cluster versus all others and adjusted p-values using the Benjamini-Hochberg procedure.

We considered aberrations as enriched in a cluster if they had an adjusted p-value lower than 0.05 and

occurred in at least 10% of the samples in a cluster.

Cell-type score

We created a cell type score to evaluate the differentiation arrest status of samples, using the mean

expression  of  30  marker  genes  for  several  haematological  cells  as  reported  by  van  Galen  and

colleagues.29 We generated this score per cell type, per sample.

Drug response analysis

To analyse drug response differences between clusters, we used the ex-vivo drug response data of the

BEAT5 cohort. The drug response was reported as area under the curve (AUC) and was available for

up to 122 small-molecule drugs for 330 samples. We tested for differences in drug response with a

Wilcoxon test by comparing the AUC values of one cluster to the AUC values of all other clusters. The

p-values were adjusted using the Benjamini-Hochberg procedure. We considered samples in a cluster

sensitive  to  a  drug  if  the  median  AUC was lower  in  that  cluster  compared to  the  median  of  the

combined other clusters or resistant to a drug if the median AUC was higher in that cluster compared to

the median of the combined other clusters and if the adjusted p-value was below 0.05.
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Data Sharing Statement

Differential gene expression results are available from Appendix 1. Data supplements are available in

the online version of this article. For further data requests please contact e.b.van_den_akker@lumc.nl.

Results

Transcriptomic analysis further stratifies AML

After harmonising our dataset of 1337 patients (Figure 1A,B, Supplemental figures 1-3), we

identified 19 transcriptional clusters (Figure 1C, Supplemental table 1). Enrichment analysis found

several significantly enriched RGAs in the clusters (Figure 1D, exact p-values in Supplemental table

2). We then used enriched aberrations and the distribution of WHO 2022 and ICC 2022 diagnoses

(Supplemental Figure 4) to name our transcriptional subtypes (marked by t).

We found that the gene expression-based subtypes confirmed the genetic RUNX1-RUNX1T1,

CBFB-MYH11, PML-RARA fusions and NUP98 rearrangements subtypes of the WHO 2022 and ICC

2022. The  clustering  split  MECOM rearranged  samples  between  six  AML-MRC clusters, and  we

observed no specific pattern for the BCR-ABL1 and DEK-NUP214 fusion genes. These three fusions

occur with a low frequency in AML, and the lack of a distinctive expression pattern might be attributed

to limited statistical power. 

Contrasting genetic subtyping, we found that based on gene expression, refinements in subtype

definitions were possible for  AML with KMT2A rearrangement and AML with CEBPA mutations. Also,

we  found  four  transcriptional  subtypes  of  AML,  NPM1-mutated  patients,  and  nine  transcriptional

subtypes of AML-MRC patients, providing essential evidence for improvements in AML subtyping for

these patient groups.

KMT2A fusions with MLLT3, MLLT10, and MLLT1 share a specific gene expression signature

The recent  update  of  the  WHO subclassification  merged all  KMT2A fusions  into  one AML

subtype,  while  the  ICC  defines  AML  with  a  KMT2A-MLLT3  fusion  and  AML  with  other  KMT2A

rearrangements.2,8 We  found  that  the  KMT2A  cluster  was  enriched  for  KMT2A-MLLT3,  KMT2A-ᵗ

MLLT10, and KMT2A-MLLT1, while KMT2A-MLLT4 grouped together and KMT2A-ELL samples were

located  in  NPM1-erriched clusters  (Table S2,  Figure 2A,B).  KMT2A-MLLT3, KMT2A-MLLT10, and
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KMT2A-MLLT1  had  a  similar  expression  pattern,  while  KMT2A-MLLT4  and  KMT2A-ELL  showed

different expression patterns (Figure 2D).

Differential  gene expression  analysis  (Appendix  2)  showed  that  high  expression  of  the

homeobox family genes HMX2 and HMX3 (Figure 2C) characterised the KMT2At cluster. Both of these

genes are known to induce myeloid differentiation arrest, suggesting a causal role in AML pathogenesis

for the KMT2A  cluster.ᵗ 30 In addition, we found high expression of XAGE1A and XAGE1B, which studies

have proposed as potential targets for immunotherapy.31,32 Based on gene expression, we could not

confirm  established  genetic  groupings  of  KMT2A  rearrangements,  but  rather  find  KMT2A-MLLT3,

KMT2A-MLLT10,  and  KMT2A-MLLT1  together  and  KMT2A-MLLT4  separately  to  form  two

transcriptional groups, suggesting marked differences in the disease.

The CEBPAt cluster gene expression signature indicates a favourable prognosis even  in the

absence of a CEBPA bZIP in-frame mutation

As acknowledged in the ELN2022 guidelines,  patients with  CEBPA bZIP inframe-mutation have the

same favourable prognosis as patients with a biallelic CEBPA mutation.1,33,34 Unexpectedly, only 40% of

the  samples  within  the  CEBPAt cluster  carried  a  CEBPA  bZIP  in-frame  mutation.  The  remaining

samples either had different types of  mutations in the bZIP  area (7%), only an N-terminal mutation

(23%), or no CEBPA mutation (30%), while exhibiting a similar expression profile (Figure 3A). Several

samples with a single bZIP or N-terminal mutation were located outside the CEBPA t cluster, but CEBPA

bZIP in-frame mutations were almost exclusively present in the CEBPAt cluster (Figure 3A,B). 

A comparison of the overall survival between patients in the CEBPA t cluster showed that  all

patients in the CEBPAt cluster had a similarly favourable outcome, irrespective of the CEBPA mutation

status (Figure 3C). In contrast, patients with a CEBPA mutation outside the CEBPA t cluster showed

inferior overall survival. The CEBPAt cluster thus marks a favourable AML subtype that extends beyond

patients with CEBPA bZIP in-frame mutations and suggests that for subtyping the expression pattern of

the CEBPAt cluster should be considered.

Gene expression profile analysis identifies four transcriptional NPM1 subtypes

Although there have been reports on  transcriptional subgroups in NPM1-mutated AML – with

clinical implications – the current WHO 2022  and ICC 2022 subclassifications only contain a single

NPM1-mutated AML subtype.2,8,18,19 Based on gene expression profiles, we distinguished four NPM1
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clusters  with  different  frequencies  of  NPM1  mutation-carrying  patients in  addition  to  other  RGAs

(Figure 4A), haematological cell types (Figure 4A-B), and marker genes (Figure 4D).

The NPM1 (1)t cluster  showed enrichment for IDH1-R132, IDH2-R140, and TET2 mutations,

with  mutual  exclusivity  between these mutations (Figure 1D,  4A).  IDH1/2 and TET2 mutations  all

disrupt TET2-associated pathways35,  indicating that  the TET2-pathway disruption drives AML in the

NPM1 (1)t cluster. A similar subset of NPM1-mutated AML with IDH1/2 or TET2 co-mutations, marked

by  protein  expression  of  CD33  and  KIT  (CD177)  and  a  lack  of  CD34  and  HLA-DR  has  been

described.36 NPM1 (1)t had a corresponding expression pattern for these surface markers,  validating

this  NPM1 subtype  (Supplemental  Figure  5).  Besides  these  earlier  reported  markers,  high  gene

expression of SNCAIP, PGAM1P5 and SLC22A10 characterised this cluster (Figure 4D).

NPM1  (2)t samples  were  frequently  FLT3-ITD  mutated  and  had  a  significant  higher  allele

frequency of FLT3-ITD (Figure 4A,C). NPM1 and FLT3-ITD mutations thus seem to drive NPM1 (2) t.

High  expression  of  GLI2  strongly  marked  this  cluster  (Figure  4D).  The cell-type scores  and FAB

classification of NPM1(1)t and NPM1 (2)t showed a hematopoietic stem cell (HSC) and progenitor-like

status, with NPM1 (1)t samples also displaying high scores for granulocyte-monocyte progenitor (GMP)-

like and promonocyte-like expression signatures (Figure 4A,B).

NPM1 (3)t exhibited enrichment for mutations in the FLT3 tyrosine kinase domain (FLT3-TKD),

PTPN11, and SMC1A (Figure 4A). These mutations generate specific gene expression profiles when

co-occurring with an NPM1 mutation.37–40 NPM1 (3)t also had a mixed differentiation status pattern while

lacking specific marker genes. Therefore, the NPM1 (3)t cluster seems to be a heterogeneous cluster,

consisting of samples with NPM1 mutations and relatively rare co-mutations.

For the NPM1 (4)t cluster, most samples were co-mutated with DNMT3A-R882 (Figure 4A) and

had a significantly lower allele frequency for mutated NPM1 (Figure 4C). NPM1 (4)t was characterised

mainly  by  high  scores  for  monocyte-like  and  conventional  dendritic  cell  (cDC)-like  signatures,  as

reflected by the high fraction of FAB M4 (acute myelomonocytic leukaemia) and M5 (acute monocytic

leukaemia) samples (Figure 4A,B). 

In addition, adult patients from the NPM1 (1)t and NPM1 (4)t clusters were older compared to

the  other  NPM1  clusters,  while NPM1  (1)t and  NPM1  (2)t patients  were  more  often  female

(Supplemental Figure 6).
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Gene expression profile analysis identifies nine AML-MRC-related transcriptional subtypes

Aside from RGA-defined AML subtypes, the WHO 2022 defines a heterogeneous class of AML-

MRC,  while  the  ICC 2022 further  divides  AML-MRC into  three  groups based on TP53 mutations,

chromatin and splicing gene mutations and cytogenetic abnormalities.2,8 We found nine AML-MRC-

related gene expression-based subtypes, allowing for further stratification of this heterogeneous class.

Only the chromatin and splicing related gene STAG2 marked a cluster, but the other clusters

did not encapsulate a single ICC 2022 AML-MRC subtype (Supplemental Figure 3,4); AML-MRC (3)t

exemplified this, which showed enrichment for mutations in TP53, RUNX1 and SF3B1 (Figure 1D, 5A).

AML-MRC subtypes thus mostly do not lead to the specific expression profiles seen for other RGAs, but

a further subclassification is possible based on transcriptomics. AML-MRC (5) t was also enriched for a

transcription-induced chimaera between PIM3 and SCO2 that is common in paediatric AML and only

detectable by RNA-based methods41. The cell-type scores of the AML-MRC-related clusters showed

different  states  of  maturational  arrest,  further  indicating  that  these  clusters  represent  additional

subtypes (Figure 5A,B).

In addition, we found a novel cluster of IDH1-R132, IDH1-R140, or IDH-R172 mutated samples,

indicating that an AML subtype consisting of all IDH1 and IDH2 mutated samples with a specific gene

expression  should  be  considered.  Tazi  and  colleagues  reported  a  DNMT3A and  IDH1/2  mutated

subtype7, but only half of the IDH1/IDH2 mutations t cluster patients had a DNMT3A mutation. We found

4% of our patients to be in the IDH1/IDH2 mutations t cluster,  which is four times greater than the

incidence reported by Tazi and colleagues. 

Finally,  we discovered a novel cluster in which we failed to find enrichment for any genetic

aberration, which we designated No RGAt.  The No RGAt cluster showed high expression of genes

relating to the T-cells, such as TRAV4 and CD3G (Figure 5C).

By further analysis of differential gene expression, we identified marker genes for most AML-

MRC clusters – possibly allowing for gene expression-based diagnosis – of which some have also been

proposed as  therapeutic  targets  (Figure 5C).42–45 For  AML-MRC (4)t,  we found high expression of

glycophorin genes, which encode transmembrane proteins in red blood cells.46–48 Indeed, AML-MRC (4)t

had a high proportion of acute erythroid leukaemia AML M6 samples  (Figure 5B).

Lastly,  we  inspected  the  clinical  characteristics  of  the  patients  in  the  AML-MRC  clusters

(Supplemental Figure 6). As expected, AML-MRC patients were older, but we observed this especially
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for AML-MRC (6)t,  STAG2t and No RGAt.  The blast percentages for the AML-MRC clusters varied

greatly, with a median blast percentage of 75% for AML-MRC (6) t  and of 30% for AML-MRC (5) t. The

AML-MRC (6)t cluster had the highest fraction (~50%) of relapsed patients of all 19 clusters.

Novel transcriptional subtypes allow for further risk stratification

Having established new AML subgroups defined by gene expression profiles, we compared

differences in overall survival between the clusters to investigate their relevance for risk stratification

(Supplemental Figures  7-8). Risk stratification for overall survival based on transcriptional  subtypes

performed equally well  compared to genetics.1,6,7,49 Only the hazard ratio of the KMT2A cluster was

higher than expected, which could be attributed to the inclusion of age as a covariable because only

younger (<60 years) KMT2A-MLLT3 patients show better survival.50

In addition, we investigated if the NPM1 and AML-RMC-related transcriptional clusters provided

additional  prognostic  information.  Others  have  shown  differences  in  survival  between  NPM1

clusters19,36, and the NPM1 (2)t cluster showed a significantly worse outcome based on Cox regression

analysis (Supplemental  Figure 9A).  However,  no survival  differences between the NPM1 clusters

remained  when  we  included  FLT3-ITD  mutation  status  (Supplemental  Figure  9B).  AML with  co-

mutation of NPM1 and FLT3-ITD has a known worse outcome than NPM1 mutations alone.1 The higher

hazard  ratio  of  NPM1  (2)t is  thus  due  to  its  enrichment  for  FLT3-ITD  mutations,  and  outcome

differences thus seem not haematological maturation stage driven as earlier described.

For the nine AML-MRC clusters we found that AML-MRC (1) t and AML-MRC (4)t had relative

worse outcomes (Supplemental Figure 7,8). Tazi and colleagues7 observed an intermediate outcome

for the DNMT3A-IDH class, but the IDH1/IDH2 mutationst cluster exhibited a comparable poor outcome

to other AML-MRC clusters. In contrast, we found the No RGA t cluster to be a more favourable AML-

MRC subtype  (Supplemental Figure 7,8) and the AML-MRC-related clusters thus have the potential

for risk stratification refinement.

Newly identified AML subtypes exhibit differences in drug response

Finally, we evaluated whether our newly identified gene expression-based AML subtypes are

sensitive to specific drugs. Using  ex-vivo drug response data, we observed that the NPM1 mutation-

enriched clusters exhibited distinct responses to established leukaemia agents such as venetoclax and

nilotinib. For the transcriptional AML-MRC clusters, we found cluster-specific drug responses to agents
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already used for cancer therapy, possibly improving targeted therapy options for this large AML patient

group characterised by a poor prognosis (Figure 6, Supplemental figure 10).

For the NPM1t clusters, the Bcl2 protein inhibitor venetoclax – currently in trial for treating AML

patients  –  was  effective  for  NPM1 (1)t and  NPM1 (2)t.  This  result  is  in  line  with  the  finding  that

monocytic AML phenotype confers resistance to venetoclax, but does not support the finding that FLT3-

ITD is associated with increased resistance to venetoclax.51,52 The ABL inhibitor nilotinib displayed a

favourable drug response in NPM1 (3)t and NPM1 (4), similar to the MEK inhibitor selumetinib, which

has already shown modest antileukemic activity in patients with AML (Figure 6A,B, Supplemental

Figure 10).53 In addition, we also found various drugs to be effective in only one specific NPM1 t cluster.

For example, the immunomodulatory imide drug lenalidomide was more effective for NPM1 (1) t. The

FLT3 inhibitors quizartinib and crenolanib also showed favourable responses for AML in NPM1 (2) t,

confirming that this cluster is FLT3-ITD driven (Figure 6A,B, Supplemental Figure 10). 

For all nine AML-MRC clusters, we found a relatively low resistance to the apoptosis-triggering

drug elesclomol but also discovered significant drug response differences between the clusters (Figure

6A,C, Supplemental Figure 10). For example, venetoclax was effective for AML-MRC (2)t, while the

CDK9 inhibitor flavopiridol showed more effective killing for AML-MRC(3)t and AML-MRC (5)t. 

Finally, we evaluated the drug response of the two novel AML-MRC-related clusters. We could

not identify significantly effective drugs for the IDH1/IDH2 mutations t cluster, but the low sample size

hindered the analysis of this cluster. In contrast, the No RGA t cluster showed high sensitivity to most

drugs and responded particularly well to the second-generation ABL inhibitor dasatinib. 

Overall, our data provides new opportunities for targeted therapy in AML, with subtypes based

on gene expression rather than recurrent genetic aberrations.

Discussion

 Subclassification of AML has made significant progress. However, the subclassification of AML

is predominantly genetics-based, while research has shown options for additional stratification using

transcriptomics. Therefore, we give in this study an unprecedented overview of transcriptomics in AML,

providing a framework for introducing transcriptional subtyping in AML diagnostics.

The scale of this study, due to the integration of several cohorts, permitted extensive analyses and

allowed us to identify 19 gene expression-based AML patient groups, many more than are currently in
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use based on genetics. We showed vital insights and possibilities for improved subtyping of KMT2A

rearranged and CEBPA-mutated AML. In  addition,  we identify  a  range of  new subtypes in NPM1-

mutated AML and AML-MRC, allowing for  further  stratification of  groups that  make up 65% of  the

patients  in  our dataset.  We show the importance of  these new patient  groups by relating them to

specific  biological  properties,  overall  survival  and ex-vivo  drug response profiles,  highlighting  their

potential to benefit AML patients greatly.

Risk stratification guidelines for AML differentiate between KMT2A-MLLT3 and other KMT2A

fusions due to different outcomes, which is also reflected in the ICC 2022.1,8 The prognostic significance

of KMT2A rearrangements has been a long topic of debate, with research showing that outcome also

depends on expression levels of specific genes and patient age.50,54 We found that KMT2A-MLLT3,

KMT2A-MLLT10 and KMT2A-MLLT1 patients  had a  similar  expression profile,  with  KMT2A-MLLT4

clustering separately, contrasting the WHO and ICC 2022 subclassifications. We could, however, not

evaluate the effects of KMT2At cluster status on overall survival for individual KMT2A rearrangements

due to  the availability  of  outcome data.  More data from KMT2A rearranged patients  could provide

essential insights into the significance of the found KMT2A t cluster and the specific expression profile of

KMT2A-MLLT4 for risk stratification.

Similarly, the current genetic CEBPA subtype might be too restrictive since all patients within

the  CEBPAt cluster  had  a  favourable  prognosis.  One  possible  explanation  might  be  the

hypermethylation of regulatory CEBPA gene regions, resulting in the same gene expression profile and

favourable survival.55,56 However, the observed incidence of this hypermethylation56 is too low to explain

all cases in the CEBPAt cluster,  demonstrating that diagnosis of this favourable subtype should be

performed based on gene expression.

We found four transcriptional clusters enriched for AML with mutated NPM1, validating earlier

work on NPM1-mutated subgroups with different phenotypes and drug responses19,36,57 and providing an

additional subgroup. However, contrasting earlier work, we found no different survival for the more stem

cell-like clusters  or  NPM1 co-mutated with TET2, IDH1 or  IDH2.  Only  NPM1 (2) t showed a worse

outcome, which we could relate to the known worse outcome observed for NPM1 and FLT3-ITD co-

mutated patients.1 Further research will  have to investigate the significance of transcriptional NPM1

subtypes for risk assessment. Still, different gene expression-based NPM1 subtypes – with different ex-

vivo drug sensitivities – should be considered in updates of AML subclassification guidelines.
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For AML-MRC, we found nine subgroups. To our knowledge, we are the first to identify AML-

MRC classes with different biological properties, overall survival, and ex-vivo drug responses based on

gene  expression.  Identifying  subgroups  with  specific  treatment  options  for  AML-MRC  patients  is

essential  since these patients are generally older,  have worse clinical  outcomes, and often do not

qualify for chemotherapy or allogeneic stem cell transplantation.20,21 Also, no clear targeted therapies

besides  hypomethylating  agents  are  available  for  these  patients  currently58.  Identifying  these  nine

patient clusters was highly dependent on gene expression – exemplified by the cluster with high T-cell

receptor expression – and did not overlap with ICC 2022 definitions, thus underscoring the relevance of

transcriptomics in AML diagnostics.

Ideally,  the  field  uses  these transcriptional  AML subtypes to  design  new clinical  studies  to

evaluate subtype-specific drug responses. The favourable reaction of AML in two AML-MRC clusters

for flavopiridol, a drug for which there are ongoing efforts to identify specific subsets of responsive AML

patients, exemplifies the relevance of identifying subtypes with possible specific drug responses.59 Also,

these discoveries can provide a rationale for implementing transcriptomics in AML diagnostics to treat

relapsed or refractory AML patients – for whom there are no standard treatment options – with drugs for

other cancers.

In conclusion, we show that gene expression analysis of AML identifies various new clinically

applicable  subtypes  of  AML,  emphasising  the  relevance  of  integrating  transcriptomics  in  routine

diagnostics. In the future, expression-based AML subclassification could guide personalised treatment

decisions, hopefully resulting in improved overall survival and a better quality of life.
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Figure 1: Transcriptomic analysis further stratifies AML. A) Flowchart of the used methods. B) A tSNE of the 
expression of the 2000 most variable genes per the median absolute deviation (MAD). Each dot represents a patient 
sample. The samples are coloured according to the WHO 2022 subtyping of AML. C) The same tSNE as in B, but 
samples are coloured according to one of the 19 clusters found using the Leiden algorithm. Cluster names are based on 
enriched aberrations. D) Dot plots that show aberration enrichment in the 19 found clusters, using Fisher’s extract test. 
The dots are coloured according to the corrected p-value. The p-values were corrected for multiple testing using the 
Benjamini-Hochberg procedure. The dots are sized according to the fraction of samples in the cluster with the aberration.
The x-axis shows the aberrations and the y-axis shows the clusters.
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Figure 2: KMT2A fusions with MLLT3, MLLT10, and MLLT1 share a specific gene expression signature. A) shows 
the number of KMT2A arrangements with different fusion partners found in the KMT2A  cluster and the combined other ᵗ

clusters. Only KMT2A fusions with five or more cases are shown. B) tSNE based on the 2000 most variable genes. The 

samples are coloured according to KMT2A-fusions in A. C) Violin plots of the expression of marker genes for the KMT2Aᵗ

cluster. D) Heatmap showing the differential expression of marker genes for the fusions in A. The columns are samples, 
which are split according to fusions. The rows are the genes. 
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Figure 3: The CEBPAt cluster gene expression signature indicates a favourable prognosis even in absence of a 
CEBPA bZIP in-frame mutation. A) Waterfall plot and gene expression heatmap of all samples in the CEBPA  cluster ᵗ
and samples with a CEBPA mutation located outside the CEBPA  cluster. For the waterfall plot, the rows are the type andᵗ
location of the mutation in the CEBPA gene. The heatmap shows the expression of marker genes for the CEBPAt cluster, 
with the specific genes on the rows. The columns are the samples, grouped by CEPBAt cluster or the combined other 

clusters. B) tSNE based on the 2000 most variable genes. The samples are coloured according to the type of CEBPA 

mutation. C) Kaplan-Meier curve of the survival of samples in and outside the CEBPAt cluster. In blue is the survival 

curve of patients in the CEBPAt cluster with a CEBPA bZIP in-frame indel. In red are the patients in the CEBPAt cluster 
without a CEBPA bZIP in-frame mutaions. In green are the patients with a CEBPA mutation located outside of the 
CEBPAt cluster.
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Figure 4: Gene expression profile analysis identifies four transcriptional NPM1 subtypes. A) Waterfall plot of 
enriched mutations in the NPM1 clusters, combined with a plot of the cell type scores for different haematological cells. 
The cell type score was generated by taking the mean expression of 30 marker genes per cell type. The columns are 
samples grouped by cluster. The rows are the aberrations and cell type scores. Only samples with data on all enriched 
aberrations are plotted. B) Barplot showing the fraction of different FAB classifications found in the four NPM1 clusters. 
C) Boxplots showing the scaled variant allele frequency (VAF) of mutated NPM1 and FLT3-ITD from the BEAT, 
Leucegene, and LUMC cohorts. The VAF was scaled per gene and study to allow for a combined analysis. We used a 
Wilcoxon test to test for significant differences in VAFs between the clusters. The Benjamini-Hochberg procedure was 
used to adjust the p-values for multiple testing. P-values: * < 0.05, ** < 0.01, *** < 0.001 D) Violin plots of the expression 
of marker genes for the NPM1-enriched clusters. HSC = hematopoietic stem cells, Prog. = progenitor, GMP = 
granulocyte-monocyte progenitor, Prom. = promonocytes, Mono. = monocytes, cDC = conventional dendritic cells, FAB =
French American British classification, VAF = variant allele frequency
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Figure 5: Gene expression profile analysis identifies nine AML-MRC-related transcriptional subtypes. A) Waterfall
plot of the enriched mutations in the nine AML-MRC-related clusters, combined with a plot of cell type scores for various 
haematological cells. We generated cell type scores by taking the mean of 30 marker genes per cell type. The columns 
are samples, split per cluster. The rows are the aberrations and scores. Only samples with data on all enriched 
aberrations are plotted. MRC genes signifies a mutation in ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, 
U2AF1, or ZRSR2. B) Barplot showing the fraction of different FAB classifications found in the nine AML-MRC-related 
clusters. C) Violin plots of the expression of marker genes for the nine novel AML-MRC clusters, HSC = hematopoietic 
stem cells, Prog. = progenitor, GMP = granulocyte-monocyte progenitor, Prom. = promonocytes, Mono. = monocytes, 
cDC = conventional dendritic cells, FAB = French American British classification, AML-MRC = Acute myeloid leukemia 
with myelodysplasia-related changes
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Figure 6: Newly identified AML subtypes exhibit differences in drug response. A) Heatmap plots coloured 
according to the median scaled area under the curve (AUC) of the ex-vivo drug response per drug and cluster. A green 
colour indicates a lower median AUC for the drug for the samples in the cluster compared to the other clusters, which 
means that a lower dosage was required to kill the same amount of cells and thus indicating a better drug response. Red
indicates a higher median AUC, meaning an unfavourable drug response. An asterisk indicates a significant lower or 
higher AUC compared to the combined other clusters (p-value < 0.05) according to a Wilcoxon test. We corrected the 
resulting p-values with the Benjamini-Hochberg (BH) procedure. The heatmaps show a selection of results from 
Supplemental Figure 10. B) Boxplots showing ex-vivo drug response per NPM1 cluster. C) Same as B, but for the AML-
MRC clusters. For B and C, we performed significance testing using the Wilcoxon test, and p-values were corrected 
using the BH procedure. P-values for boxplots: * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001. 
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