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ABSTRACT  42 

Tobacco use disorder (TUD) is the most prevalent substance use disorder in the world. Genetic 43 

factors influence smoking behaviors, and although strides have been made using genome-wide 44 

association studies (GWAS) to identify risk variants, the majority of variants identified have been 45 

for nicotine consumption, rather than TUD. We leveraged five biobanks to perform a multi-46 

ancestral meta-analysis of TUD (derived via electronic health records, EHR) in 898,680 47 

individuals (739,895 European, 114,420 African American, 44,365 Latin American). We 48 

identified 72 independent risk loci; integration with functional genomic tools uncovered 330 49 

potential risk genes, primarily expressed in the brain. TUD was genetically correlated with 50 

smoking and psychiatric traits from traditionally ascertained cohorts, externalizing behaviors in 51 

children, and hundreds of medical outcomes, including HIV infection, heart disease, and pain. 52 

This work furthers our biological understanding of TUD and establishes EHR as a source of 53 

phenotypic information for studying the genetics of TUD.  54 

  55 
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Tobacco use disorder (TUD) is the most prevalent substance use disorder in the world, 56 

with a high proportion of smokers meeting criteria for nicotine dependence.1,2 Nicotine 57 

dependent individuals often experience withdrawal symptoms when they stop smoking. As a 58 

result, they often have substantial difficulty quitting and continue to smoke despite negative 59 

mental, social, and medical consequences. Tobacco smoking is the leading cause of 60 

preventable death worldwide, causing 6 million annual premature deaths,3 and is also highly 61 

associated with other worldwide leading contributors of morbidity and mortality, including lung 62 

cancer, chronic obstructive pulmonary disease, cardiovascular disease, mood disorders, and 63 

other substance use disorders.4–6 Unfortunately, available preventative and treatment options 64 

for TUD have low success rates.7 65 

Genetic factors influence smoking behaviors, with twin-heritability estimates ranging 66 

from ~30-70%.8–12 Recently, genome-wide association studies (GWAS) have expanded in size 67 

(N~2.5M) and yielded hundreds of novel loci for smoking-related behaviors (summarized in 68 

Supplementary Table 1), primarily for nicotine consumption.13 These GWAS have revealed 69 

pervasive pleiotropy, with Mendelian randomization (MR) analyses highlighting potential causal 70 

effects of regular tobacco smoking on health outcomes (e.g., cardiovascular health,14 cancer 71 

risk,14 bone mineral density15), numerous other substance use disorders (e.g., alcohol,14 72 

cannabis16 and opioid use disorders17), and psychiatric and related conditions (e.g., major 73 

depressive disorder,18 suicide-related behaviors,19 loneliness20). 74 

While these studies have been immensely successful, they have not focused on TUD 75 

itself. As a result, relatively little is known about the specific genes that confer risk for the 76 

development of TUD and associated conditions. One of the major roadblocks to progress in 77 

identifying risk-conferring genes has been the lack of sufficiently large samples with misuse 78 

phenotypes. This is an important limitation because prior studies have shown that the genetic 79 

architecture of substance use is largely different from that of misuse.21–26 The largest GWAS of 80 
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nicotine dependence, comprising 58,000 European- and African-ancestry smokers, using the 81 

self-reported Fagerström Test for Nicotine Dependence (FTND), identified only five loci.27 In 82 

addition, while there have been nicotine dependence GWAS in individuals of ancestries other 83 

than European28 (Supplementary Table 1 for full list), sample sizes for diverse populations 84 

have been limited (N<12K). 85 

The use of electronic health records (EHR) is a relatively untapped, cost-effective 86 

strategy for characterizing smoking-related phenotypes, including TUD. EHR-defined TUD 87 

generally relies on International Classification of Disease (ICD) diagnostic codes, which can be 88 

aggregated into “phecodes” that require the presence of an ICD code on two or more separate 89 

visits. TUD diagnostic codes are effective identifiers of smoking status.29 A key consideration, 90 

and the one we examine in this study, is the utility of TUD phecodes for use in large-scale 91 

GWAS to boost power and improve our ability to identify novel loci for TUD.29–31 To address this 92 

question, we performed a multi-ancestral meta-analysis of TUD comprising 898,680 individuals 93 

of European (EUR), African American (AA) and Latin American (LA) ancestry recruited from 94 

multiple biobanks within the PsycheMERGE network32 (Vanderbilt University Medical Center’s 95 

biobank, BioVU, NEUR=46,905; Mass General Brigham Biobank, MGBB, NEUR=22,268; Penn 96 

Medicine BioBank, PMBB,33 NEUR=28,999, NAA=10,088; Million Veteran Program, MVP, 97 

NEUR=396,833, NAA=104,332, NLA=44,365), and combined with existing data from the UK 98 

Biobank (UKBB, NEUR=244,890), which used a less stringent definition. In secondary analyses, 99 

we further characterized the genetic architecture of TUD, examined pleiotropy with other 100 

psychiatric and medical outcomes, and harnessed the data to reveal new potential medications 101 

for treating this serious psychiatric condition. 102 

 103 

 104 
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Results 105 

Cohort Descriptions and Phenotype Validation. We included individuals from eight cohorts 106 

across five different sites (Figure 1a for an overview of the cohorts; Supplementary Table 2 for 107 

sample sizes). The methods to ascertain cases were identical for seven of these cohorts. 108 

Individuals were identified as cases if they met criteria for a TUD phecode (a TUD ICD9 or 109 

ICD10 code on two or more separate visits, described in Supplementary Table 3); controls 110 

were screened for the absence of a TUD diagnosis. We benchmarked the TUD-EHR definition 111 

against self-reported smoking questionnaire data and other comorbid ICD codes 112 

(Supplementary Table 4). Across contributing biobanks, cases were enriched for ever smokers 113 

(92-99%), with only a minor proportion (<2%) of cases self-identifying as never-smokers 114 

(Supplementary Table 5). In contrast, a smaller proportion of controls were ever smokers (17-115 

56%), with a larger proportion self-identifying as never-smokers (39-73%). Attempts at smoking 116 

cessation were reported by 15-25% of controls and 65-95% of cases. Controls were comparable 117 

to cases on age and sex but reported much lower prevalences of other substance and 118 

psychiatric disorders than cases. Thus, almost all TUD cases have evidence of being either 119 

former or current smokers based on available self-report data. 120 

 121 
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Figure 1. Overview of the cohorts and analysis pipeline (a) and genetic correlations 122 

among the sites (b). (a) We conducted independent GWAS of TUD cases and controls in 123 

individuals of European (EUR) ancestry across four PsycheMERGE sites (BioVU, MGBB, 124 

PMBB, and MVP) and performed a GWAS meta-analysis (“TUD-EUR”); these summary results 125 

were used for all secondary analyses. For African American (AA), we conducted GWAS meta-126 

analysis of TUD cases and controls from the PMBB and MVP cohorts (“TUD-AA”). For Latin 127 

American (LA), we conducted GWAS of TUD cases and controls from the MVP cohort. Next, we 128 

performed a multi-ancestral GWAS meta-analysis (“TUD-multi”), which combined the results 129 

from all seven cohorts. We also obtained summary statistics from UKBB, which used a less 130 

stringent case definition in individuals of EUR ancestry and performed a GWAS meta-analysis 131 

within EUR individuals (“TUD-EUR+UKBB”) and across ancestries (“TUD-multi+UKBB”). 132 

Supplementary Table 2 summarizes the datasets used for the analyses. We subjected the 133 

TUD-EUR summary statistics to several secondary analyses to characterize the genetic 134 

architecture of TUD. (b) LDSC genetic correlations for TUD between all different EUR sites 135 

were positive and high, ranging from 0.51 to unity. LDSC genetic correlation for TUD across the 136 

two AA sites was strongly positive (0.86) but not significant (p=0.38). We do not report rg 137 

between PMBB and other sites, because the h2
SNP of TUD in PMBB was not significant (h2

SNP 138 

=0.90, SE=1.30). LDSC SNP-heritability estimates (h2
SNP 6-15%) are shown in the diagonal. 139 

UKBB=UK Biobank, BioVU=Vanderbilt University Medical Center’s biobank, MGBB=Mass 140 

General Brigham Biobank, PMBB=Penn Medicine Biobank, MVP=Million Veteran Program.  141 

 142 

Significant SNP-heritability and genetic correlations across sites. After applying similar 143 

data quality controls, we conducted within-cohort association analyses using logistic regression 144 

and relevant covariates (Methods). We estimated the proportion of variance attributable to the 145 

measured common variants (SNP-heritability, h2
SNP) to be ~6-15% (based on liability scale, 146 

assuming a lifetime risk of 12.5%; Figure 1b, Supplementary Table 6), which is consistent with 147 

prior nicotine-related GWAS.13,27 Genetic correlations across sites and ancestries were high and 148 

positive (rg=0.51-1.24, p<1.80E-02, EUR sites; rg=0.86, p=0.38, AA sites; cross-ancestry 149 

rgs=0.72-0.84, p<7.80E-04; Figure 1b, Supplementary Table 6), serving as the basis for 150 
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ancestry-specific and multi-ancestry meta-analyses, and suggesting that the genetic 151 

architecture of TUD is similar across ancestries.  152 

Multi-ancestry meta-analyses implicate biological underpinnings of TUD. The 153 

primary multi-ancestry meta-analysis of 29,448,768 imputed SNPs (lambda λGC=1.107, Figure 154 

2) was performed on seven cohorts, comprising 653,790 individuals, with 75.71% EUR, 17.50% 155 

AA, and 6.79% LA.  156 

We identified 97 GWS (p<5.00E-08) lead SNPs (r2<0.1) located in 72 independent loci 157 

(Supplementary Table 7). All genome-wide significant loci had been previously reported by 158 

prior smoking GWAS (Supplementary Table 7), including aspects of smoking initiation (7/72), 159 

consumption (22/72), cessation (42/72) and nicotine dependence (1/72; Supplementary Figure 160 

1). While all these loci were recently discovered in a GWAS of 3.4 million individuals in the 161 

GSCAN study,13 here we reproduce some of the GSCAN findings with a considerably smaller 162 

sample size.  163 

Our analyses provide corroborative support for nicotinic acetylcholine receptor genes as 164 

risk genes for smoking-related traits: CHRNA5 (rs576982, p=1.60E-17, chr. 15; this region 165 

includes rs16969968, a well-established functional missense polymorphism [D398N] in 166 

CHRNA5, p=4.93E-11), CHRNB2 (rs45490696, p=7.61E-09, chr. 1), CHRNA2 (rs2741339, 167 

p=2.86E-20, chr. 8), and CHRNA4 (rs2273500, p=7.34E-22, chr. 20). Second, we identified 168 

associations with variants in several genes that modulate dopaminergic transmission, such as 169 

the dopamine receptor D2 (DRD2: genomic position 113334227, p=1.04E-11, and rs4936277, 170 

p=1.81E-09, chr.11), known for its relationship with dopamine and reward,34 previously 171 

associated to nicotine dependence35 and implicated in a recent large-scale GWAS of 172 

addiction;36 dopamine beta-hydroxylase (DBH: rs2007153, 2.55E-16, and rs2519155, p=8.74E-173 

12, chr.9), which encodes an enzyme necessary to convert dopamine to norepinephine and has 174 

been consistently implicated in smoking behaviors;13,37 lysine demethylase 4A (KDM4A: 175 
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rs489319, p=1.47E-10, chr. 1), previously found to interact with dopaminergic agents and 176 

implicated in problematic opioid use;38 phosphodiesterase 4B (PDE4B: rs7528604, p=5.68E-10, 177 

chr. 1), which has regulatory effects on dopaminergic pathways and has been implicated in 178 

GWAS of externalizing behaviors,39 smoking initiation,37,40 and general liability for addiction;36 179 

and neural cell adhesion molecule 1, NCAM1 (rs4144892, p=5.44E-12, chr. 11), which 180 

modulates dopamine signaling41 and has been associated with several smoking-related 181 

traits.35,37 We also identified an association with a deleterious (CADD=23.1)42 coding SNP 182 

(rs61738568, p=2.08E-08, chr. 16) in the FBRS gene, recently implicated in smoking initiation.13 183 

Furthermore, we identified variants in GRM8 (Glutamate Metabotropic Receptor 8; 184 

rs2157752, p=2.79E-08, chr.7), important for mediating reward-related learning and memory, 185 

and in BDNF (rs6265, p=7.18E-09, chr. 11), a candidate gene in genetic studies of substance 186 

use disorders given its role in synaptogenesis and memory. None of the lead SNPs showed 187 

evidence of heterogeneity across cohorts, based on the I2 index (Supplementary Figure 2). 188 

Combining these data with UKBB (which uses a less stringent TUD definition, TUD-189 

multi+UKBB) yielded very similar results (i.e., comparable number of lead SNPs, with an 190 

addition of three independent loci: GALNT10*rs11952152, PXDNL*rs4873592 and 191 

snoU13*rs830432; Supplementary Table 8).  192 
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193 

Figure 2. Manhattan and porcupine plots for the TUD-multi meta-analysis and ancestry-194 

specific GWAS. (a) TUD-multi identified 72 independent risk loci, all of which were recently 195 

replicated by the GSCAN study. (b) Porcupine plot of ancestry-specific meta-analyses identified 196 

55 loci in the European cohort (EUR, in red), and 2 loci in the African cohort (AA, in blue). No 197 

significant associations were detected in the Latin American (LA) cohort. 198 

 199 

Within-ancestry meta-analyses identify ancestry-specific loci associated with TUD. We 200 

conducted within-ancestry meta-analyses of EUR (TUD-EUR) and AA (TUD-AA) using an 201 

sample-size weighted fixed effects model, and a GWAS of LA (TUD-LA).  202 

TUD-EUR included 19,096,380 imputed SNPs in a cohort of 163,734 TUD cases and 203 

331,271 controls, which is 8.5 times larger than the total sample size of previous nicotine 204 

dependence GWAS.27 Observable inflation is attributable to polygenic signal rather than 205 

population stratification or other confounding (LDSC intercept 1.052, SE=0.012) and we did not 206 
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identify evidence of heterogeneity (I2) across the cohorts (Supplementary Figure 3). The TUD-207 

EUR meta-analysis yielded a significant h2
SNP estimate of 7.10% (SE=0.003, Supplementary 208 

Table 9), and identified 68 GWS significant lead SNPs located in 55 independent loci (Figure 209 

2B; Supplementary Table 10). Ten of these loci were ancestry specific in EUR and not GWS in 210 

the multi-ancestry GWAS. Among the 55 independent loci, 8 were fine-mapped to a credible set 211 

(posterior inclusion probability > 0.50), of which 6 harbored known protein coding genes 212 

(ZBTB20, HIST1H2BH, BDNF, SLC4A8, KIF26A, ASIC2; Supplementary Table 11).  213 

Again, combining these data with those of UKBB in a secondary GWAS (TUD-214 

EUR+UKBB) yielded very similar results (e.g., similar h2
SNP estimate of 7.00%; with the addition 215 

of three independent loci - LOC105373664*rs6430094, GALNT10*rs7737824, and 216 

CHRNA4*rs6011779, Supplementary Table 12). Considering the similarity in the number of 217 

loci identified between the primary and secondary GWAS, all downstream analyses used the 218 

EUR GWAS for the most stringent TUD definition (TUD-EUR), which excluded the UKBB 219 

sample.  220 

The TUD-AA meta-analysis yielded a significant h2
SNP estimate of 11.30% (SE=0.015, 221 

Supplementary Table 9), and 2 independent loci (Supplementary Table 13), one on chr. 9 222 

(rs2007153, p=1.17E-08) in DBH, which is novel for the AA population, and another on chr. 20 223 

(rs6011779, p=9.27E-09) in the CHRNA4 gene, replicating a finding from a prior multi-ancestral 224 

(EUR+AA) GWAS of smoking.27 Multi-ancestry fine-mapping analyses using PAINTOR 225 

corroborated the region in chr. 9, identifying two putative causal variants in this locus 226 

(Supplementary Table 14). The TUD-LA GWAS yielded a significant h2
SNP estimate of 8.10% 227 

(SE=0.017, Supplementary Table 9) but did not identify any GWS loci (Figure 2), presumably 228 

due to the smaller sample size. 229 

 230 
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Integration with functional genomic data implicates hundreds of novel TUD candidate 231 

risk genes. To further our biological interpretation of the TUD-EUR GWAS results and prioritize 232 

causal genes and proteins, we performed multiple in silico downstream analyses using 233 

MAGMA,43,44 H-MAGMA,45 S-MultiXcan/S-PrediXcan,46 TWAS,47 and PWAS.47 234 

First, we conducted gene-based analyses via MAGMA,43,44 which mapped SNP-level 235 

associations to 86 significant genes (p<2.63E-06), 83 (90.69%) of which replicated genes near 236 

or in GWS loci (e.g., CHRNA3, CHRNA4, CHRNA5, BDNF, PTPRF, KDM4A, DBH; 237 

Supplementary Table 15). 238 

To identify neurobiologically relevant target genes, we incorporated TUD GWAS data 239 

with chromatin interaction profiles from human brain tissue using Hi-C coupled MAGMA (H-240 

MAGMA).45 These analyses identified 746 unique gene-tissue pairs associated with TUD 241 

(p<9.44E-07), a significant proportion of which showed cell-type (16.49% cortical neurons, 242 

16.75% iPSC derived neurons, 20.78% midbrain dopaminergic neurons, 13.00% iPSC derived 243 

astrocytes) or developmental stage (15.55% fetal, 17.43% adult) specific expression 244 

(Supplementary Table 16). 245 

Using S-MultiXcan to predict the effect of common SNP variation on gene expression in 246 

multiple brain tissues, we detected significant associations for 34 genes (Supplementary Table 247 

17), with effects dispersed across 12 brain regions (cerebellum, anterior cingulate cortex, basal 248 

ganglia [nucleus accumbens and putamen], cortex and frontal cortex, amygdala, hypothalamus, 249 

substantia nigra, spinal cord, cerebellar hemisphere, spinal cord). Inspection of region-specific 250 

results via S-PrediXcan identified five genes that were consistently upregulated (GPX1, PPP6C, 251 

GMPPB, WDR6) or downregulated (CHRNA2) in more than one brain region (Supplementary 252 

Table 18). 253 
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Next, we assessed differential transcriptomic and proteomic regulation of TUD risk loci in 254 

the dorsolateral prefrontal cortex (DLPFC) by performing TWAS (mRNA and splicing) and 255 

PWAS, respectively. Associations across these three regulatory models identified 43 TUD 256 

unique risk genes (34, mRNA expression; 15, splicing expression; 14, proteome expression; 257 

Supplementary Tables 19 and 20). Colocalization analysis identified five genes and proteins 258 

(NT5C2, GPX1, NEK4, ABHD12, RHCE) associated with TUD via their regulation of brain 259 

expression levels and protein abundance (PP4 >0.80, Supplementary Table 21, 260 

Supplementary Figure 4). 261 

Overall, after controlling for multiple comparisons, these analyses identified 330 unique 262 

genes with statistical evidence of association with TUD (Figure 3a, Supplementary Table 22). 263 

Of these, 87 converged across at least 2 methods, and 3 (GPX1, P4HTM and RHCE) 264 

converged across all six methods. 304 (92.12%) of the 330 genes identified via these analyses 265 

were not identified by the GWS loci; 75 (22.72%) were novel TUD genes not identified in prior 266 

FTND or GSCAN analyses (e.g., other genes from the KDMA family [KDM4D, KDM4F, 267 

KDM4E], SLC9A2, NFKB2), which prompt novel hypotheses to be tested experimentally. 268 
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 269 

Figure 3. Integration with functional genomic data implicated 330 unique TUD candidate 270 

risk genes. (a) Of 330 associated genes, 87 converged with at least 2 methods, and were 271 

dispersed throughout the chromosomes. (b) LDSC (SNP-based) and MAGMA tissue-specific 272 

gene expression of TUD risk genes reveals substantial brain enrichment. (c) The genetic 273 

findings across multiple levels of analysis (LDSC, MAGMA, MultiXcan, BrainXcan) implicated 274 

brain regions exhibiting anatomical differences in cases. (d) Cell type-specific expression of 275 

TUD risk genes. Results from MAGMA property analyses and gene expression using human 276 

single-cell RNA-sequencing datasets (Supplementary Table 28 for full list). After multiple 277 

testing correction for all datasets, only genes expressed in GABAergic neurons were associated 278 

with TUD (Supplementary Table 28).  279 

 280 

Tissue and cell-type analyses of TUD identify enrichment in brain tissue and 281 

GABAergic neurons. To identify relevant tissues implicated in TUD, we performed various 282 

SNP (LDSC partitioned heritability) and gene-wide (MAGMA) analyses. We performed 283 

partitioned heritability in LDSC to evaluate the enrichment of the genome-wide findings in over 284 

50 functional genomic annotations (and across tissues, as described below). In the baseline 285 
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LDSC model, conserved and regulatory functional annotations were significantly enriched 286 

(Supplementary Figure 5 and Supplementary Table 23 for full list).  287 

Tissue enrichment analyses in MAGMA use gene expression data from GTEx (v8). In 288 

addition to non-brain tissues (i.e., cardiovascular, hematopoietic, adrenal pancreas, and other, 289 

p<3.37E-05, Supplementary Table 24), we detected significant enrichment mostly in the brain 290 

(p=1.53E-15), spanning multiple brain regions, including the hippocampus, the limbic system, 291 

frontal cortex (Supplementary Tables 25-26, Figure 3b-c), most of which were also implicated 292 

in S-MultiXcan (Supplementary Table 17). Correlating the effects of SNP variation with brain 293 

imaging traits via BrainXcan identified similar results, including significant (p<1.92E-04) 294 

associations with decreased gray matter volume in the right ventral striatum (Supplementary 295 

Table 27).  296 

Next, we used FUMA to examine cell-type specific gene expression associated with 297 

TUD, leveraging single-cell RNA-sequencing (sc-RNA seq) datasets. We identified a significant 298 

association (p<0.05) between TUD risk and cell-type specific gene expression in GABAergic 299 

neurons for individual human sc-RNA seq datasets (Linnarsson, midbrain, p<3.94E-04; Allen 300 

Brain Atlas, dorsal lateral geniculate nucleus, p=1.34E-02; DroNc-seq, hippocampus, p<3.74E-301 

04; Figure 3d; Supplementary Table 28). These results did not survive conditional analyses 302 

within and across datasets.  303 

 304 

Implications for TUD biology based on gene-set and pathway analyses. We used 305 

MAGMA43,44 to conduct a gene-wise TUD analysis and to test for enrichment of pathways 306 

curated from multiple sources. After correcting for multiple comparisons, 25 related pathways 307 

and biological processes were significantly enriched for genes associated with TUD (p<2.76E-308 

06; Supplementary Table 29). Associations implicated fundamental processes related to 309 
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nicotine response (e.g., high calcium and sodium permeable nicotinic acetylcholine receptors, 310 

p=4.66E-16; behavioral response to nicotine, p=5.97E-16), regulation of postsynaptic signaling 311 

(p=2.61E-08), and maintenance of synapse structure (p=9.26E-07), among others. 312 

 313 

Drug Repurposing. Linking transcriptome-wide patterns to perturbagens that pass the blood-314 

brain barrier from the Library of Integrated Network-Based Cellular Signatures (LINCS)36 315 

database identified 293 FDA approved medications approved by the U. S. Food and Drug 316 

Administration (Supplementary Table 30). 31 of the 293 identified medications targeted at least 317 

one mapped/independent gene from our GWAS. The medications that significantly reversed 318 

(Bonferroni p<6.03E-05) the transcriptional profile associated with TUD included varenicline (a 319 

well-known therapeutic for smoking cessation), sodium channel blockers (e.g., amiloride), and 320 

compounds that are used to treat conditions that commonly co-occur with TUD, such as 321 

antipsychotics (e.g., clozapine), dopaminergic agents (e.g., ropinirole), opioids (e.g., 322 

nalbuphine), and antidepressants (e.g., amoxapine), among others (Figure 4). 323 
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324 

Figure 4. Sankey Diagram showing Drug Repurposing results from S-PrediXcan Brain 325 

Tissues. 293 medications/perturbagens grouped by ATC category membership from the Library 326 

of Integrated Network-Based Cellular Signatures (LINCS)36 database. ATC category connected 327 

to perturbagen edges represent corresponding ATC category membership. Perturbagen 328 

connected to gene target edges are associated with the reversal of the TUD transcriptomic 329 

profile from S-PrediXcan Brain Tissue results. 330 

 331 

Genetic correlation with other traits. We estimated pairwise rg with TUD for 115 published 332 

phenotypes using LDSC.48 TUD showed FDR-significant correlations rg with 85 traits (Figure 5; 333 

Supplementary Table 31). As expected, the strongest positive correlations were with smoking-334 

related traits (e.g., smoking initiation rg=0.79, SE=0.02; smoking cessation rg=0.66, SE=0.03; 335 

cigarettes per day rg=0.43, SE=0.03; FTND rg=0.61, SE=0.06; Figure 5a) and other substance 336 

use traits (e.g., cannabis use disorder rg=0.63, SE=0.04; drinks per week rg=0.36, SE=0.03; 337 

 

ry 
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opioid use disorder (OUD) rg=0.44, SE=0.07). TUD clustered with addiction traits rather than 338 

consumption phenotypes (Supplementary Figure 6).  339 

 340 

Figure 5. FDR-significant genetic correlations between TUD-EUR and 115 complex traits, 341 

including smoking and related phenotypes (b). (a) Genetic correlations (rg) between age of 342 

smoking initiation (AgeSmkInit), cigarettes per day (CigDay), smoking cessation (SmkCess), 343 

nicotine dependence via the Fagerström Test for Nicotine Dependence (FTND), and tobacco 344 

use disorder (see Supplementary Table 31 for full results). (b) Genetic correlations with an 345 

extended list of traits from publicly available GWAS. Traits with positive rg values are plotted 346 

above the line; traits with negative rg values d below the line. All rgs are significant using a 5% 347 

FDR correction for multiple testing. AgeSmkInit, age of smoking initiation smoking; CigDay, 348 

cigarettes smoked per day; SmkCess, smoking cessation;13 FTND, Fagerstrom Test for Nicotine 349 

Dependence.27 350 

 351 
 352 

TUD was also genetically associated with psychiatric and medical conditions (Figure 5b, 353 

Supplementary Table 31). There were significant positive rg with psychiatric traits (e.g., 354 

externalizing rg=0.69, SE=0.02; ADHD rg=0.49, SE=0.04; stress-related disorder rg=0.44, 355 

SE=0.04) and risky behavioral traits, including lower age of first sex (rg=-0.56, SE=0.02). We 356 

also found positive rg with health outcomes (e.g., coronary artery disease rg=0.27, SE=0.03; 357 
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waist-to-hip ratio rg=0.25, SE=0.02; hip pain rg=0.44, SE=0.04; knee pain rg=0.31, SE=0.04) and 358 

several social determinants of health, such as the Townsend deprivation index (rg=0.61, 359 

SE=0.07). There were negative rg with socioeconomic variables, including years of education 360 

(rg=-0.54, SE=0.02) and household income (rg=-0.47, SE=0.04) and with childhood intelligence 361 

(rg=-0.42, SE=0.07). Conditioning on alcohol, cannabis, or opioid use disorders did not 362 

substantially modify the magnitude or direction of these associations (Supplementary Table 363 

32). Virtually all rg estimates for other phenotypes were greater with TUD than cigarettes per day 364 

(Supplementary Figure 7) and FTND (Supplementary Figure 8). 365 

Among AA datasets, there were significant rg with smoking trajectories and other 366 

substance use traits (OUD rg=0.42, SE=0.06; maximum habitual alcohol consumption rg=0.78, 367 

SE=0.2). Nominal associations (p<0.05) were observed for smoking initiation (rg=0.35, 368 

SE=0.13), depression (rg=0.42, SE=0.2) and type 2 diabetes (rg=-0.23, SE=0.1; Supplementary 369 

Table 33). 370 

Phenome-wide association analyses. To further explore pleiotropic effects, we performed a 371 

series of phenome-wide association studies (PheWAS) of TUD polygenic scores (PGS) in other 372 

EHR and clinical cohorts of adults, and a young population-based cohort. We performed these 373 

analyses within ancestries. 374 

EHR cohorts. We conducted PheWAS with EHR data to test the association between polygenic 375 

risk for TUD and liability for thousands of other medical conditions, including TUD, in another 376 

independent site, Mayo Clinic. As expected, TUD PGS was strongly associated with TUD-EHR 377 

(p=1.60E-88, Supplementary Table 34, Figure 6a), explaining 6.3% of the (Nagelkerke's R2) 378 

variance. Additional significant (p<7.25E-05) associations included other substance use 379 

disorders (e.g., alcohol-related disorders, OR=1.27, p=1.53E-17), medical conditions strongly 380 

associated with TUD (e.g., chronic airway obstruction, OR=1.19, p=5.73E-21) and other 381 

psychiatric conditions (e.g., depression, OR=1.06, p=8.60E-06). These remained significant 382 
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after accounting for TUD diagnosis (Supplementary Table 34). We also noted associations 383 

across multiple other medical categories, including endocrine/metabolic (e.g., morbid obesity, 384 

OR=1.09, p=1.06E-07; type 2 diabetes, OR=1.06, p=1.78E-05), digestive (e.g., diseases of 385 

esophagus, OR=1.05, p=3.45E-06), circulatory (e.g., ischemic heart disease, OR=1.07, 386 

p=7.43E-07) and neurologic (e.g., pain, OR=1.07, p=9.95E-07), among others (Supplementary 387 

Table 34). Compared to FTND PGS, TUD PGS were more strongly associated across virtually 388 

all domains, including TUD (Supplementary Figure 9). We repeated the TUD PGS analyses in 389 

a BioVU cohort of AA individuals using the TUD-AA meta-analysis results. As expected, TUD 390 

was the strongest and most significant (OR=1.19, p=4.03E-06) association (Supplementary 391 

Table 35).  392 

Yale-Penn sample. We next extended the analyses to a deeply characterized sample recruited 393 

for genetic studies of substance use disorders: the Yale-Penn sample.49 We examined the 394 

association between PGS for TUD and hundreds of other traits derived from a comprehensive 395 

psychiatric interview, the Semi-Structured Assessment for Drug Dependence and Alcoholism 396 

(SSADDA). TUD-EUR and TUD-AA PGS were strongly associated with many substance use 397 

traits, including nicotine dependence as defined via a Diagnostic and Statistical Manual of 398 

Mental Disorders (DSM) diagnosis in both the EUR (OR=1.71, p=2.51E-41; Figure 6b; 399 

Supplementary Table 36) and AA cohorts (OR=1.12, p=8.10E-04), respectively, although the 400 

latter association did not survive multiple testing correction (Supplementary Table 37). Again, 401 

compared to FTND PGS, TUD-EUR PGS was more strongly associated across virtually all 402 

domains, including nicotine dependence (Nagelkerke's R2=0.101 vs 0.062; Supplementary 403 

Table 38, Supplementary Figure 10), again emphasizing the value of collecting information on 404 

later stages of vulnerability or more severe phenotypes, such as TUD. 405 

 406 
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407 
Figure 6. TUD PGS PheWAS in the (a) Mayo Clinic, (b) Yale-Penn, and (c) and ABCD 408 

European cohorts. Only selected FDR-significant traits are shown. The exact values for each 409 

association and extended lists of traits can be found in Supplementary Tables 34, 36 and 39. 410 

 411 

Adolescent Brain Cognitive Development (ABCD) cohort. Lastly, we extended our polygenic 412 

analyses to a drug naïve developmental sample (9-11 years of age at recruitment; analytic 413 

N=52 to 5,556). We concentrated on 12 traits that showed significant genetic correlations in the 414 

adult samples (Supplementary Table 39, Figure 6c). Although tobacco exposure was 415 

uncommon in this pediatric population (2.30% prevalence), externalizing behaviors, which 416 

emerge in childhood and are strong correlates of substance use, were available. After correcting417 

for multiple testing, TUD PGS was significantly (p<4.00E-03) associated with externalizing 418 

behaviors (i.e., Child Behavior Check List [CBCL] externalizing scores, β=0.06, p=3.15E-06; 419 

CBCL ADHD scores, β=0.05, p=1.58E-04), as well as internalizing (i.e., suicide attempt, β=0.05, 420 

p=7.01E-04, CBCL depression scores, β=0.04, p=1.73E-03), cognitive ability (β=0.003, 421 

p=6.35E-05), neighborhood deprivation (β=0.03, p=2.53E-03), and weight-related phenotypes 422 

ng 

5, 
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(i.e., BMI, β=0.06, p=4.44E-05; weight, β=0.04, p=2.98E-03). Notably, these children were not 423 

chronically exposed to tobacco; therefore, we would speculate that these associations are not a 424 

consequence of smoking but rather may underlie overlapping genetic architectures among the 425 

traits studied that predate use of tobacco.  426 

 427 

Causal relationships with TUD and bi-directional effects of TUD with other traits. We used 428 

MR analyses to test directional causal relationships between significantly genetically correlated 429 

traits (N=6) and TUD among EURs only due to the small sample size and limited statistical 430 

power in other populations (Supplementary Table 40). We observed a significant positive 431 

bidirectional causal effect between TUD and depression. TUD had a significant negative causal 432 

effect on educational attainment, drinks per week and ADHD. 433 

 434 

Discussion 435 

Uncovering the genetic underpinnings of individual differences in TUD liability can 436 

advance diagnosis, prevention, and treatment efforts for a disorder of enormous public health 437 

significance. GWAS have uncovered multiple associations with tobacco use, but findings for 438 

tobacco dependence or disorder have been limited due to the difficulty of characterizing large 439 

numbers of individuals using a gold-standard research or clinical diagnosis. Here we present the 440 

first multi-ancestry GWAS of TUD using data from EHR, as a complementary strategy for 441 

ascertainment. In less than four months, and leveraging data from the PsycheMERGE 442 

consortium, we gathered TUD-EHR data for 898,680 individuals. The number of GWAS signals, 443 

enrichment in relevant pathways and tissues, and genetic overlap with nicotine-related traits 444 

provide proof of principle that EHR can serve as a complementary tool to study TUD genetics.  445 
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Our findings demonstrate that TUD-EHR was genetically correlated with traits derived 446 

from traditionally ascertained cohorts, including nicotine dependence via FTND and smoking 447 

cessation, providing clear evidence that the signal captured by TUD phecodes is valid. Of note, 448 

the genetic correlation between TUD-EHR and other smoking behaviors, such as number of 449 

cigarettes smoked per day (CPD), although significant and positive, was moderate in magnitude 450 

(rg=0.43), suggesting that the genetic architectures of consumption and misuse may be distinct. 451 

This is in contrast to earlier observations for FTND and CPD, where the genetic correlation was 452 

almost at unity (rg=0.95).27 This shows that TUD captures features beyond the frequency of 453 

smoking or severity of nicotine dependence. Although FTND and TUD were more strongly 454 

correlated (rg=0.61), in general, we observed that TUD PGS was more predictive of DSM-455 

defined tobacco dependence and a plethora of comorbid traits in the Yale-Penn sample, than 456 

FTND PGS. The only exception was for time-to-first cigarette in the morning, which was more 457 

strongly associated with FTND PGS, likely because time-to-first cigarette is one of the FTND 458 

items. Overall, this emphasizes the need to continue measuring the full spectrum of addiction 459 

liability,50 such as CPD, and more severe phenotypes, such as TUD, to account for the distinct 460 

biological factors relevant at each stage.  461 

Common SNPs were able to account for a fraction (7%) of the overall heritability of TUD 462 

(40-60%) as determined by prior family and twin studies.9,11 The multi-ancestral meta-analysis 463 

identified 72 independent loci, 13 times the number previously reported for nicotine 464 

dependence.27 These include corroborative support for the involvement of nicotinic acetylcholine 465 

receptor genes (CHRNA5-A3-B4, CHRNB2, CHRNA2, CHRNA4), which have been consistently 466 

associated with smoking behaviors,20 particularly in studies of self-reported CPD.13 We also 467 

identified polymorphisms in genes implicated in nicotine clearance, like CYP2A6, previously 468 

linked to heavy smoking.51 Other variants identified are in genes that modulate dopaminergic 469 

and glutamatergic neurotransmission, compromising reward-based learning and facilitating 470 
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drug-seeking behavior, and in BDNF, which is involved in memory consolidation processes,52 471 

and a well-studied candidate gene in addiction.53 These and other candidates supported by 472 

TUD (e.g., PDE4B) were genetically correlated with other addiction phenotypes,36 emphasizing 473 

the shared neurobiological mechanisms of addiction. 474 

Downstream analyses prioritized genes and drug candidates that could be used for 475 

follow-up mechanistic studies in model organisms. Specifically, we identified “core” genes that 476 

could be “pleiotropic hotspots” associated with multiple traits. One was glutathione peroxidase-1 477 

(GPX1), which is involved in oxidative stress. Intriguingly, it has been reported that glutathione 478 

peroxidase-1 protects against lung inflammation induced by smoking in mice, and agents that 479 

mimic this action (e.g., ebselen), which restore GPX1 activity in situations of extreme oxidative 480 

stress, can protect from lung inflammation induced by smoking.54 Another was GMPPB, which 481 

has been associated with accelerated lung aging and e-cigarette smoking.55 NT5C2 is involved 482 

in maintaining cellular nucleotide balance, and was associated with schizophrenia55 and 483 

smoking behaviors in an exome-wide association study.56 These genes showed a consistent 484 

causal effect based on colocalization analyses (here and previously57), suggesting that they 485 

could confer TUD risk by modulating regulated gene expression and protein abundance in the 486 

brain. 487 

The enrichment of TUD in brain tissues further supports TUD as a brain disorder, long 488 

supported by neuroscience and more recently by genetics.58 We provide suggestive evidence 489 

for the involvement of the cerebellum in TUD, along with other regions that have long been 490 

studied in relation to addiction such as the fronto-striatal loop, hippocampus, and amygdala.59 491 

Genetic correlations revealed substantial levels of pleiotropy with traits that often co-492 

occur with TUD, including other substance use and psychiatric disorders. These associations 493 

were particularly evident in the Yale-Penn sample,49 which has comprehensive phenotypic data 494 

for substance use disorders. In adult patients from the Mayo Clinic, we replicated the 495 
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associations with substance and other psychiatric disorders, extending them to medical 496 

disorders, such as HIV, heart disease, and pain, some of which, like respiratory conditions, 497 

likely reflect chronic smoking. The positive associations between genetic liability for TUD and 498 

other outcomes, such as BMI or other internalizing/externalizing problems in tobacco-naive 499 

children (ABCD), may also reflect true biological relationships. Although we are far from 500 

untangling this complex web of genetic and non-genetic correlations, the extensive phenotypic 501 

spectrum associated with TUD is undeniable.  502 

Currently, developing new therapeutics for TUD is viewed as risky because of a lack of 503 

high-quality targets, historically low success rates, and unintended side effects. Although genes 504 

identified in our GWAS, including CHRNA7, CHRNA5, CHRNA4, and CHRNB2, might moderate 505 

the effect of varenicline, a smoking cessation treatment that operates as a partial agonist at the 506 

nicotine acetylcholine a2b4 receptor,60 varenicline (along with other medications such as 507 

nicotine replacement therapies) has limited efficacy or adverse effects.61,62 In a proof-of-principle 508 

study, So et al.63 identified several repurposing candidates for treating psychiatric disorders by 509 

connecting imputed transcriptomic profiles from GWAS data to drug-induced gene expression 510 

profiles. Using this approach, we identified hundreds of potential drug candidates predicted to 511 

significantly reverse the TUD transcriptomic profile. These included norepinephrine reuptake 512 

inhibitors (e.g., amoxapine) and antipsychotics (e.g., clozapine), pointing to convergent 513 

molecular mechanisms between TUD and other psychiatric disorders that are the usual target of 514 

these agents, replicating prior observations.64 The potential therapeutic utility of anti-515 

inflammatory or blood glucose lowering medications were also suggested by our analyses. 516 

Although, to date, no repurposed drugs have been developed for treating SUDs based on 517 

GWAS data, this is an important potential path forward, particularly for SUDs, where few 518 

effective pharmacotherapies are available. 519 
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Future research may address some of the limiations of our study. Prior work has 520 

demonstrated that ICD codes have a low sensitivity for current tobacco use, but may have a 521 

reasonable specificity for this common behavior.65 Our results appeared to be robust to 522 

moderate levels of misclassification, particularly in controls, as detected by the pairing with self-523 

reported questionnaire data. Although studies that systematically evaluate the effect of 524 

removing potentially missclassified individuals are needed, we chose not to remove them in this 525 

study because not all individuals had concomitant survey data available. This questionnaire 526 

data, along with other forms of EHR data (e.g., clinical notes), may help capture additional 527 

phenotypes, including the response to treatment or the ability to successfully quit smoking 528 

without formal treatment. Longitudinal data from EHR, with data collection spanning the period 529 

prior to and following the onset of substance use and SUD, are particularly valuable for studying 530 

the timing of onset, within-person change, and application of time-varying effects, which will help 531 

to differentiate causation from correlational findings. The advent of single-cell transcriptomics, 532 

larger QTL databases in more specific cell types, and the inclusion of more ancestrally diverse 533 

samples will improve the interpretability of associated loci. Although we have included diverse 534 

cohorts, our study lacked many major ancestral groups such as East Asians and South Asians. 535 

Lastly, other forms of genetic variation, such as rare single variants66 or structural 536 

polymorphisms67 are likely to account for much of the “missing heritability” in genetic risk for 537 

TUD.  538 

In sum, this work demonstrates that EHR is a viable and cost efficient complementary 539 

alternative to rigorous clinical ascertainment for genetic studies of TUD, similar to other SUD 540 

traits. At various levels of analysis, this study identifies and prioritizes previously unidentified 541 

genes of potential interest. TUD shares biological processes common to many SUDs and is one 542 

among a number of highly correlated psychiatric and medical disorders. We anticipate that 543 
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these results can be combined with prior smoking GWAS in larger multivariate analyses to 544 

elucidate the full spectrum of smoking behaviors and accelerate gene discovery for TUD. 545 

 546 

Methods 547 

Smoking phenotypes and cohorts. We defined cases as patients who received at least two 548 

TUD ICD-9 or -10 codes (corresponding to the phecode definition) in their medical records, and 549 

controls as patients who had no TUD diagnosis code (Supplementary Table 2). In UKBB only, 550 

cases were defined as having 1 ICD-10 code for TUD, and controls had none.43 Additionally, we 551 

required controls to be 18 years of age or older at time of analysis (04/2022). Patients younger 552 

than 18 years were excluded because they may not yet have reached the age of TUD 553 

diagnosis. We examined the sensitivity of our TUD phenotyping using the patients’ self-reported 554 

tobacco use survey when available (Supplementary Table 3, list of smoking traits).  555 

Our data sources included registries from five health systems linked to biobanks: 556 

Vanderbilt University Medical Center’s (VUMC) biobank (BioVU), Mass General Brigham 557 

Biobank (MGBB), Penn Medicine BioBank (PMBB), Million Veteran Program (MVP), and UK 558 

Biobank (UKBB). There were 46,905 (EUR) patients from VUMC, 22,268 (EUR) patients from 559 

MGBB, 39,087 patients from PMBB (28,999 EUR and 10,088 AA), 545,530 patients from MVP 560 

(396,833 EUR, 104,332 AA, 44,365 LA), and 244,890 participants from UKBB. Details of each 561 

registry, including demographics and data sources, are listed in the Supplementary Table 2.  562 

Genotyping, imputation, and GWAS. For all cohorts, the initial GWAS analyses were 563 

conducted within genetic ancestral groups. GWAS analyses were performed within each 564 

ancestral group using SAIGE version 0.44.6.568 or PLINK 2.069 and a logistic regression. For the 565 

BioVU, MGBB, and UKBB cohorts, there were GWAS for only the European ancestral group 566 

(Supplementary Material). In PMBB, we conducted additional GWAS of the African ancestral 567 
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group sample, and in MVP we performed additional GWAS of the African American ancestral 568 

sample and the Latin American ancestral group sample. Each of the univariate GWAS covaried 569 

for 10 genetic ancestry principal components, age, sex, number of ICD codes and length of 570 

record. The summary statistics for TUD in UKBB were downloaded from the GWAS atlas 571 

(https://atlas.ctglab.nl/traitDB/3439). 572 

BioVU. We used de-identified clinical data from individuals in BioVU. Genotype data 573 

were generated using the Illumina Multi-Ethnic Genotype Array (MEGAEX) for 72,824 574 

individuals. Details on the quality control process have been described elsewhere.70 Genotypes 575 

were filtered for SNP (<0.95) and individual (<0.98) call rates, sex discrepancies, and excessive 576 

heterozygosity (|Fhet|>0.2).71 The sample was then filtered for cryptic relatedness by removing 577 

one individual of each pair for which pihat>0.2. PCA using FlashPCA2 combined with CEU, YRI 578 

and CHB reference sets from 1000 Genomes Project Phase 372 was conducted to determine 579 

European Ancestry. We confirmed the absence of genotyping batch effects using ‘batch’ as the 580 

phenotype. We imputed genotypes using the Michigan Imputation Server with the reference 581 

panel from the Haplotype Reference Consortium. SNPs were filtered for imputation quality (R2 582 

>0.3 or INFO >0.95) and converted to hard calls. We restricted the analyses to autosomal SNPs 583 

with minor allele frequency >0.01. We removed SNPs that differed by >10% from the 1000 584 

Genomes Project phase 3 CEU set72 and those with a Hardy Weinberg Equilibrium p<1.00E-10. 585 

The resulting data set contained hard-called SNP information for 9,386,383 SNPs in 72,824 586 

individuals of European Ancestry. Controls were also required to have 3 or more years of 587 

medical history with VUMC. These procedures resulted in a total sample of 7,167 cases and 588 

39,738 controls in BioVU. The project was approved by the VUMC Institutional Review Board 589 

(IRB #160302, #172020, #190418).  590 

MGBB. MGBB samples were genotyped using the Illumina Multi-Ethnic Global array with 591 

hg19 coordinates. Variant-level quality control filters were applied to remove variants with a call 592 
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rate <0.98, and those that were duplicated across batches, monomorphic, not confidently 593 

mapped to a genomic location, or associated with genotyping batch. Sample-level quality 594 

control filters were applied to remove individuals with a call rate <0.98, excessive autosomal 595 

heterozygosity (±3 standard deviations from the mean), or discrepant self-reported and 596 

genetically inferred sex. PCs of ancestry were calculated using the 1000 Genomes Phase 3 597 

dataset as a reference panel. The Michigan Imputation Server was then used to impute missing 598 

genotypes with the Haplotype Reference Consortium dataset serving as the reference panel. 599 

Imputed genotype dosages were converted to hard-call format and subjected to further quality 600 

control, where SNPs were removed if INFO score <0.8, MAF <0.01, HWE p<1.00E-10, or 601 

missingness (variant call rate <0.98). Only unrelated individuals (pi-hat <0.2) of European 602 

ancestry were included in the present study. These procedures yielded a final analytic sample of 603 

6,708 cases and 15,560 in the MGBB. The project was approved by the MGBB Institutional 604 

Review Board (IRB #2018P002642).  605 

PMBB. PMBB samples were genotyped by the GSA genotyping array. Quality control 606 

removed SNPs with marker call rate <95% and sample call rate <90%, and individuals with sex 607 

discrepancies. Genotype phasing and imputation was performed on the TOPMed Imputation 608 

server.73 The phasing was done using EAGLE (v2.4.1)30 and imputation was performed using 609 

MINIMAC software.73 IBD analysis was used to check for relatedness among imputed samples 610 

using PLINK 1.9. We randomnly removed one individual from each pair of related individuals 611 

(pi-hat <0.25). SNPs with an INFO score <0.3, MAF <0.01, a genotype call rate <0.95  or an 612 

HWE p<1.00E-6 were removed. To estimate genetic ancestry, PCs were calculated based on 613 

common SNPs between PMBB and the 1000 Genomes Project phase372 using the smartpca 614 

module of Eigensoft package.74 Participants were assigned to an ancestry based on the 615 

distance of 10 PCs from the 1000 Genomes reference populations. The resulting dataset 616 
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included 10,088 AAs (cases=1,722) and 28,999 EURs (cases=3,088). The PMBB is approved 617 

under IRB protocol #813913. 618 

MVP. MVP samples were genotyped using the Affymetrix Axiom Biobank Array. 619 

Samples were removed if they had extreme heterozygosity, call rate <98.5%, sex mismatch, or 620 

>7 relatives. SNPs were removed if they had call rate <0.98 or a Hardy–Weinberg equilibrium 621 

(HWE) threshold of p<1.00E-06. Genotype phasing and imputation was performed using 622 

SHAPEIT4 (v.4.1.3)75 and Minimac4 software73, respectively. Biallelic and non-biallelic SNPs 623 

were imputed using the African Genome Resources and 1000 Genomes reference panels.72 624 

Ancestry was defined for three mutually exclusive ancestral groups (European, African 625 

American, and Hispanic American) utilizing a previously defined approach harmonizing genetic 626 

ancestry and self-identified ancestry (HARE).76 SNPs with imputation quality (INFO) 627 

score�<0.7, minor allele frequency (MAF, AA <�0.005; EUR�<�0.001; HIS�<�0.01), 628 

genotype call rate <0.95, and HWE p<1.00E-06  were removed. We also excluded one 629 

individual from each pair of related individuals (kinship >0.08, N=31,010). The final sample 630 

comprised 104,332 AAs (cases=43,743), 396,833 EURs (cases=146,771) and 44,365 LAs 631 

(cases=12,277). The Central VA Institutional Review Board (IRB) and site-specific IRBs 632 

approved the MVP study. 633 

SNP-heritability (h2
SNP). We estimated h2

SNP based on the liability-scale (population prevalence 634 

estimates of 0.125) for common SNPs mapped to HapMap377 using LDSC.48 For AA and LA, we 635 

created in-sample LD scores derived from the MVP genotype data using cov-LDSC.78  636 

Meta-analyses and independent variants. Meta-analyses were conducted using a sample-637 

size-weighted method in METAL,79 assuming shared risk effects across ancestries. Effective 638 

sample sizes (N_Eff), calculated using the formula: 4/[1/n_case + 1/n_control], were used to 639 
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compensate for the imbalance in the ratio of cases to controls. N_Eff were used in all meta-640 

analyses and all downstream analyses.  641 

We conducted four meta-analyses of TUD GWAS summary statistics across the 642 

following datasets: 1) within-ancestry meta-analysis for EUR samples in BioVU, MGBB, PMBB, 643 

MVP, and an additional meta-analysis including UKBB, 2) within-ancestry meta-analysis for AA 644 

in MVP and Penn, and 3) multi-ancestry meta-analysis across all datasets (AA [PMBB, MVP]; 645 

EUR [BioVU, MGBB, PMBB, MVP, UKBB]; HA [MVP]). Inflation of test statistics due to 646 

polygenicity or cryptic relatedness was assessed using the LDSC attenuation ratio ((LDSC 647 

intercept - 1)/(mean of association chi-square statistics - 1)). Resulting genome-wide significant 648 

(GWS) loci were defined as those with p<5.00E-08 with LD r2>0.1, within a 1MB window, based 649 

on the structure of the Haplotype Reference Consortium (HRC) multi-ancestry reference panel 650 

for the multi-ancestry meta-analysis, or the HRC ancestry-appropriate reference panel 651 

otherwise. GWS loci were examined for heterogeneity across cohorts via the I2 inconsistency 652 

metric.  653 

To identify TUD risk loci and lead SNPs, we performed LD clumping in FUMA43 using a 654 

range of 3�Mb, r2
�>0.1, and the respective ancestry 1000 Genome reference panel.72 Genomic 655 

risk loci that were located <1Mb apart were incorporated into a single locus. For loci that 656 

harbored multiple variants, we used COJO in GCTA80 to define independent variants by 657 

conditioning them on the most significant variant within each locus. Following conditioning, 658 

significant variants (p<5.00E-08) were considered independent.  659 

We determined credible variants among the independent variants by merging risk 660 

variants within 1Mb of the lead variant and fine-mapped the resulting region with 95% credible 661 

sets using FINEMAP.81 A posterior inclusion probability (PIP>0.5) was used to denoted causal 662 

signals. 663 
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Multi-ancestry fine-mapping analyses. We used PAINTOR v3.182 to perform multi-ancestry 664 

fine mapping for the two risk loci identified in both the TUD-EUR and TUD-AA metaGWAS. For 665 

each locus, we extracted SNPs with an absolute value of Z-score larger than 3.9 within a 1Mb 666 

region of the lead SNP. As suggested by PAINTOR, we created the AA and EUR LD matrices 667 

using the 1000 Genome phase 3 reference panel72. We calculated the probability of each SNP 668 

being the causal variant, assuming that each locus has two causal variants. 669 

Gene-based and pathway analyses. We conducted bioannotation and bioinformatic analyses 670 

to further characterize the loci identified by the TUD-EHR GWAS (Supplementary Methods). 671 

We used the default version (v1.3.6a) of the FUMA web-based platform43 to identify 672 

independent SNPs (r2<0.10) and to study their functional consequences. We also used MAGMA 673 

v1.0843,44 to perform competitive gene-set and pathway analyses. SNPs were mapped to 19,532 674 

protein-coding genes from Ensembl (build 85). We applied a Bonferroni correction based on the 675 

total number of genes tested (p<2.56E−06). Gene sets were obtained from Msigdb v7.0 676 

(“Curated gene sets”, “GO terms”). We also used Hi-C coupled MAGMA (H-MAGMA45) to 677 

assign non-coding (intergenic and intronic) SNPs to genes based on their chromatin 678 

interactions. Exonic and promoter SNPs were assigned to genes based on physical position. H-679 

MAGMA uses four Hi-C datasets, which were derived from fetal brain, adult brain, iPSC-derived 680 

neurons, and iPSC-derived astrocytes (https://github.com/thewonlab/H-MAGMA). We applied a 681 

Bonferroni correction based on the total number of gene-tissue pairs tested (p<9.55E−07). 682 

S-MultiXcan/S-PrediXcan. We used S-MultiXcan v0.7.0 (an extension of S-PrediXcan v0.6.246) 683 

to identify specific eQTL-linked genes associated with TUD. This approach uses genetic 684 

information to predict transcript abundance in 13 brain tissues, and tests whether the predicted 685 

transcripts correlate with TUD. S-PrediXcan uses pre-computed tissue weights from the 686 

Genotype-Tissue Expression (GTEx) v8 project database (https://www.gtexportal.org/) as the 687 

reference transcriptome dataset. For S-PrediXcan and S-MultiXcan analyses, we chose to use 688 
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sparse (elastic net) prediction models, which are available at http://predictdb.hakyimlab.org/. We 689 

applied a conservative Bonferroni correction based on the total number of gene-tissue pairs 690 

tested (14,198 gene-tissue pairs tested; p<3.52E−06).  691 

Partitioning Heritability Enrichment. We used LDSC to partition TUD-EUR h2
SNP and 692 

examined the enrichment based on several functional genomic annotation models.83,84 In the 693 

baseline model, we examined 75 overlapping functional annotations comprising genomic, 694 

epigenomic and regulatory features. We also analyzed ten overlapping cell-type groups derived 695 

from 220 cell-type-specific annotations in four histone marks: methylated histone H3 Lys4 696 

(H3K4me1), trimethylated histone H3 Lys4 (H3K4me3), acetylated histone H3 Lys4 (H3K4ac) 697 

and H3K27ac. Enriched cell-type categories were analyzed based on annotations obtained from 698 

H3K4me1-imputed, gapped peak data generated by the Roadmap Epigenomics Mapping 699 

Consortium.85 We removed multi-allelic and major histocompatibility complex region variants, 700 

and only report categories enriched after Bonferroni correction. 701 

Tissue Enrichment Analysis. We used the LDSC package to conduct cell type specific 702 

heritability analysis (https://www.nature.com/articles/s41588-018-0081-4). In this analysis, we 703 

applied stratified LD score regression on the TUD-EUR meta-analysis summary statistics with 704 

sets of specifically expressed genes in various tissues from GTEx86–88 to identify TUD-relevant 705 

tissues. We applied a conservative Bonferroni correction based on the number of tissues 706 

simultaneously tested (205 tissues tested, p<2.44E-04). We also used MAGMA v1.08 gene-707 

property analysis of expression data from GTEx (54 tissue types) and BrainSpan (29 brain 708 

samples at different age) in FUMA v1.3.6a75 to test the relationships between tissue specific 709 

gene expression profiles and TUD-gene associations. 710 

Cell type-specific expression of TUD risk genes. We performed cell-type specific analyses 711 

implemented in FUMA, using data from nine single-cell RNA sequencing data sets from human 712 

brain (data sets listed in the Supplementary Material). The method is described in detail in 713 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.27.23287713doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.27.23287713
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 34

Watanabe et al.,43 and uses MAGMA gene-property analysis to test for association between cell 714 

specific gene expression and TUD-gene association. Conditional analyses for multiple testing 715 

are applied to correct for all tested cell types across datasets.  716 

PWAS/TWAS. To identify proteins whose genetically regulated expression is associated with 717 

TUD, we performed PWAS analyses by integrating TUD GWAS summary statistics and 718 

precomputed pQTLs from discovery (Banner)89,90 and validation (ROSMAP)91,92 datasets using 719 

the FUSION pipeline (http://gusevlab.org/projects/fusion/).47 Next, TWAS was performed using 720 

gene and splicing expression profiles measured in the adult DLPFC and gene expression 721 

profiles from the frontal cortex. Human brain transcriptome data, used as expression reference 722 

panels, were obtained from the CMC91 and GTEx frontal cortex v7.47,86 All tests were Bonferroni 723 

corrected for multiple testing (α = 0.05/N genes tested). 724 

Of the overlapping findings across independent TWAS or PWAS datasets, colocalization 725 

analysis (in FUSION47,93) was used to determine whether SNPs mediate the association with 726 

TUD via effects on gene and protein expression. A posterior colocalization probability (PP) of 727 

80% was used to indicate a shared causal signal. 728 

BrainXcan. We used the BrainXcan package (https://github.com/hakyimlab/brainxcan)94 to 729 

predict the association between the TUD phenotype and brain features. This approach uses 730 

genetically determined brain image-derived phenotypes (IDPs) to test brain region association 731 

with the TUD phenotype via linear regression. IDPs were constructed by training genetic 732 

predictors on original IDPs from MRI images via ridge regression.94 IDPs were retrieved from 733 

the BrainXcan database (https://zenodo.org/record/4895174). Only significant IDP associations 734 

with TUD that survived a Bonferroni correction are reported (93 IDPs tested; p<1.92E-04). 735 

Drug repurposing. Our signature matching technique used data from the Library of Integrated 736 

Network-based Cellular Signatures (LINCs) L1000 database. The LINCs L1000 database 737 
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catalogues in vitro gene expression profiles (signatures) from thousands of compounds in over 738 

80 human cell lines (level 5 data from phase I: GSE92742 and phase II: GSE70138). We 739 

selected compounds that were currently FDA approved or in clinical trials (via 740 

https://clue.io/repurposing#download-data; updated 3/24/20). Our analyses included signatures 741 

of 829 chemical compounds (590 FDA approved, 239 in clinical trials) in five neuronal cell-lines 742 

(NEU, NPC, MNEU.E, NPC.CAS9 and NPC.TAK), a total of 3,897 signatures.  743 

We matched in vitro medication signatures with TUD signatures from brain tissue 744 

transcriptome-wide association analyses (conducted using S-PrediXcan). This consisted of 745 

Amygdala, Anterior Cingulate Cortex BA24, Caudate Basal Ganglia, Cerebellar Hemisphere, 746 

Cerebellum, Cortex, Frontal Cortex BA9, Hippocampus, Hypothalamus, Nucleus Accumbens 747 

Basal Ganglia, Putamen Basal Ganglia, Substantia Nigra, and Pituitary brain regions. As 748 

previously described,36 we computed weighted Pearson correlations between transcriptome-749 

wide brain associations and in vitro L1000 compound signatures, weighting each gene by its 750 

proportion of heritability explained, using the metafor package (version 3.8-1) in R. We treated 751 

each L1000 compound as a fixed effect incorporating the effect size (rweighted) and sampling 752 

variability (se2r_weighted) from all signatures of a compound (e.g., across all time points, cell 753 

lines, doses). Brain region was included as a random effect to account for any tissue specific 754 

heterogeneity. Both the genes for the transcriptome wide association analysis input and the 755 

medications from our drug repurposing analyses were required to survive a Bonferroni 756 

correction for multiple testing (transcriptome-wide correction=0.05/14,199=3.52E-06; 757 

Perturbagen correction =0.05/3,897 =1.28E-05).  758 

Genetic correlation analyses. We estimated the within-ancestry rgs for TUD using LDSC48 and 759 

the cross-ancestry rgs for TUD across population groups using POPCORN.48 We used the 760 

ancestry-specific 1000 Genomes Project phase 376 data as the LD references. 761 
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We used local LDSC48 to calculate genetic correlations (rg) between TUD and 115 other 762 

traits or diseases.48 Local traits were selected based on previously known phenotypic 763 

associations between TUD and other substance use disorder phenotypes and related traits 764 

(e.g., cannabis use disorder, various measures of impulsivity). We used the standard 765 

Benjamini–Hochberg false discovery rate correction (FDR 5%) to correct for multiple testing. We 766 

also calculated a Bonferroni correction for 115 comparisons (p<4.35E−04); however, this 767 

correction is overly conservative because many of the traits tested are highly correlated with 768 

one another. For AAs, we calculated rg between TUD and 11 published traits using in-sample 769 

LD scores derived from the MVP genotype data using cov-LDSC.78  770 

mtCOJO. We used mtCOJO95 to individually condition the TUD-EUR summary statistics on loci 771 

associated with other comorbid traits, including alcohol dependence, cannabis use disorder and 772 

opioid use disorder. This analysis allowed us to examine whether the genetic associations with 773 

TUD would be preserved when controlling for those covariate phenotypes. To test as many 774 

SNPs while preserving computational efficiency, we used a p value threshold of 5.00E-07, 775 

5.00E-07, 1.00E-07, respectively, for alcohol dependence, cannabis use disorder, and opioid 776 

use disorder. We then computed genetic correlations using the TUD summary statistics 777 

adjusted for the covariates of interest. 778 

Unsupervised learning to determine TUD clustering. Previous studies have shown that 779 

consumption and misuse/dependence phenotypes have a distinct genetic architecture. To 780 

explore whether the TUD meta-analysis clustered more with consumption or 781 

misuse/dependence phenotypes, we used a data-driven unsupervised machine learning method 782 

known as agglomerative hierarchical clustering analysis (HCA).96 HCA forms clusters iteratively 783 

by creating groups and successively joining or splitting those groups based on a prespecified 784 

algorithm.96 Agglomerative nesting (AGNES) is a bottom-up process focused on individual traits 785 

to structure. Agglomerative clustering was chosen as this allowed us to compare different 786 
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algorithms to maximize for the dissimilarity on each branch, with Ward’s minimum variance 787 

method performing best. All models were fit in R using the cluster package (version 2.1.4).96 788 

The product of HCA is a dendrogram, formed with multiple brackets called “branches”. 789 

Phenotypes on the same branch are more similar to each other based on their pairwise genetic 790 

associations with each other and with all other phenotypes on that branch. Branches can form 791 

subbranches of more specific clustering. The genetic correlations of CigarettesPerDay, 792 

FormerSmoker, and SmokingInitiation were reversed to show the intuitive effects against the 793 

other traits in the dendrogram.   794 

Phenome-wide association studies (PheWAS)  795 

Mayo Clinic Biobank. We performed a PheWAS in the Mayo Clinic Biobank (MCB).97 796 

Phecodes were ascertained using EHR data from 57,001 patients from the Mayo Clinic 797 

Biobank. EHR data for the participants was extracted on September 23, 2022 and included any 798 

diagnoses on or before April 6, 2020, the date patient consent was checked. The Institutional 799 

Review Board of Mayo Clinic approved this study. Samples were sequenced at the Regeneron 800 

Genetics Center (RGC) using a custom design that additionally augments the exome capture 801 

with “backbone” regions intended to measure common tagging variation for purposes of GWAS. 802 

The backbone regions are targeted at lower depth and undergo substantial post-processing 803 

using proprietary algorithms that can boost genotyping quality based on shared information via 804 

linkage disequilibrium and population allele frequencies. The resulting GxS data was run 805 

through the Mayo Clinic Genotype QC pipeline. In this QC pipeline, SNPs were excluded using 806 

filters for call rate (<95%), minor allele frequency (<0.5%), and Hardy-Weinberg Equilibrium 807 

(p<1.00E-06). Individuals were excluded for excessive missing genotypes (>5%), sex errors, or 808 

abnormal heterozygosity (<70% on multiple chromosomes). Cryptic relatedness analysis was 809 

performed in an interative process using PLINK and PRIMUS to estimate IBD sharing. Highly 810 

related samples were removed from the sample if they had >100 closely related samples 811 
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(PI_HAT>0.1875) or >25000 related samples (PI_HAT>0.08); the relatedness analysis was 812 

performed iteratively until no such samples remained. For each pair with an estimated 2nd 813 

degree or higher relatedness, we removed the individual with shorter length of EHR. Finally, 814 

PRSs were calculated using LDpred298 l using the auto feature in the bigsnpr (v1.10.4) R 815 

package. 816 

Yale-Penn. We performed PheWAS in the Yale-Penn sample;49 which is a deeply phenotyped 817 

cohort using the Semi-Structured Assessment for Drug Dependence and Alcoholism, a detailed 818 

psychiatric instrument used to assess physical, psychosocial, and psychiatric manifestations of 819 

SUDs and comorbid psychiatric traits.99,100 This comprehensive interview includes more than 820 

3,500 items representing lifetime diagnostic criteria for the DSM-IV,101 DSM-5102 SUDs and 821 

DSM-IV101 psychiatric disorder history. Genotyping and quality control for this cohort have been 822 

extensively described.49,103 823 

Using PRS-Continuous shrinkage software (PRS-CS),104 PRSs were calculated for TUD. 824 

We used the default setting in PRS-CS to estimate the shrinkage parameters and fixed the 825 

random seed to 1 for reproducibility. To identify associations between the PRS for TUD and 826 

clinical phenotypes, we performed a PheWAS by fitting logistic regression models for binary 827 

phenotypes and linear regression models for continuous phenotypes. Analyses were conducted 828 

using the PheWAS v0.12 R package105 adjusting for sex, median age and the first ten PCs 829 

within each genetic ancestry. Bonferroni correction was applied for each ancestral-specific 830 

analysis to account for multiple testing (p<7.25E-05).  831 

Adolescent Brain Cognitive Development (ABCD). We performed polygenic analyses in the 832 

ABCD sample.106 Again using PRS-CS,107 we fitted a fixed effects model in the ABCD European 833 

subsample (wave 3 for phenotypes, wave 3 for genotypes), controlling for first 10 PCs, age, sex, 834 

site, as fixed effect covariates and family ID as random effects covariates. We included 12 835 

measures that showed significant rg in the adults datasets and were available in this cohort; 836 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.27.23287713doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.27.23287713
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 39

these included 2 binary phenotypes (pain, “any pain last month”; and suicide attempt, 837 

“description”), and 10 continuous measures (from the CBCL child behavior checklist108- “CBCL 838 

Externalizing”, “CBCL ADHD”, “CBCL Depression”, “CBCL ADHD”, “CBCL AnxDep”; “CBCL 839 

AnxDis”, “CBCL OCD”; cognitive ability via the NIH cognitive toolbox total score;109 BMI; weight; 840 

deprivation). Results were corrected for multiple testing (p<4.0E-03). Additional genotyping, QC 841 

and statistical details are described in the Supplementary Material. 842 

Mendelian Randomization. Two-sample Mendelian randomization110,111 was used to evaluate 843 

the potential causal association between 6 genetically correlated traits and TUD using samples 844 

of European ancestry only (without UKBB). We inferred causality bidirectionally using three 845 

methods: weighted median, inverse-variance weighted (IVW) and MR-Egger, followed by a 846 

pleiotropy test using the MR Egger intercept.112,113 Instrumental variants were those associated 847 

with the exposure after clumping (r2 = 0.01) and at p<1.0E-05. We considered causal effects as 848 

those for which at least two MR tests were significant (p<0.05) and that showed no evidence of 849 

violation of the horizontal pleiotropy test (MR-Egger intercept p>0.05). 850 

Data Availability. The full summary statistics from the meta-analyses will be available through 851 

dbGaP upon publication.  852 

Code Availability. All software used to generate results has been previously published, and 853 

corresponding citations are provided in the Methods. 854 
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