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Abstract
Harmful data shifts occur when the distribution of data used to train a clinical AI system differs

significantly from the distribution of data encountered during deployment, leading to erroneous predictions
and potential harm to patients. We evaluated the impact of data shifts on an early warning system (EWS)
for in-hospital mortality that uses electronic health record (EHR) data from patients admitted to a general
internal medicine service. We found model performance to differ across subgroups of clinical diagnoses,
sex and age. To explore the robustness of the model, we evaluated potentially harmful data shifts across
demographics, hospital types, seasons, times of hospital admission, and whether the patient was
admitted from an acute care institution or nursing home, without relying on model performance.
Interestingly, we found that models trained on community hospitals experience harmful data shifts when
evaluated on academic hospitals, whereas the models trained on academic hospitals transfer well to the
community hospitals. To improve model performance across hospital sites we employed transfer learning,
a strategy that stores knowledge gained from learning one domain and applies it to a different but related
domain. We found hospital type-specific models that leverage transfer learning, perform better than
models that use all available hospitals. Furthermore, we monitored data shifts over time and identified
model deterioration during the COVID-19 pandemic. Typically machine learning models remain locked
after deployment, however, this can lead to model deterioration due to data shifts that occur over time.
We used continual learning, the process of learning from a continual stream of data in a sequential
manner, to mitigate data shifts over time and improve model performance. Overall, our study is a crucial
step towards the deployment of clinical AI models, by providing strategies and workflows to ensure the
safety and efficacy of these models in real-world settings.
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Introduction
AI systems have leveraged clinical data to predict mortality 1–5, length of stay (LOS) 6, sepsis 7–9

and the occurrence of specific disease diagnoses10. As a growing number of AI systems are sought to be
deployed in clinical settings, a defining challenge for AI in healthcare is how to responsibly deploy models
that have been developed 11,12. Building robust clinical machine learning (ML) models has proven to be
difficult 13, in part attributed to data shifts (or data drift)–changes in the data distribution over time and/or
space that leads to spurious predictions14. This can occur due to changes in the features of the input data
or due to changes in the labels, which represent the outcome the model is predicting. Data shifts are
harmful when they result in model drift–a significant decrease in the model’s predictive power due to
changes in the real world environment. A key barrier to the safe deployment of clinical AI systems is
attributed to system malfunction due to harmful data shifts 15. Data shifts occur when the underlying
distribution of the data used to build a predictive model differs from the distribution of the data
encountered during deployment. In healthcare, these shifts can exist along the axes of institutional
differences (e.g., staffing, instruments and data-collection workflows), epidemiological changes (e.g.
diseases, catastrophic events)16, temporal shifts (e.g. policy changes, changes in clinician or patient
behaviours over time)17 and differences in patient demographics (e.g. race, sex, age, socioeconomic
background, and types of presenting illnesses and comorbidities)18–20. When the difference between the
training and test data distribution is sufficient to deteriorate the model’s performance, clinical
decision-making may be impaired. As a result, it is imperative to identify these potentially harmful shifts a
priori, to inform clinical end-users and prevent harm to patients.

Rigorous evaluations across time, hospital sites, and patient characteristics are critical for identifying
model degradation and ensuring equitable and quality patient care. The impact of distributional shifts on
model performance 21 has been explored for the prediction of sepsis 22, mortality 19,23, ER admissions 16,
LOS 19 and Clostridioides difficile infections 17. Model deterioration has previously been associated with
transitions in EHRs systems over time 13 and across patient demographics in chest X-rays 24, skin
lesions25 and sepsis prediction 26. However, in many clinical prediction problems, the lead time to acquire
labels is lengthy, and the process is resource-intensive. Labels like death or sepsis are rare; this causes a
delay in the ability to detect a statistically significant change in model performance, at which point model
deterioration may have already occurred, and it may be too late to take steps for remediation. This
suggests retraining based on recognizing deterioration in model performance is impractical, and
emphasizes the importance of detecting potentially harmful data shifts in a label-agnostic manner 27–29.
Furthermore, it is necessary to design effective strategies for model updating that proactively minimize
model degradation in the presence of data shifts. Failure to correct for harmful data shifts can lead to the
perpetuation of algorithmic biases, missing critical diagnoses and unnecessary clinical interventions that
can be detrimental to patient outcomes and burden the healthcare system11,12.

In this study, we developed an evaluation and monitoring pipeline to prepare clinical AI systems for
deployment.30 We used our pipeline to monitor for harmful data shifts in a label-agnostic manner using an
early warning system (EWS) for all-cause in-hospital mortality. In doing so, we proactively identified
harmful data shifts across various real-life scenarios, including institutional differences, time of hospital
admission, whether a patient was admitted from an acute care institution or nursing home and the
COVID-19 pandemic. In the presence of harmful data shifts across institutions, we leveraged transfer
learning to identify strategies for improving model performance 31–33. Lastly, we conducted a prospective
evaluation, whereby we monitored for temporal data shifts and used continual learning to proactively
update clinical AI models under harmful data shifts.

Results

All-cause in-hospital mortality early warning system (EWS)

We developed a dynamic EWS to predict the risk of in-hospital mortality within the next two weeks, every
24 hours, using EHR data consisting of lab results, transfusions, imaging reports and administrative
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features (Supplementary Table 1) from 109,802 patient encounters admitted to general internal medicine
(GIM) inpatient units at seven large hospitals in the greater Toronto area (GTA, in Canada). Given the
varying distribution of diagnoses and demographics across hospitals (Figure 1A-C), we assessed the
fairness of our model by evaluating the area under the receiver operating characteristic (AUROC) and
area under the precision-recall curve (AUPRC) for subgroups of diagnoses, sex and age34. We defined
diagnostic subgroups using the ICD-10 diagnosis chapters35–groupings of ICD-10 diagnosis codes
assigned to patients during admission based on affected body systems and health conditions. We found
that the model performed particularly well on certain diagnoses, including diseases of the circulatory
system (I00-I99), respiratory system (J00-J99), COVID-19 (U07-U08) and certain other infectious and
parasitic diseases (A00-B99). However, it had a much lower AUROC on individuals with benign or
malignant neoplasms (C00-D49) and factors influencing health status and contact with health services
(Z00_Z99; Figure 1D). These primarily consisted of patients receiving palliative care (nZ515=2042;
Supplementary Figure 1), including patients with cancer, heart failure, chronic obstructive pulmonary
disease (COPD), dementia, and Parkinson disease. This is in accordance with what we know about
palliative care as encompassing complex diseases with evolving needs, caused by a combination of
genetic, environmental and lifestyle factors, which may make it more difficult to accurately predict36. We
also found AUROC increased and AUPRC decreased across groups with decreasing age, this may be in
part driven by the lower mortality rates in the younger age groups. Alternatively, performance was fairly
consistent across sex (Figure 1D). Lastly, we compared the performance of our model, which included no
prior information of patient history, to models that included comorbidities and ICD-10 diagnosis codes as
features (Supplementary Table 1). In doing so, we found that including ICD-10 diagnosis codes as
features in our model slightly improved overall performance (Figure 1E), but significantly increased the
performance gap between many diagnostic subgroups (Supplementary Figure 2).

Figure 1. Model fairness across subgroups. (A) Distribution of ICD-10 diagnosis codes across
hospitals by mortality status (true/false). (B) Distribution of age groups across hospitals by mortality status
(true/false). (C) Distribution of sex across hospitals by mortality status (true/false). (D) AUROC and
AUPRC of cross-site EWS across ICD-10 diagnosis codes, age and sex. (E) Overall AUROC and AUPRC
of the model without prior information (base), with comorbidities (base+CM) and with diagnosis codes
(base+DxC) as features.
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Mortality False True

Hospital 1(A) 2(A) 3(A) 4(C) 5(C) 6(A) 7(A) 1(A) 2(A) 3(A) 4(C) 5(C) 6(A) 7(A)

# of Encounters 16620 27394 16100 15096 22691 16238 14072 2405 2306 1589 1415 3524 1791 1808

LOS (days) 8.47 8.44 7.90 8.73 10.05 7.55 9.03 14.59 17.19 17.62 19.02 17.72 12.80 14.12

# of Prev
Encounters from

2010-2020
0.72 0.60 1.19 0.68 0.60 0.82 0.90 1.28 1.12 1.53 1.36 1.16 1.31 1.63

From Acute Care
(%) 2 0 1 1 0 1 1 7 1 1 3 0 1 0

From Nursing
Home (%) 6 8 4 11 12 4 10 13 18 14 31 30 8 22

Palliative Care
(n) 260 151 50 52 39 160 80 373 56 313 123 191 235 210

Table 1. Patient characteristics. Number of patient encounters, average length of stay (LOS), average
number of previous encounters from 2010-2020, percentage of patient encounters from acute care
institutions, percentage of patient encounters from nursing homes, and number of patients receiving
palliative care, across hospitals and mortality status. A = academic hospital, C = community hospital.

Figure 2. Monitoring and evaluation pipeline. An end-to-end pipeline where EHR data is first sent to
the Shift Applicator, which outputs a source and target data based on the clinical shift of choice. The
source and target data can then be leveraged by the Shift Detector to conduct a drift sensitivity test or a
rolling window analysis–if drift is detected, retraining is triggered.

Detection of harmful data shifts for evaluation and monitoring of clinical AI systems

In the clinical setting, there are a myriad of factors that can contribute to a model drifting and making
erroneous predictions, such as changes in behaviour, technology, population or policy 18. Using our
monitoring and evaluation pipeline (Figure 2)37, we detected data shifts in a label-agnostic manner across
increasing sample sizes for scenarios that we would expect to pose a threat to clinical AI systems during
deployment, due to fundamental differences in patient populations. These scenarios consist of differences
in demographics, hospital type, seasonality, time of day of hospital admission (i.e. day vs. night), time of
week of hospital admission (i.e. weekday vs. weekend), and whether patients were admitted from an
acute care institution or nursing home. Harmful data shifts were defined as those statistically significant
between the source and target datasets (p-value < 0.05). We detected harmful data shifts and associated
performance degradation in five scenarios: when transferring models trained on i) community hospitals to
academic hospitals (Figure 3AB), ii) patients admitted during the day to patients admitted at night
(Figure 3AC), iii) patients not admitted from nursing homes to patients admitted from nursing homes
(Figure 3AD), iv) patients admitted from acute care institutions to patients admitted from non-acute care
institutions (Figure 3AD) and v) patients admitted from non-acute care institutions to patients admitted
from acute care institutions (Figure 3AD). Interestingly, we found many of these harmful data shifts were
unidirectional, suggesting that there exists patterns among patient encounters in academic hospitals,
during night admissions and among patients admitted from nursing homes that are not captured at
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community hospitals, during day admissions, and among patients admitted from outside of nursing
homes, respectively. Harmful data shifts were not detected across seasons or sex (Figure 3EF). Although
a harmful data shift was identified when evaluating on the 45-64 year-old age group, an associated
decrease in AUROC did not occur (Figure 3AG).

These data shifts can arise for a variety of reasons, including differences in patient subpopulations,
staffing, and/or resources that are not adequately represented in the training data 38. Across all the
scenarios where harmful data shifts were identified, we found that there was decreased performance in
numerous diagnostic subgroups between the source and target data (Supplementary Figure 3). The
largest performance differences between patients from acute care and non-acute care institutions was for
diseases of the nervous system (G00-G99), and musculoskeletal system and connective tissue
(M00-M99). Between patients admitted during the day and night, the largest decrease in AUROC was
seen in patients with neoplasms (C00-D49) and diseases of the musculoskeletal system and connective
tissue (M00-M99) and genitourinary system (N00-N99). When transferring from community hospitals to
academic hospitals, the largest performance decrease across diagnostic subgroups was for patients with
neoplasms (C00-D49), which is also found at a much higher prevalence in academic hospitals
(Supplementary Table 2). Alternatively, the hospital type shift may be due to differences in the 45-64
year-old age group, which suffered a significant decrease in performance when models were transferred
from community hospitals to academic hospitals (p=0.0079; Supplementary Figure 3).This could in part
be driven by the increased number of individuals admitted from nursing homes in community hospitals
compared to academic hospitals (Table 1). This is also supported by our finding that models transferred
from patients not admitted to nursing homes to patients admitted to nursing homes–which primarily
consist of long-term care residents over the age of 85, result in harmful data shifts (Figure 3AD). It is also
worth noting that the hospital type groupings coincide with differences in location which may also be a
contributing factor of the data shift; more specifically, the academic hospitals are located in the central city
while the community hospitals are located in residential suburbs. Interestingly, we found the inclusion of
ICD-10 diagnosis codes as features decreased model deterioration due to data shifts (Supplementary
Table 3).
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Figure 3. Detection of harmful data shifts. (A) Performance across in-distribution (ID) and
out-of-distribution (OOD) data for demographics, hospital types, seasons, time of day of hospital
admission, time of week of hospital admission, and whether the patient was admitted from an acute care
institution or nursing home. P-values were calculated using a one-sided Mann-Whitney U test. Sensitivity
of the data shift detection to increasing number of test samples was evaluated for (B) hospital types (C)
time of day or week of hospital admission (D) seasons (E) admission from acute care institutions or
nursing homes (F) sex and (G) age.

Preventing harmful data shifts during cross-site deployment

It is common practice that an ML model is developed at one institution and transferred to other institutions
for external validation. During cross-site evaluation, we found that differences in hospital type result in
harmful data shifts that deteriorate model performance (Figure 3B). In order to address this, we
developed EWSs for i) each individual hospital, ii) the combination of community hospitals, iii) the
combination of academic hospitals and iv) the combination of all hospitals. We then compared strategies
leveraging a) pre-training where we used a model pre-trained on source data and evaluated it on
out-of-distribution data from the target hospital, b) transfer learning where we fine-tuned the performance
on the target hospital prior to evaluating the target data and c) ablation where we excluded data from a
single hospital prior to evaluating the target data. For each model, we evaluated the performance for each
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individual hospital using a held out test set (Figure 4A). In general, cross-site training improved model
performance; however, the use of all sites was never the optimal strategy suggesting that more data is not
always helpful. We found training across all sites marginally improved model performance for academic
hospitals but decreased performance for community hospitals (Figure 4B). Instead, using the model
trained on both the community hospitals (Hospital 4 and 5) resulted in superior performance for
community hospitals. Overall, fine-tuning the corresponding hospital type-specific model on the target
hospital improved performance for all hospitals except Hospital 2. Interestingly, Hospital 2 is also the only
hospital with a veteran’s wing, where patients receiving palliative care were less likely to experience
in-hospital mortality and where the number of previous hospital visits was negatively correlated with risk
of in-hospital mortality (Table 1). In certain instances, the exclusion of a single hospital site improved
model performance for another hospital. For Hospital 2, ablating Hospital 3 resulted in the best performing
model (Figure 4B). It is worth noting, Hospital 2 and Hospital 3 also had the largest difference in the
number of individuals with diseases due to factors influencing health status and contact with health
services (17%), which is the diagnostic subgroup with the lowest performance (Supplementary Table 3;
Figure 1E). These two hospitals also had the largest difference in patients receiving palliative care
between mortality status; Hospital 2 had a 2.7-fold decrease and Hospital 3 had a 6.3-fold increase in
palliative care among patients who died in the hospital. The population demographic and socioeconomic
status (SES) between the two hospitals are also very different; Hospital 3 is an inner city urban and
Hospital 2 is a suburban hospital. As a result, it is important that clinical AI systems be proactively
evaluated for these differences so they are considered when transferring models across sites.

Figure 4. Optimal training strategies for cross-site deployment. (A) Pre-training, fine-tuning and
ablation employed on single-site models, cross-site model and hospital-type models (community,
academic). (B) Heatmap of AUROC of the training strategies across each test hospital site. Highlighted in
black is the best performing model for each hospital.

Detecting and mitigating model deterioration due to temporal data shifts

Lastly, we conducted a simulated prospective evaluation of an EWS for mortality prediction using GIM
data from 2011-2018. In a real-time deployment scenario, labels are not always readily available at the
time of prediction. Moreover, for outcomes like mortality, the problem with relying on model performance
is that the event rate is relatively rare, so it can take many months to accrue a sufficient sample size for
detecting model performance changes. As a result, label-agnostic drift detection is critical for identifying
model degradation and triggering retraining procedures. We monitored our EWS for temporal shifts using
a 14-day rolling window from March 2019 to August 2020. In the presence of drift, we used continual
learning strategies to update our model and mitigate model deterioration (Figure 5A). First, we compared
periodic retraining–whereby the model is updated at regular, pre-defined intervals and drift-triggered
retraining–whereby the model is updated when there is significant data shift between the source data and
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target data. We found drift-triggered retraining resulted in better overall performance (Supplementary
Figure 4). To identify the optimal approach for drift-triggered retraining, we tuned various parameters
including the retraining window size, lookahead window, sample size, drift threshold and number of
epochs (Supplementary Figures 5-9). The retraining window represents how much previous data we
want to use for updating the model. We found a larger retraining window improved AUROC and AUPRC,
however, as the retraining window increased upwards of 180 days, the performance decreased,
suggesting that greater amounts of past data are not always beneficial for model updating
(Supplementary Figure 5). Due to the lead time for acquiring labels, it is possible that at the time model
updating is triggered, labels for the most recent patient encounters are not available. As a result, we
evaluated increasing lookback window sizes to determine how far back the data used to update the model
can be, without sacrificing performance. We found lookback windows of up to 60 days were able to
maintain similar model performance (Supplementary Figure 6). Although, the lookback window will differ
depending on the frequency of the prediction outcome and the progression of the drift over time (i.e.
gradual versus sudden). Given that the model updating is triggered by drift detection, the sensitivity of the
drift test will influence the overall performance. We found that the optimal drift threshold was a p-value of
0.01 (Supplementary Figure 7) and the optimal number of encounters for the drift test was 1000
(Supplementary Figure 8). However, it is important to recognize each prediction task and domain is
unique, and as a result the generalizability of the optimal threshold will need to be evaluated on a
case-by-case basis. We also found that increasing the number of epochs during model updating resulted
in catastrophic forgetting whereby the model overfit and model performance decreased over time
(Supplementary Figure 9). We also compared updating whereby we only trained on encounters that
were predicted correctly or positively; however, this was not as effective as using all the encounters
(Supplementary Figure 10). Overall, the implementation of our drift-triggered continual updating strategy
improved model performance over time and was more effective than maintaining a locked model during
deployment (Figure 5B).
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Figure 5. Prospective evaluation of EWS for mortality prediction. A. Model updating strategies and
parameters explored whereby the target stream is evaluated on i) the most recent n days or ii) all the
encounters seen to date, with the option to select training on only the encounters predicted positively or
correctly. Each strategy can be optimized for drift threshold, number of samples, number of epochs, stride
length, lookback window, and retraining window. B. We monitored the proportion of positive:negative
outcomes, drift p-values, and drift distance metric from 03/2019 to 08/2020 using a 14-day rolling window.
In the event that drift is detected, model updating is triggered (red), for which we also monitored the
change in AUROC and AUPRC between the retrained model and the baseline model, which implements
no updating procedure.

Discussion
Many widely implemented clinical AI systems 26,39,40, have demonstrated poor generalizability

upon external validation, as a result of harmful data shifts. However, these biases are rarely accounted for
in a proactive manner, and are typically identified following deployment, while relying on ground-truth

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.26.23286718doi: medRxiv preprint 

https://paperpile.com/c/KdDQnP/KbNvz+PGN4X+kf06R
https://doi.org/10.1101/2023.03.26.23286718


labels 18,41,42. In this study, we built a dynamic EWS that adapts to the ever-changing healthcare
environment. We used our EWS to predict the risk of mortality to enable the effective triaging of patients
admitted to GIM and performed robust evaluations for bias and data shifts across diagnostic subgroups,
demographics, hospital sites, based on the when and where a patient was admitted, and over time. We
accurately detected harmful data shifts in clinical data without relying on ground-truth labels by leveraging
black box shift detection and two sample testing28; this permitted the proactive evaluation of ML models in
clinical settings where labels can be costly, resource-intensive, and delayed. In doing so, we found
models trained on patients admitted during the day do not generalize well to patients admitted at night,
emphasizing the importance of careful cohort selection for model development. We also found harmful
data shifts attributed to whether or not a patient was admitted from an acute care institution or nursing
home, suggesting these settings have distinct patient populations. Institutional differences are among the
most common causes of data shifts due to underlying differences in patient demographics, disease
incidence and data-collection workflows 2,11. We found models built on specific groups of hospitals such as
community hospitals, undergo harmful data shifts when evaluated on academic hospitals and evaluated
training strategies to mitigate model deterioration attributed to cross-site deployment. Lastly, we
monitored data shifts over time and investigated key questions surrounding model updating like when to
update a model, how much data to update on, and what data to use for the update. We found our
drift-triggered continual updating strategy improved model performance and was more effective than
maintaining a locked model during deployment.

However, it is unclear to what extent our findings will generalize, which is why it is critical to perform these
experiments across several prediction tasks, patient populations and types of shifts. Likewise, many other
sensitive attributes (e.g. socioeconomic status) and clinical scenarios (e.g. specialized hospitals) that
merit evaluation remain. It is also imperative to characterize the extent to which other data modalities, like
clinical notes, contribute to biases in clinical AI systems. There are a number of reasons these shifts could
occur, including changes in the distribution of diagnoses, staffing, or resource allocation across patient
populations. Identification of causal structures is a promising strategy to help explain the failures of
fairness transfer across distribution shifts 43. Given the sensitivity of clinical data, it is also important that
future drift detection and retraining strategies consider privacy-preserving methods to ensure institutional
boundaries are respected and autonomy is maintained over patient data 44–46.

In this study, we developed a drift-triggered continual learning strategy to improve model performance
over time. However, it is worth noting that continual learning is not without risks, including catastrophic
forgetting and feedback loops 47–49. Unfortunately, our dataset is unable to fully capture these long-term
trends, but as more data is accumulated it will become possible to understand the impact of these model
updating strategies over extended periods of time. Another caveat is that the current regulatory state of
continual learning systems does not clearly define how and what aspects of a clinical AI system are
permitted to change following authorisation41. There are also several other training and updating
strategies we did not explore, which can be leveraged to improve model performance in the presence of
data shifts, including domain generalization (DG)50,51, representation learning13,52, meta learning 53,54, and
multi-task learning55,56. For instance, consideration of other relevant prediction tasks (e.g. LOS, ICU
transfer)55 or patient populations56 for pre-training could improve model generalization. Similarly, DG
methods have been used as an alternative to baseline empirical risk minimization (ERM), to mitigate data
shift57. However, many DG methods have repeatedly only been shown to improve performance in the
context of extreme synthetic shifts and demonstrate poor performance on real world EHR data 58,59.
Instead, alternative ERM approaches (i.e. those that use stratified training, balanced subpopulation
sampling, or worst-case model selection) outperform DG methods and show promise in mitigating model
bias 50,51,60. Unfortunately, many studies fail to consider strong and realistic ERM baselines.

Clinical AI systems are complex, and each will differ in its biases and optimal retraining and updating
procedures. As such, we have developed a monitoring and evaluation pipeline as part of a broader ML
operations (MLOps) framework for clinical AI systems37 to facilitate robust evaluation and monitoring prior
to deployment. Too often clinical ML models are reported with high performance metrics, while being
developed in isolation. It is important to ensure that models are designed with deployment in mind, to
ensure the responsible deployment of clinical AI systems. We hope our work permits the robust
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evaluation and monitoring of clinical AI systems in an effort to bridge the gap between model
development and deployment 61–63.

Methods

Cohort Data

We conducted this study using de-identified Electronic Health Record (EHR) and hospital administrative
data from 109,802 patients admitted to the general internal medicine (GIM) wards from 2015-2020 across
7 large hospitals in the Toronto, Canada-area. Of the 7 hospitals, 5 are academic hospitals (Hospital 1,
Hospital 2, Hospital 3, Hospital 6, Hospital 7) and 2 are community hospitals (Hospital 4, Hospital 5).

Ethics Approval

All patient data was collected and approved through GEMINI 64,65 under the oversight of the research
ethics board (REB) at the Toronto Academic Health Science Network (REB reference number 15-087).
The extension of the REB approval was issued by the Unity Health Toronto REB (reference number
15-087). A separate REB approval was obtained for Trillium Health Partners. All experiments were
performed in accordance with institutional guidelines and regulations.

Model Features

The base model consisted of 91 features comprising laboratory tests, blood transfusions, imaging reports
and administrative features (Supplementary Table 1). The base+CM model consisted of the 91 features
used in our base model, in addition to 18 comorbidities derived using ICD-10 codes (Supplementary
Table 2). The base+DxC model consisted of the 91 features used in our base model, in addition to the 22
groupings of ICD-10 diagnosis codes (Supplementary Table 3). The input features used for time-series
modelling were aggregated by taking the mean for 24-hour timesteps, over 144 hours.

All-Cause In-Hospital Mortality Decompensation Prediction

Our goal was to predict whether the patient’s health will rapidly deteriorate 55. Each instance of this task is
a binary classification instance and predictions are made every 24 hours for the risk of in-hospital
mortality within the next two weeks starting 24 hours after admission using the target replication
approach66. In addition to longitudinal clinical measures, demographics are included as static variables at
every time step for the prediction task. Labels were encoded as 1 if a patient died within the next 2 weeks,
0 if they were alive within the next 2 weeks and -1 if they were discharged. Missing values were imputed
using forward filling followed by backward filling. Unless a custom data split was applied (i.e. for the data
shift experiments described below), a training/validation/test split of 8:1:1 was used. The training,
validation and test data were normalized independently by subtracting the mean and scaling to unit
variance. A long short-term memory (LSTM) recurrent neural network (RNN)66 with 2 hidden layers, 64
hidden cells and a dropout rate of 0.2 was implemented using PyTorch67. The LSTM RNN was optimized
for binary cross entropy with logits loss using Adagrad68, a step size of 128, gamma of 0.5, learning rate
of 3.0 x 10-2, weight decay of 1.0 x 10-6 and batch size of 64. To account for the class imbalance, we
reweighted our loss function by the fraction of controls/cases in the training data. Each model was trained
over 128 epochs with early stopping using a patience of 3 and delta of 0. We used a sigmoid activation
function to obtain prediction probabilities. We generated standard errors by making a random choice of
weight initializations and dataset splits for 10 repetitions. For consistency, model level parameters (e.g.
number of cells, number of layers) were kept fixed across all experiments.

Monitoring and Evaluation Pipeline

We detected distributional shifts between source and target data using our monitoring and evaluation
pipeline (Figure 2) which consists of:
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1) Shift application: EHR data is sent to the Shift Applicator, which outputs a source and target dataset
based on the clinical data shift experiment of choice (e.g. hospital type, seasons, etc.).
2) Dimensionality reduction: Dimensionality reduction is performed using the Shift Reductor to obtain a
latent representation of the source and target data. This was done using the softmax outputs of a LSTM
neural network label classifier trained on source data (Black Box Shift Detector; BBSD) 69. The
architecture and training of the BBSD is described above as the base model.
3) Statistical testing: Univariate two-sample testing was performed with a Kolmogorov-Smirnov Test
using the Shift Tester, in order to identify if a harmful data shift has occurred between the latent
representation of the source and target data28.
4) Sensitivity test: A drift sensitivity test was conducted by performing step (2) and (3) to detect data
shifts for n = {10, 20, 50, 100, 250, 500, 1000} patients from the target data.
5) Rolling window analysis: A 14-day rolling window was used to assess model stability over time by
sampling 1000 patients and performing step (2) and (3) to test for drift every day. The drift detector was
updated every day with the last 25000 patients.

Clinical Data Shift Experiments

We used prior knowledge to devise data splits that reflect real-life scenarios that may result in harmful
data shifts and model degradation of clinical AI systems. For all experiments we trained a model on the
in-distribution (ID) data and evaluated on ID data as the baseline and out-of-distribution (OOD) data as
the shift experiment. Sensitivity tests were performed for each scenario using the trained model as the
BBSD. The scenarios are as follows:

Winter - Baseline: Patients admitted in the winter (Nov-Feb). Shift Experiment: Patients admitted in the
winter (June-Aug).
Summer - Baseline: Patients admitted in the summer (June-Aug) Shift Experiment: Patients admitted in
the winter (Nov-Feb) .
Community Hospitals - Baseline: Academic hospitals (Hospital 1, Hospital 2, Hospital 3, Hospital 6,
Hospital 7). Shift Experiment: Community hospitals (Hospital 4, Hospital 5).
Academic Hospitals - Baseline: Community hospitals (Hospital 4, Hospital 5). Shift Experiment:
Academic hospitals (Hospital 1, Hospital 2, Hospital 3, Hospital 6, Hospital 7).
Day Admission - Baseline: Patients admitted during the day (7:30-19:30). Shift Experiment: Patients
admitted during the night (0:00-7:30,19:30:23:59).
Night Admission - Baseline: Patients admitted during the night (0:00-7:30,19:30:23:59). Shift
Experiment: Patients admitted during the day (7:30-19:30).
Weekend Admission - Baseline: Patients admitted on the weekend (i.e. Saturday and Sunday). Shift
Experiment: Patients admitted on a weekday (i.e. Monday to Friday).
Weekday Admission - Baseline: Patients admitted on a weekday (i.e. Monday to Friday). Shift
Experiment: Patients admitted on the weekend (i.e. Saturday and Sunday).
Admitted from Nursing Home- Baseline: Patients admitted from nursing homes. Shift Experiment:
Patients not admitted from nursing homes.
Not Admitted from Nursing Home - Baseline: Patients not admitted from nursing homes. Shift
Experiment: Patients admitted from nursing homes.
Admitted from Acute Care Institution- Baseline: Patients admitted from acute care institutions. Shift
Experiment: Patients not admitted from acute care institutions.
Not Admitted from Acute Care Institution - Baseline: Patients not admitted from acute care institutions.
Shift Experiment: Patients admitted from acute care institutions.
Sex - Baseline: Patients of all sexes. Shift Experiments: Patients that are i) males ii) females.
Age - Baseline: Patients of all ages. Shift Experiments: Patients that are i) 18-29 years ii) 30-44 years iii)
45-64 years iv) 65+ years.

Transfer learning
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To evaluate the optimal training strategy for each hospital, we compared models trained using i) a single
hospital, ii) each hospital type (i.e. academic, community) and ii) all hospitals. We compared i) pre-training
where we used a model pre-trained on source data and evaluated it on out-of-distribution data from the
target hospital ii) fine-tuning where the single-site and hospital-type specific models were fine-tuned on
the target hospital using 1 epoch or 10 epochs, and iii) ablation of a single hospital from the cross-site
model, for each hospital. Each strategy was evaluated on a held out test set for each of the 7 hospital
sites.

Continual Learning

In order to mitigate model drift due to temporal data shifts, we compared the following continual learning
strategies to a baseline where the model was kept locked and no changes or updates were made:

Periodic Updating - The model is updated at regular time intervals of n = {7, 14, 30, 60} days.
Most Recent Updating- When drift is detected, the model is updated using the most recent n number of
days where n = {7, 14, 30, 60, 120, 180, 270} days.
Cumulative Updating - When drift is detected, the model is updated using all the patient encounters
seen to-date.

Model updating methods were optimized for the retraining window size, lookback window, sample size,
drift threshold and number of epochs. We also compared sampling strategies where we used i) all the
encounters in the retraining window ii) only the correctly predicted encounters in the retraining window
and ii) only the positively predicted encounters in the retraining window.
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Supplementary Materials

Supplementary Figure 1. Distribution of diagnosis codes across factors influencing health status and
contact with health services (Z00-Z99).
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Supplementary Figure 2. Performance of model using no prior information (base), comorbidities
(base+CM) and ICD-10 diagnosis codes (base+DxC) across diagnosis codes measured using (A)
AUROC and (B) AUPRC.
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Supplementary Figure 3. AUROC for in-distribution (ID) and out-of-distribution (OOD) data, across
ICD-10 diagnosis codes, age and sex, for for scenarios where harmful data shifts were detected: (A)
model trained on patients admitted from acute care institutions (B) model trained on patients admitted
during the day (C) model trained on patients admitted from community hospitals (D) model trained on
patients admitted not from acute care institutions (E) model trained on patients not admitted from nursing
homes. P-values were calculated using a one-sided Mann-Whitney U test.

Supplementary Figure 4. Comparison of AUROC, AUPRC, PPV, and sensitivity when updating
periodically every n = 7, 14, 30, and 60 days.

Supplementary Figure 5. Comparison of AUROC, AUPRC, PPV, and sensitivity across strategies
retraining using a dynamic window of the most recent encounters (n = 7, 14, 30, 60, 120, 180 days) and
cumulatively.

Supplementary Figure 6. Comparison of AUROC, AUPRC, PPV, and sensitivity across increasing
lookback windows (n = 0, 30, 60, 120 days).

Supplementary Figure 7. Comparison of AUROC, AUPRC, PPV, and sensitivity across varying drift
p-value thresholds for retraining (p = 0.1, 0.05, 0.01, 0.001).
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Supplementary Figure 8. Comparison of AUROC, AUPRC, PPV, and sensitivity across varying sample
sizes for drift tests (n = 50, 100, 250, 500, 1000, 1500).

Supplementary Figure 9. Comparison of AUROC, AUPRC, PPV, and sensitivity across varying epochs
for retraining (n = 1, 5, 10).

Supplementary Figure 10. Comparison of AUROC, AUPRC, PPV, and sensitivity when updating using
the most recent and cumulative retraining strategy with all encounters (A), correctly predicted encounters
(C) or positively predicted encounters (P).

Feature Type # of Features Features
Administrative 16 sex, age, prev_encounter_count, triage_level_emergent, triage_level_no_info,

triage_level_non-urgent, triage_level_resuscitation, triage_level_semi-urgent,
triage_level_urgent, readmission_new_to_acute, readmission_nota,
readmission_planned_from_acute, readmission_unplanned_7_day_acute,
readmission_unplanned_7_day_day_surg,
readmission_unplanned_8_to_28_day_acute, from_nursing_home_mapped,
from_acute_care_institution_mapped

Interventions 6 unmapped_intervention, inv_mech_vent_mapped, endoscopy_mapped,
dialysis_mapped, surgery_mapped, interventional

Labs 55 albumin, alp, alt, aptt, arterial paco2, arterial pao2, arterial ph, ast, bicarbonate,
bilirubin, blood urea nitrogen, calcium, calcium ionized, creatinine, crp, d-dimer,
esr, ferritin, fibrinogen, glucose fasting, glucose point of care, glucose random,
hba1c, hematocrit, hemoglobin, high sensitivity troponin, influenza, inr, ketone,
lactate arterial, lactate venous, ldh, lipase, lymphocyte, mean cell volume,
neutrophils, other, platelet count, potassium, pt, serum alcohol, serum
osmolality, sodium, troponin, tsh, urinalysis, urine osmolality, urine sodium, urine
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specific gravity, venous pco2, venous ph, vitamin b12, vitamin d, white blood cell
count

Imaging Reports 5 ct, mri, x-ray, echo, ultrasound
Blood Transfusions 2 rbc, non-rbc

Comorbidities

(Only used in
Base+CM)

18 Kidney disease: N18, N19
Ischemic heart disease: I20-I52
Cerebrovascular disease: I60-69
Hypertension: I10-I15
Diabetes: E10-E13
Hyperlipidemia: E78
Hypertension: I10
Congestive heart failure: I50
Cancer: C00-D49
Dyspnea: R06
COPD: J44
Asthma: J45
Pulmonary embolism: I26
Connective tissue disease: I30-I36
Inflammatory bowel disease: K50, K51,
Osteoarthritis: M15-M19
Rheumatoid arthritis: M05-M14
HIV: B20-B24

ICD-10 Diagnosis
Codes

(Only used in
Base+DxC)

22 Certain infectious and parasitic diseases: A00-B99
Neoplasms: C00-D49
Diseases of the blood and blood-forming organs and certain disorders involving
the immune mechanism: D50-D89
Endocrine, nutritional and metabolic diseases: E00-E89
Mental, Behavioral and Neurodevelopmental disorders: F01-F99
Diseases of the nervous system: G00-G99
Diseases of the eye and adnexa: H00-H59
Diseases of the ear and mastoid process: H60-H95
Diseases of the circulatory system: I00-I99
Diseases of the respiratory system: J00-J99
Diseases of the digestive system: K00-K95
Diseases of the skin and subcutaneous tissue: L00-L99
Diseases of the musculoskeletal system and connective tissue: M00-M99
Diseases of the genitourinary system: N00-N99
Pregnancy, childbirth and the puerperium: O00-O99
Certain conditions originating in the perinatal period: P00-P96
Congenital malformations, deformations and chromosomal abnormalities:
Q00-Q99
Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere
classified: R00-R99
Injury, poisoning and certain other consequences of external causes: S00-T88
External causes of morbidity: V00-Y99
COVID19: U07-U08
Factors influencing health status and contact with health services: Z00-Z99

Supplementary Table 1. EHR features used for mortality risk prediction.

Mortality False True
Hospital 1 2 3 4 5 6 7 1 2 3 4 5 6 7
A00_B99 0.086 0.065 0.065 0.078 0.082 0.083 0.072 0.152 0.115 0.099 0.135 0.112 0.119 0.129
C00_D49 0.065 0.059 0.039 0.036 0.029 0.066 0.035 0.177 0.125 0.111 0.080 0.073 0.190 0.102
D50_D89 0.032 0.018 0.019 0.015 0.016 0.048 0.018 0.011 0.004 0.003 0.004 0.003 0.015 0.007
E00_E89 0.063 0.050 0.063 0.058 0.051 0.055 0.066 0.017 0.025 0.019 0.028 0.018 0.020 0.023
F01_F99 0.047 0.047 0.053 0.052 0.072 0.026 0.057 0.020 0.032 0.031 0.030 0.048 0.013 0.023
G00_G99 0.038 0.051 0.038 0.065 0.039 0.026 0.028 0.011 0.031 0.028 0.028 0.031 0.008 0.012
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H00_H59 0.004 0.006 0.003 0.005 0.001 0.001 0.002 NA NA NA NA NA NA NA
H60_H95 0.006 0.006 0.004 0.012 0.009 0.006 0.006 NA NA NA NA NA NA NA
I00_I99 0.101 0.147 0.143 0.138 0.219 0.138 0.131 0.103 0.211 0.165 0.175 0.249 0.119 0.158
J00_J99 0.127 0.132 0.144 0.130 0.106 0.137 0.163 0.217 0.238 0.175 0.256 0.229 0.197 0.258
K00_K95 0.108 0.103 0.118 0.059 0.046 0.106 0.094 0.051 0.081 0.079 0.048 0.039 0.085 0.064
L00_L99 0.028 0.026 0.029 0.024 0.021 0.022 0.022 0.003 0.005 0.003 0.004 0.006 0.004 0.001
M00_M99 0.044 0.041 0.049 0.053 0.036 0.036 0.043 0.009 0.008 0.011 0.011 0.007 0.006 0.006
N00_N99 0.059 0.066 0.062 0.076 0.085 0.057 0.063 0.025 0.042 0.030 0.054 0.057 0.035 0.039
O00_O99 0.002 0.001 0.001 0.003 0.001 0.000 0.001 NA NA NA NA NA NA NA
Q00_Q99 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
R00_R99 0.094 0.134 0.120 0.113 0.116 0.142 0.129 0.019 0.030 0.028 0.011 0.030 0.036 0.035
S00_T88 0.074 0.038 0.041 0.072 0.061 0.036 0.059 0.027 0.023 0.016 0.033 0.031 0.016 0.018
V00_Y99 0.002 0.002 0.004 0.005 0.003 0.003 0.004 0.004 0.003 0.004 0.013 0.011 0.005 0.009
Z00_Z99 0.020 0.008 0.004 0.006 0.005 0.011 0.008 0.156 0.027 0.197 0.089 0.054 0.131 0.117

Supplementary Table 2. Proportion of patient encounters across ICD-10 diagnosis codes, hospital and
mortality status. Values for groupings of diagnosis codes with < 5 patient encounters have been omitted
due to privacy preserving practices required by GEMINI.

Base Base + Comorbidities Base + ICD-10
Diagnosis Codes

Source Target Metric Target – Source (%) Target – Source (%) Target – Source (%)

Community
Hospitals

Academic
Hospitals

AUROC -4.0 -2.6 -0.9

AUPRC -6.8 -5.0 -3.2

Academic
Hospitals

Community
Hospitals

AUROC -1.1 -1.8 0.0

AUPRC -3.2 -4.8 0.0

Excl. Winter Seasonal
Winter

AUROC +0.7 -0.3 -1.2

AUPRC -0.6 +0.9 -0.1

Excl.
Summer

Seasonal
Summer

AUROC +0.8 +1.2 +0.3

AUPRC +1.0 +0.9 -0.3

Night
Admission

Day
Admission

AUROC +1.6 -0.2 +0.2

AUPRC +3.0 +0.9 +2.1

Day
Admission

Night
Admission

AUROC -1.9 -0.7 -0.8

AUPRC -5.6 -3.2 -3.7

Supplementary Table 3. Performance of models on in-distribution (source) and out-of-distribution (target)
data without prior information (base), with comorbidities (base+CM) and with diagnosis codes
(base+DxC) as features.
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