	rs-fMRI											
Parcellation ¹	Feature Selection ²	ASD/TD	Validation	Accuracy	Sen/Spe	Age	Classifier ³	Al Spec ⁴	Risk of bias	Reference		
			ROI	-based functi	onal connec	tivity						
AAL116	LLFS	63/72*	70:30	97.5	-	В	SVM	RBF kernel	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[50]		
Self-generated	t test	11/48***	LOOCV	96.6	81.8/100	А	SVM	Linear kernel	$\sqrt{\sqrt{2}}$	[51]		
AAL116	RFE-SSAE	501/553*	30-fold	94.9	94/95.6	B+C	LR	Simple LR	$\times \checkmark \checkmark \checkmark$	[52]		
RBS	AE	155/148*	10-fold	91.1	89.9/92	В	DRBM	-	$\times \checkmark \checkmark \checkmark$	[53]		
Power150	LLFS	126/126*	66:33	90.8	89/93	B+C	Ensemble	RF	ノノノノ	[54]		
Clements35	RFE	255/276*	10-fold	90.6	90.6/90.6	B+C	SVM	Linear kernel	$\times \checkmark \checkmark \checkmark$	[55]		
AAL90	Threshold	312/328*	50-fold	90.3	92.3/88.4	В	DNN	PNN	$\times \checkmark \checkmark \checkmark$	[56]		
-	t test-MRMR-LLFS	23/27*	5-fold	89.7	87.6/92	B+C	Ensemble	-	?××√	[57]		
AAL90	SMF-t test	505/530*	90:10	88	91.5/86.5	B+C	SVM	Linear kernel	$\times \checkmark \times \checkmark$	[58]		
Multi atlas	SLR	159/197*	10-fold	89.1	91/87.7	В	Ensemble	-	?√√√	[59]		
AAL116	None	55/55*	5-fold	86.4	-	В	AE + Softmax	Stacked SAE	$\times \checkmark \times \checkmark$	[60]		
Multi atlas	L1SCCA	74/107	LOOCV	85	80/89	С	LR	Sparse LR	$\checkmark\checkmark\times\checkmark$	[61]		
HO110	None	186/184*	5-fold	84.9	-	-	FCNN	-	?√√√	[62]		
Whole brain	AE	505/530*	10-fold	84.1	80/75.3	B+C	CNN	Standard	$\times \checkmark \checkmark \checkmark$	[63]		
Multi atlas	FFS	505/530*	10-fold	83	83/84	B+C	LR	Simple LR	$\times \checkmark \checkmark \checkmark$	[64]		
Multi atlas	SLR	36/46*	10-fold	81.7	71.8/89.5	B+C	SVM	Linear kernel	?××√	[65]		
AAL116	t test	45/47*	LOOCV	81.5	84.4/78.7	В	SVM	Linear kernel	$\times \checkmark \checkmark \checkmark$	[66]		
AAL90	Threshold	443/435*	90:10	81.1	80.4/81.7	B+C	SVM	Gaussian kernel	$\times \checkmark \checkmark \checkmark$	(16)		
AAL116	F score	23/15*	62:38	80.8	-	-	SVM	Linear kernel	?√?√	[68]		
DOS160	Extra tree	403/468*	10-fold	80.5	63.7/100	B+C	SVM	Linear kernel	XVVV	[69]		
AAL116	LASSO	539/573*	85:15	79.6	83.6/75.6	B+C	Ensemble	-	$\times \times \checkmark \checkmark$	[70]		
AAL116	LLFS-t test-RFE	45/47*	LOOCV	79.4	82.2/76.6	В	SVM	Multi kernel	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[71]		
CC400	None	505/530*	80:20	79.2	69.6/85	B+C	CNN	AlexNet	XVVV	[72]		
Self-generated	F score	112/128*	LOOCV	79.2	77.8/80.5	В	SVM	Linear kernel	$\times \checkmark \checkmark \checkmark$	[73]		
Power150	Threshold	403/468*	10-fold	79.2	-	B+C	AE + Softmax	-	$\times \times \checkmark \checkmark$	[74]		
DES162	RFE	59/59	10-fold	79.1	73.3/85	С	LR	Simple LR	$\sqrt{\sqrt{\times}}$	[75]		
Whole brain	t test	40/40	LOOCV	79	83/75	B+C	LR	Simple LR	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[76]		
AAL90	SMF	505/530*	LOOCV	77.3	-	B+C	SVM	Gaussian kernel	$\times \checkmark \times \checkmark$	[77]		
DK70	t test-RFE	86/125*	10-fold	76.3	79.2/63.9	В	SVM	Linear kernel	?×√√	[78]		

Multimedia Appendix 2: Characteristics of included studies

RBS	None	505/530*	70:30	76	78/67	B+C	AE + Softmax	Stacked SAE	$\times \checkmark \checkmark \checkmark$	[79]
CC400	None	505/530*	10-fold	76	70/81.7	B+C	CNN	Self-proposed	$\times \checkmark \checkmark \checkmark$	[80]
CC400	None	505/530*	5-fold	75.3	74/76.6	B+C	FCNN	-	$\times \checkmark \checkmark \checkmark$	[81]
SBC36	LASSO	15/45	LOOCV	75	76.7/73.3	С	LR	Sparse LR	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[82]
Multi atlas	None	419/530*	10-fold	74.5	80.7/66.7	B+C	AE + Softmax	Stacked DAE	$\times \checkmark \checkmark \checkmark$	[83]
AAL116	None	505/530*	90:10	74	94.9/69.9	B+C	CNN	ResNet-18 + FCNN	$\times \checkmark \checkmark \checkmark$	[84]
Multi atlas	None	300/300*	5-fold	72.5	71.7/73.3	В	Ensemble	CRF + CNN	$\times \checkmark \checkmark \checkmark$	[85]
CC400	None	505/530*	5-fold	72	70.9/73	B+C	LR	Ridge LR	$\times \checkmark \checkmark \checkmark$	[86]
CC200	None	505/530*	10-fold	71	73/66	B+C	DNN	CapsNet	X?√√	[87]
HO110	Threshold	102/88*	LOOCV	71	69/74	В	SVM	Linear kernel	$\times \checkmark \times \checkmark$	[88]
CC200	None	505/530*	10-fold	71	71/71	B+C	CNN	Self-proposed	$\times \checkmark \checkmark \checkmark$	[89]
Power150	LEAN-LLFS	387/436*	5-fold	70.9	-	B+C	FCNN	-	$\times \checkmark \checkmark \checkmark$	[90]
CC200	F score	505/530*	5-fold	70.9	70.7/75.5	B+C	AE + Softmax	-	$\times \checkmark \checkmark \checkmark$	[91]
CC200	None	505/530*	10-fold	70.8	62.2/79.1	B+C	AE + Softmax	Stacked SAE	$\times \checkmark \checkmark \checkmark$	[92]
Power150	None	126/126*	72:28	70.8	-	B+C	Ensemble	CRF	$\times \checkmark \checkmark \checkmark$	[93]
CC200	RFE	442/556*	80:20	70.7	-	B+C	SVM	RBF kernel	$\times \checkmark \checkmark \checkmark$	[94]
DLA200	SLR	100/100*	10-fold	70.5	74/67	B+C	CNN	Standard	?×√√	[95]
AAL90	None	38/23*	5-fold	70.4	72.5/67	B+C	AE + Softmax	Stacked SAE	$\checkmark\checkmark\times\checkmark$	[96]
CC200	None	505/530*	5-fold	70.3	68.3/72.2	B+C	AE + Softmax	-	$\times \checkmark \checkmark \checkmark$	[97]
CC400	None	505/530*	10-fold	70.2	77.5/61.8	B+C	CNN	Standard	$\times \checkmark \checkmark \checkmark$	[98]
CC200	RFE	432/556*	90:10	70.1	-	B+C	SVM	Linear kernel	$\times \checkmark \checkmark \checkmark$	[99]
CC200	None	505/530*	10-fold	70	74/63	B+C	AE + Softmax	Stacked DAE	$\times \checkmark \checkmark \checkmark$	[100]
Brodmann's areas	Elastic Nets	167/205*	10-fold	70	65/75	В	SVM	Linear kernel	$\times \checkmark \checkmark \checkmark$	[101]
AAL116	None	403/468*	5-fold	69.8	63.1/75.6	B+C	FCNN	-	$\times \checkmark \checkmark \checkmark$	[102]
BASC64	BOF	75/100*	5-fold	69.7	54.6/80.9	B+C	SVM	RBF kernel	$\times \checkmark \checkmark \checkmark$	[103]
AAL116	Masking	510/536*	5-fold	69.2	64.7/73.5	B+C	AE + Softmax	Stacked SAE	××?√	[104]
AAL116	SLR	250/218*	5-fold	69.1	70.2/66.4	B+C	KNN	-	XVV	[105]
CC200	Extra tree	506/548*	10-fold	67.7	66.3/68.9	B+C	SVM	Linear kernel	XVV	[106]
AAL116	t test	119/144*	10-fold	67.4	58.3/75	В	DRBM	-	?×√√	[107]
HBM-Bzdok12	IBP	369/349*	90:10	67.3	-	B+C	SVM	Linear kernel	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[108]
DLA39	MSDL	403/468*	LOOCV	67	61/72.3	B+C	SVM	Linear kernel	$\times \checkmark \times \checkmark$	[109]
AAL116	None	1711/15903	70:15:15	67	-	All	Ensemble	-	XXVV	[110]
HO110	EIIC	539/573*	LOOCV	67	-	B+C	Ensemble	-	$\times \checkmark \times \checkmark$	[111]
AAL90	EW	527/569*	5-fold	66.9	66.4/70.4	B+C	CNN	Self-proposed	XXVV	[112]
Multi atlas	None	200/200*	80:20	65	65/65	B+C	Ensemble	CRF	XVVV	[113]
AAL116	LLFS	272/245*	LOOCV	65	-	-	SVM	Linear kernel	?√×√	[114]

DOS160	SDAE	457/483*	10-fold	64	63.8/64.4	B+C	SVM	RBF kernel	××√√	[115]
CC200	Threshold	77/77*	10-fold	63	62/64	С	SVM	Linear kernel	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[116]
Power150	Graph based	42/37*	LOOCV	60.7	-	В	SVM	Gaussian kernel	?××√	[117]
Whole brain	t test	447/517*	LOOCV	60	62/58	B+C	LR	Simple LR	$\times \checkmark \times \checkmark$	[118]
			ROI-based	functional co	onnectivity +	Clinical d	ata			
Multi atlas	None	408/401*	10-fold	73.2	7 4.5/71.7	B+C	DNN	DANN	××√√	[119]
HO110	None	200/200*	80:20	65	65/65	В	Ensemble	CRF	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[120]
				Graph	metrics					
AAL116	GERSMC	103/106*	70:30	96.8	-	В	SVM	RBF kernel	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[121]
AAL116	LLFS	45/39*	70:30	96.2	-	В	SVM	RBF kernel	$\sqrt{\times}\sqrt{}$	[122]
AAL90	LLFS	50/42*	80:20	95	-	В	Ensemble	-	$\sqrt{\times}\sqrt{}$	[123]
AAL116	SSFA	28/19*	10-fold	95	97/91	-	SVM	Gaussian kernel	$\times \checkmark \times \checkmark$	[124]
DOS160	Graph based	12/12	LOOCV	91	-	С	SVM	Linear kernel	$\times \checkmark \checkmark \checkmark$	[125]
6 RSN	ICA-Graph based	103/192*	LOOCV	88.7	77.4/100	B+C	SVM	RBF kernel	$\checkmark \times \times \checkmark$	[126]
AAL116	Graph based	45/47	10-fold	87.7	87.8/87.7	В	SVM	Linear kernel	×××√	[127]
AAL116	Prim algorithm	59/46*	5-fold	86.7	87.5/85.7	B+C	SVM	RBF kernel	$\checkmark \times \times \checkmark$	[128]
Power150	LLFS	73/88*	5-fold	81.2	-	В	FCNN	-	X√?√	[129]
HO110	Graph based	403/468*	10-fold	79.9	-	B+C	Ensemble	-	$\times \checkmark \checkmark \checkmark$	[130]
HO110	None	403/468*	10-fold	79.5	78.3/81.2	B+C	GNN	GFT + FCNN	$\times \checkmark \checkmark \checkmark$	[131]
Power150	Threshold-RFE	403/468*	10-fold	77.7	-	B+C	LDA	-	$\times \checkmark \checkmark \checkmark$	[132]
HO110	LLFS	416/451*	80:20	76.3	81/71.3	B+C	GNN	ID + FCNN	$\times \checkmark \checkmark \checkmark$	[133]
Multi atlas	RFE	419/530*	10-fold	75.9	79.2/71.5	B+C	GNN	MT + Ensemble	$\times \checkmark \checkmark \checkmark$	[134]
AAL116	Threshold-RFE	119/116*	LOOCV	74.9	71.2/78	B+C	LDA	-	$\times \checkmark \times \checkmark$	[135]
HO110	None	221/253*	LOOCV	73.5	78.7/71.5	B+C	GNN	LR-GCN + FCNN	$\times \checkmark \times \checkmark$	[136]
Whole brain	Graph based	403/468*	10-fold	73.1	76/69	B+C	Ensemble	-	$\times \checkmark \checkmark \checkmark$	[137]
HO110	RFE	539/573*	10-fold	73	68.8/76.9	B+C	GNN	GFT + FCNN	$\times \checkmark \checkmark \checkmark$	[138]
HO110	t test-LASSO	403/468*	10-fold	72.4	71.2/75	B+C	DNN	GAT	$\times \checkmark \checkmark \checkmark$	[139]
HO110	RFE-PCA-AE	403/468*	10-fold	70.4	-	B+C	GNN	GFT + FCNN	$\times \checkmark \checkmark \checkmark$	[140]
Power150	Graph based	42/37	5-fold	69.8	-	В	Ensemble	RF	$\checkmark \times \times \checkmark$	[141]
HO110	None	403/468*	10-fold	69.5	-	B+C	GNN	GFT + FCNN	$\times \checkmark \checkmark \checkmark$	[142]
AAL90	EW	474/539*	5-fold	68.7	69.2/68.3	B+C	CNN	Self-proposed	$\times \checkmark \checkmark \checkmark$	[143]
Multi atlas	None	485/544*	60:10:30	67.3	70.4/64.2	B+C	GNN	MT + KNN	$\times \checkmark \checkmark \checkmark$	[144]
AAL116	None	402/464*	10-fold	67.2	65.9/68.4	B+C	GNN	hi-GCN + RBF-SVM	$\times \checkmark \checkmark \checkmark$	[145]
Whole brain	Graph based-LLFS	42/37*	LOOCV	67	70/63.9	В	Ensemble	-	?√×√	[146]
AAL116	Graph based	29/31*	External	65.5	-	С	SVM	Linear kernel	$\sqrt{\sqrt{?}}$	[147]
Power150	Graph based	42/37*	LOOCV	63.3	73.8/51.4	-	SVM	Grass kernel	?××√	[148]

κλού Φύγθηση Φιαί Φ.2 - B C <thc< th=""> <thc< th=""> C <</thc<></thc<>											
codd single stray addit <td>HO110</td> <td>None</td> <td>403/468*</td> <td>5-fold</td> <td>62.9</td> <td>-</td> <td>B+C</td> <td>GNN</td> <td>s-GCN + FCNN</td> <td>$\times \checkmark \checkmark \checkmark \checkmark$</td> <td>[149]</td>	HO110	None	403/468*	5-fold	62.9	-	B+C	GNN	s-GCN + FCNN	$\times \checkmark \checkmark \checkmark \checkmark$	[149]
Graph metrics + Clinical data MR209 Oran based 270/305* Solar N/2 Statistic Br/2 CN sefencesset X//// [151] Durantic Dynamic functional connectivity D Dec Off Statistic Statistic X//// [151] A4114 MMM 47/73* Linux Statistic Statistic Statistic Statistic X/X/ [153] A4114 MMM 47/73* Linux Statistic Statistic Statistic Mathematic X/X/ [153] Mathematic Mathematic 47/73* Linux Statistic Mathematic X/X/ [153] Mathematic Mathematic 42/87 Math 83 83/88 Statistic Mathematic X/X/ [158] Mathematic Math 42/87 Math 83 83/88 Statistic Mathematic X/X/ [158] Math Math 42/87 Disc Statistic Statistic	CC200	Graph based	493/530*	17-fold	59.2	61.4/57.4	B+C	FCNN	-	$\times \checkmark \checkmark \checkmark \checkmark$	[150]
Normal IndexControlCont				(Graph metric	s + Clinical da	ata				
MarkelsNome\$23937*933702-PC0401971-C011X///X///(132)Departing constrained constrained colspan="6">Departing CONSTRAINES CONSTRAI	BNA246	Graph based	270/305*	5-fold	74.5	63.5/84.3	B+C	CNN	Self-proposed	$\times \checkmark \checkmark \checkmark$	[151]
Dynamic functional connectivity ALL20 NMM 4773* 30'6d 91.1 86.7432 R SVM Lines lened X/X/ [53] Wale reserved 36/00* 0000* 90 87.94 R SVM Wale lened 7.4/4 [54] Wale reserved 36/00* 44/02* 24/04 88.3 88.1/83.3 B AL±5 software 54 XXX/ [155] Thirle 553 44/04* 24/04* 88.3 88.1/83.3 B AL±5 software 54 XXX/ [155] ALL25 W7 41/41* 70.6/2 88.7/70.7 0.5 59M Linear leneral V/V/ [158] ALL25 MTT5/M 48/44.8* 10001 76.8 72.5/74.8 R-5 SVM Linear leneral X/V/V [167] AL15 MTT5/M 48/44.8* 10001 76.4 72.5/74.8 R-5 SVM Linear leneral X/V/V [167] AL16 MA116	Multi atlas	None	539/573*	90:10	70.2	-	B+C	GNN	GFT + FCNN	$\times \checkmark \checkmark \checkmark \checkmark$	[152]
44116 HMM 47/75 10 Edd 90 J 95 Sy9.2 8 SYM Handweine X/X [153] Matterwein Selegopoed 300 J IDEA 90 J 97 J SYM Matterwein X/X [153] Matterwein Selegopoed 300 J 200 J 87 J A AF-Wein SYM Matterwein X/X [153] Miller berind New 44/17 State 88 87.88 8 60.00 - X/X [153] A4116 AT 4/40 70.17 64.80 80.877.87 84.0 60.00 interview X/X [153] A4116 MMM 403/460 ID640 76.6 75.077.67 84.0 90 M Haine Invest X/X [153] A4116 MMM 12/17 10.640 76.6 75.077.4 84.0 90 M Haine Invest X/X [153] A4116 MMM I2/171 10.640 76.0 75.077.1 <td></td> <td></td> <td></td> <td>Dy</td> <td>namic functi</td> <td>onal connect</td> <td>ivity</td> <td></td> <td></td> <td></td> <td></td>				Dy	namic functi	onal connect	ivity				
Mith-denoviSelfsorpoordSolf of volSolSolf of volSolf of vol	AAL116	HMM	47/73*	10-fold	90.1	85.5/93.2	B	SVM	Linear kernel	$\times \checkmark \times \checkmark$	[153]
whole basin None 42/4* 78.6d 89.1 98.193.3 8 AP - whenax NA XXXX [15] HP P NBA 46.01	Multi-network	Self-proposed	30/30*	LOOCV	90	87/93	В	SVM	Multi kernel	?√√√	[154]
HTPISTAAkJS1AkJS1SFABBB <td>Whole brain</td> <td>None</td> <td>42/42*</td> <td>28-fold</td> <td>89.3</td> <td>88.1/83.3</td> <td>В</td> <td>AE + Softmax</td> <td>SAE</td> <td>×××√</td> <td>[155]</td>	Whole brain	None	42/42*	28-fold	89.3	88.1/83.3	В	AE + Softmax	SAE	×××√	[155]
All16 WT 41/4 ¹ 72.553 85.9 79.3/97.6 - INN - 72.77 [157] All16 CC64A350 46/41 66/61 83 822/41 8 55.000 Inter-lement 77.77 15.00 55.00 55.00 Inter-lement 77.77 15.00 55.00 55.00 Inter-lement 77.77 15.00 55.00 Multa lement 77.77 15.00 55.00 15.00 15.00 77.77 15.00 55.00 15.00 15.00 77.77 15.00	TFP-IP	SSFA	48/51*	5-fold	88	87/88	В	KNN	-	$\times \checkmark \times \checkmark$	[156]
All18 ttssA300 4/4/7* 6/6/8 8/8 8/9/4 8 9/04 unear kernel √///* [158] All18 R.A 44/4* L000V 78.9 8.5/7.7.7 8.6 SVM Muser kernel √///* [158] All18 MTSAM 44/4* L000V 78.9 8.5/7.9 8.0 SVM Muser kernel √//** [158] CC200 MTS 399/72* L06/44 76.9 8.3/7.6.5 8.0 SVM Unear kernel ×//** [152] ALL16 MMM 121/71* L06/44 76.9 8.3/7.6.5 8.0 SVM Unear kernel ×//** [153] ALL16 MMM 121/71* L06/44 74.9 74.7 8.6C L5.1M - ×//** [153] AGC40 AMTS 30/44* 10.00.7 74.7 74.75 16.0 L5.1M ×/*** [163] AGL16 L15-54/300 A//** 10.00.7 74.7 74.75 16.0 L5.1M ×/*** [163] AGL16 L15-54/300<	AAL116	WT	41/41*	70:15:15	85.9	79.3/92.6	-	KNN	-	?×?√	[157]
Akll16 PEA 48/41* 1000V 78.9 85.77.7 8-C SVM Investment √√√ [159] Akll16 MTFS-M 403/48* 40.84 75.8 72.57.99 8-C SVM Mubi kernel ×/// [160] CC200 MTM 17.171* 10.84 75.6 78.674.3 8-C SVM Linear kernel ×/// [161] CC200 MMM 17.171* 10.84 74.9 - 8-C SVM Linear kernel ×//// [163] AAKGA MMM 17.171* 10.84 74.9 - 8-C SVM Linear kernel ×//// [163] AAKGA MMTFS 10.444 10.84 7.4 7.175 8-C ISTM - ×//// [163] AAL116 HEFLASO 45.074* 10.84 7.14 60.5/8.16 8 SVM Ref werel ×//// [163] AAL116 HEFLASO 45.077* 10.404 60.5/8.16 8 SVM Ref werel ×//// [167] Molta kersi	AAL116	t test-LASSO	45/47*	6-fold	83	82/84	В	SVM	Linear kernel	$\sqrt{\sqrt{\times}}$	[158]
Ak116 MTS PM 403(48*) ID Rd 7.6.8 7.5.79.9 8.6C SVM Multi kernel X/V/ [16] CC20 RF 399(47)* ID Rd 7.6.6 7.8,67.3 Rc SVM Linear kernel X/V/ [16] CC20 INM 12/171* ID-Rd 7.6.6 RK SVM Linear kernel X/V/ [16] CC20 INM 12/171* ID-Rd 7.4 RC SVM Linear kernel X/V/ [16] ALLIS MTSTM 409/48* ID-Rd 7.4 7.775 BrC LSTM - X/V/ [16] ALLIS 115* 52/252* LOCO 7.17 7.775 BrC Ensemble - X/V/ [16] ALLIS LIFSLASS 45/47* ID-Rd 7.17 7.775 BrC Ensemble - X/V/ [16] ALLIS LIFSLASS 45/47* ID-Rd 7.72 BrC Ensemble X/V/ [16] ALLIS LIFSLASS 45/47* ID-Rd 7.14	AAL116	PCA	49/41*	LOOCV	78.9	85.7/70.7	B+C	SVM	Linear kernel	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[159]
c200 AFE gggA72* 10-bid 76.6 78.67/43 8+C SVM Linear kernel X/V/ [16] AA1116 HMM 121/17* 10-64 75.9 83.37.05 B SVM Linear kernel X/V/ [16] C0200 HMM 145/15* 10-64 75.9 83.37.05 B SVM Linear kernel X/V/ [163] C0200 HMM 145/15* 10-640 74.7 737.75 B+C LSTM - X/V/ [163] C0201 AF 322/35* 10-607 74.7 737.75 B+C LSTM - X/V/ [166] AA116 LIFS ASS 45/47* 10-607 75.7 B+C LSTM X/V/ [166] Mohe brain MT 325/35* 10-607 75.7 B+C LSTM X/V/ [167] Mohe brain MT 339/573* 80-02 67.97/42 B NM Referred X/V/ [167] Mohe brain MS 539/573* 10-616 68.5 -	AAL116	MTFS-EM	403/468*	10-fold	76.8	72.5/79.9	B+C	SVM	Multi kernel	$\times \checkmark \checkmark \checkmark \checkmark$	[160]
All16 HMM 12/1/1* 10-6di 75.9 83.370.6 B SVM Linear lennel X/V/ [162] C200 HMM 14/5/15* 10-6di 74.9 - Brc SVM Linear lennel X/V/ [163] BASCA MSTEPS 403/48* 10-6di 74.7 73/75 Brc LSTM - X/V/ [163] AL116 LIFS 322/352* LOOCV 74.7 73/75 Brc ESTM - X/V/ [163] AL116 LIFS 322/44* 10-6di 75.4 73/75 Brc ESTM - X/V/ [167] AL116 LIFS 32/44* 10-6di 75.4 77.7 Brc ESTM SFEmpla X/V/ [167] AL116 LIFS 539/573* 10-6di 65.7 67.9/74.2 Br CNM Bropposed X/V/ [173] AL116 Mamai 41/14* 546di 61.1 61.8/60 Br SVM Linear lennel X/V/ [173] AL1116 BS </td <td>CC200</td> <td>RFE</td> <td>399/472*</td> <td>10-fold</td> <td>76.6</td> <td>78.6/74.3</td> <td>B+C</td> <td>SVM</td> <td>Linear kernel</td> <td>$\times \checkmark \checkmark \checkmark \checkmark$</td> <td>[161]</td>	CC200	RFE	399/472*	10-fold	76.6	78.6/74.3	B+C	SVM	Linear kernel	$\times \checkmark \checkmark \checkmark \checkmark$	[161]
C200 HMM 145/157* 10 fold 74.9 - 84C SVM Linear kernel √√√√ [163] BASC64 MSTEFS 403/468* 10-bold 74.7 73/75 84C LSTM - ×√√√ [163] CC00 AE 322/352* 10-00 74.7 73/75 84C LSTM - ×√√√ [163] AL116 LIFS 423/46* 10-bold 74.0 60.5/1.6 81 SVM REFerrel ×√√√ [163] AL116 LIFS 45.9/37* 10-bold 71.4 60.5/1.6 81 SVM REferrel ×√√√ [163] Mole brain WT 210/24* 10-bold 70.5 67.9/74.2 81 SVM Referrel ×√√√ [163] H110 UFS 539/57.3* 80.20 68.5 - 84C SVM Polynomial kernel ×√√√ [163] AL116 HS 539/57.3* 80.20 68.6 SVM Interkernel ×√√√ [172] AL116 KAPAC+LIFS 32/34	AAL116	HMM	121/171*	10-fold	75.9	83.3/70.6	В	SVM	Linear kernel	$\times \checkmark \checkmark \checkmark \checkmark$	[162]
BASGA MSTEPS 403/68* 10-fold 74.7 73/76.3 B+C LSTM . X/V/V [16] CC00 AE 322/352* L00V 74.7 73/75 B+C LSTM . X/V/V [16] ALL16 LIFS 422/46* 10-fold 73.6 B+C LSTM . X/V/V [16] ALL16 LIFS 422/46* 10-fold 73.6 B+C Ensemble . X/V/V [16] ALL16 LIFS 454/7* 10-fold 73.6 B+C SVM B+Erron fold X/V [16] Mole brain WT 529/57* 80.20 69.8 77.166.0 B+C SVM Polynomial kernel X/V/V [16] 01010 LIFS 529/57* 80.20 69.6 SVM Esternel X/V/V [17] ALL16 BS 25/25 Externel 53 50/55 B LIFM . X/V/V [17]	CC200	HMM	145/157*	10-fold	74.9	-	B+C	SVM	Linear kernel	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[163]
C200 AE 32/35* LOCV 74.7 73.75 B4C LSTM - X/X/ [165] ALL16 LLFS 423/46* 10 fol 73.6 75.72 Bc Ensemble - X/X/ [165] ALL16 LLFS LASSO 454/7* 10 fold 71.4 60.5/81 B SVM BF lemell X/X/ [167] Whole brain ULFS LASSO 454/7* 10 fold 71.4 60.5/81 B SVM BF lemell X/X/ [167] Whole brain WT 210/424 10 fold 71.6 Bc SVM Polynomial kernel X/X/ [167] C200 None 539/573* 10 fold 68.5 - Bc SVM Linear kernel X/X/ [172] ALL16 BS 25/25 External 53 50/55 B LISTM X/X/ [172] ALL16 KAPACLES 25/25 External 53/75 Bc LIAN	BASC64	MSTEPS	403/468*	10-fold	74.7	73/76.3	B+C	LSTM	-	$\times \checkmark \checkmark \checkmark \checkmark$	[164]
AAL116 LLFS 423/46* 10-fold 73.6 75/72 8-c Ensemble - X/V [166] AL116 LLFS-LASCO 45/47* 10-fold 71.4 60.5/81.6 8 SVM R6F kernel √X/V [167] Whole brain WT 210/249* 10-fold 70.5 67.9/7.2 8 CNN Self-stropoed XX/V [168] H110 LLFS 539/573* 80.20 69.8 77.1/6.6 84 SVM Polynomial kernel XX/V [169] CC000 Mone 539/573* 80.20 69.8 77.1/6.6 84 SVM Polynomial kernel XX/V [169] CC000 Mone 539/573* 80.20 68.5 SVM Polynomial kernel X/VV [171] ALL16 SVM Mone 25/5 Leternel SVM R6F kernel X/VV [172] Multi atla 12/13* 1000* 69 63.5/7.6 8+C LDA 1 X/VV [172] Mole brain None 79/105* 1000*<	CC200	AE	322/352*	LOOCV	74.7	73/75	B+C	LSTM	-	$\times \checkmark \times \checkmark$	[165]
AAL116LLFS-LASSO $45/47^{*}$ $10/6d$ 71.4 $60.5/81.6$ BSVMRBF kernel $\sqrt{\sqrt{4}}$ (167) Whole brainWT $210/249^{*}$ $10/6d$ 70.5 $67.9/74.2$ B CNN $SelFproposed$ $\sqrt{\sqrt{4}}$ (163) H010LLFS $539/573^{*}$ 80.20 69.8 $77.1/60.6$ $B+C$ SVM Polynomial kernel $\sqrt{\sqrt{4}}$ (163) C200None $539/573^{*}$ $10/6d$ 68.5 $ B+C$ SVM $Inear kernel$ $\sqrt{\sqrt{4}}$ (171) C200Manual $147/14^{*}$ $5.6dd$ 61.1 $61.8/60$ $B+C$ SVM $Inear kernel$ $\sqrt{\sqrt{4}}$ (171) AAL116BS $25/25$ External 53 $50/55$ B $ISTM$ $ \sqrt{4}\sqrt{4}$ (172) Mith atas $iCA PCA LLFS$ $32/34$ 1000^{*} 53 $50/55$ B $ISTM$ $ \sqrt{4}\sqrt{4}$ (172) AL116BF $32/34$ 1000^{*} 53 $50/55$ B $ISTM$ $ \sqrt{4}\sqrt{4}$ (173) AL116LtFst $48/30^{*}$ 1000^{*} 87 $80/92$ $B+C$ SVM $RB kernel$ $\sqrt{4}\sqrt{4}$ (174) AL116LtFst $48/30^{*}$ 1000^{*} 63 $80/92$ $B+C$ IDA ADA $\sqrt{4}\sqrt{4}$ (174) Hold brainBF $10/61^{*}$ 1000^{*} 94.7 $80/92$ $B+C$ IDA DA $\sqrt{4}\sqrt{4}$ (176)	AAL116	LLFS	423/446*	10-fold	73.6	75/72	B+C	Ensemble	-	$\times \sqrt{?} $	[166]
Whee brainWT $210/24^{9}$ 10 -fold 70.5 $67.97/2.2$ BCNNSelf-proposed XXV $[168]$ H0110LLFS $539/57^{3}$ 8020 69.8 $77.160.6$ $B+C$ $5VM$ Polynomial kernel XVV $[167]$ CC200None $539/57^{3}$ 10 -fold 68.5 $ B+C$ $LSTM$ $ XVV$ $[17]$ GC200Manual $147/14^{6}$ $5-fold$ 61.1 $61.8/60$ $B+C$ SVM $Inear kernel$ $7/2V$ $[17]$ ALL16BS $25/25$ External 53 $50/55$ B $LSTM$ $ XVV$ $[17]$ Mult atasICA-PCA-LI5 $32/34$ $IOCV$ 50 $ C$ IDA $ XVV$ $[17]$ ALL16Hest $48/30^{*}$ $IOCV$ 63 $80/92$ $B+C$ SVM $RB-kernel$ XVV $[17]$ ALL16Itest $48/30^{*}$ $IOCV$ 87 $80/92$ $B+C$ SVM $RB-kernel$ XVV $[17]$ ALL16Itest $48/30^{*}$ $IOCV$ 63 $80/92$ $B+C$ SVM $RB-kernel$ XVV $[17]$ Mole brainDRI-CA-test $127/13^{*}$ $IOCV$ 63 $80/92$ $B+C$ SVM IDA XVV XVV $[17]$ Mole brainMore $91/15^{*}$ $IOCV$ 63 $80/92$ $B+C$ SVM IDA XVV $ITMole brainBOF19/19^{*}$	AAL116	LLFS-LASSO	45/47*	10-fold	71.4	60.5/81.6	В	SVM	RBF kernel	$\checkmark\checkmark\times\checkmark$	[167]
H010LLFs539/57*80.0069.877.1/60.68+CSVMPolynomial kernel $X < V < V$ [169]C200None539/57*10-fold68.5-8+CLSTM- $X < V < V$ [17]C200Manual147/146*5-fold61.161.8/608+CSVMLinear kernel $7,7 < V$ [17]AL116B525/25External5350/558LSTM- $\sqrt{V} < V$ [17]Multi atlasICA-PCA-LIFS32/34LOOV50-CLDA- $\sqrt{V} < V$ [17]AL116Ltest48/30*LOOV50-CLDA- $\sqrt{V} < V$ [17]AL116Ltest48/30*LOOV8780/928+CSVMRBF kernel $\sqrt{V} < V$ [17]AL116Ltest127/13*LOOV8780/928+CLDA- $\sqrt{V} < V$ [17]Mole brainDR-ICA-LIES127/13*LOOV8780/928+CLDAABF kernel $\sqrt{V} < V$ [17]Whole brainBoF19/15*-94.780/928+CLDAABF kernel $\sqrt{V} < V$ [17]Whole brainNone79/105*-94.792.5/96.28+CCNNDarkNet:19 $\sqrt{V} < V$ [17]Whole brainBoF19/19*70:308179/838SVMLinear kernel $\sqrt{V} < V$ [17]	Whole brain	WT	210/249*	10-fold	70.5	67.9/74.2	В	CNN	Self-proposed	$\times \times \checkmark \checkmark \checkmark$	[168]
C200 None 539/57* 10-fold 68.5 - B+C LSTM - X/V/ [17] C200 Manual 147/146* 5-fold 61.1 61.8/60 B+C SVM Linear kernel $?,?/$ [17] AL116 BS 25/25 External 53 50/55 B LSTM - X/V/ [17] Multi alas ICA-PCA-LIFS 32/34 LOCV 50 - C LDA - $\sqrt{V/V}$ [17] Aulti alas ICA-PCA-LIFS 32/34 LOCV 50 - C LDA - $\sqrt{V/V}$ [17] Aulti alas Itest 48/30* LOCV 50 - C LDA ABF kernel $\sqrt{V/V}$ [17] Molti alas Itest 48/30* LOCV 87 80/92 B4C LDA $\sqrt{V/V}$ [17] Mole brain None 79/105* LOCV 67 91 92.5/96.2	HO110	LLFS	539/573*	80:20	69.8	77.1/60.6	B+C	SVM	Polynomial kernel	$\times \checkmark \checkmark \checkmark \checkmark$	[169]
CC200Manual147/146*5-fold61.161.8/608-cSVMLinear kernel $? ??$ $[7?]AL116BS25/25External5350/55BLSTM-X < / > [72]Multi alasICA-PCALLFS32/34LOOCV50-CLDA- < / < $	CC200	None	539/573*	10-fold	68.5	-	B+C	LSTM	-	$\times \checkmark \checkmark \checkmark \checkmark$	[170]
AA116BS25/25External5350/55BLSTM- $\times \checkmark \checkmark$ [172]Multi atlasICA-PCA-LLFS32/34LOOCV50-CLDA- $\checkmark \checkmark \checkmark$ [173]AA116t test48/30*LOOCV8780/92B+CSVMRBF kernel $\checkmark \checkmark \checkmark \checkmark$ $\checkmark \checkmark \checkmark$ [174]H010DR-ICA-ttest127/13*LOOCV6963.5/74.6B+CLDA104- $\times \checkmark \checkmark$ [174]Multi atlasMone79/105*-94.792.5/96.2B+CCNNDarkNet-19 $\times \checkmark \checkmark$ [176]Whole brainNone79/105*-94.792.5/96.2B+CCNNDarkNet-19 $\times \checkmark \checkmark$ [176]Whole brainBOF19/19*70:308179/83BSVMLInear kernel $\varkappa \checkmark \checkmark$ [176]Under kernelNone79/105*-94.792.5/96.2B+CCNNDarkNet-19 $\times \checkmark \checkmark$ [176]Whole brainBOF19/19*70:308179/83BSVMLInear kernel $\varkappa \checkmark \checkmark$ [176]	CC200	Manual	147/146*	5-fold	61.1	61.8/60	B+C	SVM	Linear kernel	?√?√	[171]
Multi atlasICA-PCA-LLFS $32/34$ LOOCV 50 $-$ CLDA $ \sqrt{\sqrt{7}}$ $[173]$ AAL16t test $48/30^{*}$ LOOCV 87 $80/92$ B+CSVMRBF kernel $\chi \sqrt{7}$ $[174]$ H010DR-ICA-t test $127/135^{*}$ LOOCV 69 $63.5/74.6$ B+CLDA $ \chi \sqrt{7}\sqrt{7}$ $[175]$ Whole brainNone $79/105^{*}$ LOOCV 94.7 $92.5/96.2$ B+CCNNDarkNet-19 $\chi \sqrt{7}\sqrt{7}$ $[176]$ Whole brainBOF19/19* $70:30$ 81 $79/83$ BSVMLinear kernel $2\sqrt{7}\sqrt{7}$ $[177]$	AAL116	BS	25/25	External	53	50/55	В	LSTM	-	$\times \checkmark \checkmark \checkmark \checkmark$	[172]
Effective curveAAL16test48/30*LOOCV8780/92B+CSVMRBF kernelX/√[174]H010DR-ICA-test127/135*LOOCV6963.5/74.6B+CLDA-X/√[175]Whole brainNone79/105*-94.792.5/62.2B+CCNNDarkNet-19X/√[176]Whole brainBOF19/19*70:308179/83BSVMLinear kernel?/√[177]	Multi atlas	ICA-PCA-LLFS	32/34	LOOCV	50	-	С	LDA	_	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[173]
AAL116t test48/30*LOOCV8780/92B+CSVMRBF kernelX/V[174]H010DR-ICA-t test127/135*LOOCV6963.574.6B+CLDA-X/V[175]Whole brainNone79/105*-94.792.5/96.2B+CCNNDarkNet-19X/V[176]Whole brainBOF19/19*70:308179/83BSVMLinear kernelX/V[176]Uber server serv					Effective	connectivity					
HO10DR-ICA-t test127/135*LOOCV6963.5/74.6B+CLDA-×√×[175]Whole brainNone79/105*-94.792.5/96.2B+CCNNDarkNet-19×√?√[176]Whole brainBOF19/19*70:308179/83BSVMLinear kernel?√√√[177]	AAL116	t test	48/30*	LOOCV	87	80/92	B+C	SVM	RBF kernel	$\times \checkmark \checkmark \checkmark$	[174]
SD fMRIWhole brainNone79/105*-94.792.5/96.2B+CCNNDarkNet-19X√?√[176]Whole brainBOF19/19*70:308179/83BSVMLinear kernel?√√√[177]Power spectral density	HO110	DR-ICA-t test	127/135*	LOOCV	69	63.5/74.6	B+C	LDA	-	$\times \checkmark \times \checkmark$	[175]
Whole brainNone79/105*-94.792.5/96.2B+CCNNDarkNet-19X <</th [176]Whole brainBOF19/19*70:308179/83BSVMLinear kernel??[177]					3D	fMRI					
Whole brainBOF19/19*70:308179/83BSVMLinear kernel $?\sqrt{4}$ [177]Power spectral density	Whole brain	None	79/105*	-	94.7	92.5/96.2	B+C	CNN	DarkNet-19	×√?√	[176]
Power spectral density	Whole brain	BOF	19/19*	70:30	81	79/83	В	SVM	Linear kernel	?√√√	[177]
					Power spe	ctral density					
Whole brain None 117/81* LOOCV 96.2 98/93.6 B AE + Softmax SAE X/X/ [178]	Whole brain	None	117/81*	LOOCV	96.2	98/93.6	В	AE + Softmax	SAE	$\times \checkmark \times \checkmark$	[178]

Whole brain	AE	123/160***	LOOCV	92	93/89	В	SVM	RBF kernel	$\checkmark \times \times \checkmark$	[179]
				Regional h	omogeneity					
AAL116	Chi square	443/435*	75:25	68.9	-	B+C	DNN	PBL-McRBFN	$\times \checkmark \checkmark \checkmark \checkmark$	[180]
Whole brain	Self-proposed	539/573*	5-fold	62	-	B+C	SVM	Linear kernel	XXVV	[181]
			Hig	n-order funct	tional conne	ctivity				
AAL116	LASSO	54/46*	10-fold	81	82/80	B	SVM	Linear kernel	$\sqrt{\sqrt{\times}}$	[182]
CC200	LLFS	511/561*	10-fold	77.3	78/77.8	B+C	DNN	PTN	$\times \checkmark \checkmark \checkmark \checkmark$	[183]
AAL116	t test	77/105	10-fold	72.6	79/64	B+C	Ensemble	Sparce-MVTC	$\times \checkmark \checkmark \checkmark \checkmark$	[184]
AAL116	t test	134/160*	10-fold	68.8	73.6/62.5	B+C	Ensemble	Sparce-MVTC	$\times \times \checkmark \checkmark \checkmark$	[185]
			Wa	velet-based o	lynamics fea	tures				
HO110	GARCH-t test	222/246*	5-fold	75.3	-	-	SVM	Linear kernel	?×√√	[186]
7 RSN	ICA-DR	24/30	LOOCV	86.7	91.7/83.3	В	SVM	Polynomial kernel	?√√√	[187]
				Independen	t componen [.]	ts				
Whole brain	ICA	392/407*	-	89.5	89.3/89.7	B+C	Ensemble	-	×√?√	[188]
Whole brain	ICA-DR	20/20***	LOOCV	83	67/100	В	LR	Simple LR	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[189]
8 RSN	LLFS	79/105*	10-fold	77.7	78.6/76.9	B+C	CNN	Standard	$\times \checkmark \checkmark \checkmark$	[190]
			Histogram	of oriented g	radients + C	haracteris	stics			
H0110	MRMR	538/573*	80:20	65	71.3/58.3	B+C	SVM	RBF kernel	$\times \checkmark \checkmark \checkmark$	[191]
			ROI-based fur	nctional conn	ectivity + No	ormalized	image			
Multi atlas	None	542/625*	77:33	71.7		B+C	CNN	3D CNN	$\times \checkmark \checkmark \checkmark$	[192]
		ROI-bas	ed functional	connectivity	+ Clinical da	ta + Infor	mation theor	^V		
CC200	RFE	399/472*	10-fold	72.5	79.2/64.7	B+C	svm	y Linear kernel	XJJJ	[193]
		ROI-based	functional cor	nectivity + A	molitude of	low-freq	iency fluctus	ation		
۵ <u>۵۱</u> ۹۵	None	99/85*	10-fold	68 5	69 5/67 6	B+C		Standard	×././.	[194]
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	None	55705	10 1010	Tan		bic	CIVIN	Standard	~~~~	[104]
cc200	News			ioh	ology	D.C	FOUN		×////	[105]
CC200	None	505/530*	5-тоїа	69.2	-	B+C	FCNN	-	XVVV	[195]
			ſ	Non-oscillato	ry connectiv	ity				
AAL116	t test	36/36*	10-fold	80	80/80	B+C	SVM	Polynomial kernel	×××√	[196]
				Combine	d features					
9 measures	None	620/542*	5-fold	64	-	B+C	SVM	Linear kernel	XVV	[197]
				Normali	zed image					
EPI images	None	69/69*	70:15:15	98.4	-	В	CNN	Inception V3	$\sqrt{\times}\sqrt{}$	[198]
Glass brain-Stat_map	LLFS	529/573*	85:15	82.7	-	B+C	Ensemble	-	$\times \checkmark \checkmark \checkmark$	[199]

EPI images	None	74/98*	70:15:15	57.8	57.2/61.3	B+C	CNN	InceptionResNet V2	XVV	[200]
				DW	I/DTI					
Feature Sel	ection ²	ASD/TD	Validation	Accuracy	Sen/Spe	Age	Classifier ³	Al Spec ⁴	Risk of bias	Reference
				Fractional	anisotropy					
PCA		41/32	LOOCV	75.3	71.9/71.9	-	SVM	Linear kernel	?√X?	[201]
			Fiber d	ensity + Fiber	bundle cros	s-section				
t test-LASSO	O-RFE	26/26***	10-fold	73.1	71.1/75.1	С	SVM	Linear kernel	$\checkmark\checkmark\times\checkmark$	[202]
			Fractio	onal anisotrop	y + Mean di	ffusivity				
S2n		70/80	LOOCV	81.3	-	В	SVM	Polynomial kernel	$\sqrt{\sqrt{\times}?}$	[203]
S2n		45/30	LOOCV	80	74/84	В	SVM	RBF kernel	$\times \checkmark \times \checkmark$	[204]
S2n		70/79	10-fold	78.3	84.8/72.9	В	SVM	Polynomial kernel	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[205]
		Fractional ar	nisotropy + Axi	ial diffusivity -	+ Radial diffu	isivity + S	pherical harr	nonics		
t test		19/19	LOOCV	86.8	-	А	Ensemble	RF	$\sqrt{\sqrt{2}}$	[206]
		Fractional anisot	tropy + Mean	diffusivity + A	xial diffusivit	:y + Radia	al diffusivity +	Skewness		
RFE		125/100*	5-fold	99	-	B+C	SVM	Linear kernel	$\times \checkmark \checkmark \checkmark$	[207]
None		30/30	70:30	94.7	91.7/100	B+C	QDA	-	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[208]
S2n		124/139***	LOOCV	73	70/76	В	SVM	Linear kernel	$\times \checkmark \times \checkmark$	[209]
				Graph	metrics					
Graph based	d-LLFS	43/51*	LOOCV	68	70/65.3	В	Ensemble	-	?√×√	[146]
Graph ba	sed	42/37*	LOOCV	68	-	В	SVM	Gaussian kernel	?××√	[117]
				E	EG					
Feature Selection ²	Channels	ASD/TD	Validation	Accuracy	Sen/Spe	Age	Classifier ³	Al Spec ⁴	Risk of Bias	Reference
			Ent	ropy + Spatio	emporal fea	itures				
MI	128	48/48	10-fold	95.7	-	В	SVM	Gaussian kernel	$\sqrt{\sqrt{2}}$	[210]
LLFS	18	15/10	LOOCV	92.8	-	В	Ensemble	RF	$\times \checkmark \checkmark \checkmark$	[211]
			Frequenc	cy-domain + S	patiotempoi	ral featur	es			
Manual	19	9/9	78:22	95.5	-	В	PNN	-	?√√√	[212]
Manual	19	10/9	-	89.5	-	В	KNN	-	×√?√	[213]
				Complex	networks					
Graph based	128	12/12	LOOCV	94.7	85.7/100	В	SVM	Polynomial kernel	?√√×	[214]
MI	21	28/28	10-fold	92.3	-	В	SVM	Gaussian kernel	$\sqrt{\sqrt{\times}}$	[215]
PCA	24	430/554	50:50	86	-	В	DFA	-	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[216]

Graph based	10	30/30	LOOCV	81.7	83.3/80	В	KNN	-	X?XX	[217]
		Entrop	y + Frequency	y-domain + T	ïme-domain	+ Non-lin	ear features			
None	-	48/50	50:50	97.9	96/95.8	В	PSN-ANFIS	-	??√×	[218]
MI	10	34/11	70:30	94.7	99.1/-	В	SVM	Linear kernel	$\times \times \checkmark \checkmark \checkmark$	[219]
			E	ntropy + Nor	n-linear featu	res				
RFE	19	18/23	10-fold	97	100/94	В	SVM	Linear kernel	$\times \checkmark \times \checkmark$	[220]
PCA	17	7/7	LOOCV	92.9	100/85.7	В	SVM	RBF kernel	$\times \checkmark \checkmark \checkmark \checkmark$	[221]
None	19	20/20	75:25	91.9	-	В	RNN	-	?√√√	[222]
RFE	19	21/102	LOOCV	90.2	95/89	А	SVM	RBF kernel	$\checkmark\checkmark\times\checkmark$	[223]
			Entropy + Fr	equency-dor	main + Non-li	near feat	ures			
None	64	9/10	10-fold	84.5	-	В	KNN	-	×√×?	[224]
				Time-dom	ain features					
Manual	40	10/10	3-fold	98.6	-	С	SVM	Linear kernel	$\sqrt{\sqrt{\times}}$	[225]
				Event-relate	ed potentials					
ICA	19	41/32	-	90.4	90.4/89.8	В	SVM	Linear kernel	$\sqrt{\sqrt{??}}$	[226]
Manual	128	19/30	LOOCV	79	68/87	В	NB	-	$\times \checkmark \checkmark \checkmark \checkmark$	[227]
GA	128	19/112	70:30	70	40/100	А	SVM	Linear kernel	$\times \checkmark \checkmark \checkmark \checkmark$	[228]
			Entro	py + Frequer	ncy-domain fe	eatures				
Manual	14	89/94	10-fold	99.7	99.9/95.9	В	SVM	Polynomial kernel	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[229]
None	16	8/4	10-fold	99.7	-	В	FCNN	-	$\times \checkmark \times ?$	[230]
t test	64	40/37	10-fold	98.7	100/97.3	В	PNN	-	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[231]
LLFS	19	10/18	LOOCV	96	90/100	-	SVM	RBF kernel	?√√×	[232]
Manual	23	9/10	10-fold	91.2	-	В	FCNN	-	$\times \checkmark \times ?$	[233]
-	128	25/25	-	87	-	В	SVM	Linear kernel	?√?√	[234]
Manual	16	100/100	10-fold	86	85.9/89.7	В	SVM	Polynomial kernel	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[235]
			I	- requency-do	omain feature	es				
None	32	8/9	10-fold	98.3	98/98	В	Ensemble	RF	$\times \checkmark \times \checkmark$	[236]
LLFS	64	61/61	10-fold	96.4	97.8/93.2	В	SVM	Polynomial kernel	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[237]
Manual	19	15/11	-	96.2	-	В	KNN	-	√??√	[238]
PCA	16	12/4	10-fold	95.2	97.1/90.9	B+C	SVM	Linear kernel	×√×?	[239]
PCA	64	60/60	-	94.4	100/88.9	В	FCNN	-	?√??	[240]
Manual	32	10/5	k-fold	93.3	-	В	Ensemble	RF	?××√	[241]
LLFS	16	8/4	10-fold	90	-	В	FLDA	-	×√×?	[242]
PCA	8	6/6	-	90	-	В	FCNN	-	?√?×	[243]

Manual 8 6/6 5-fold 86.6 - - FCNN - ??XX [245] Manual 128 36/69 5-fold 85.2 - B+C PTN - ?X√√ [246]	
Manual 128 36/69 5-fold 85.2 - B+C PTN - ?XV [246]	
	l
None 22 10/10 5-fold 81.9 91/100 - CNN ResNet-50 ?VXX [247]	
Manual 19 11/10 - 81 - B KNN - X√?√ [248 ⁻	l
None 16 13/4 70:15:15 80.9 FCNN - ? ? /X [249]]
Frequency-domain + Time-domain features	
None 8 46/63 10-fold 92.7 - B SVM Linear kernel $\sqrt{\sqrt{4}}$ [250]	
None 16 8/18 10-fold 80 - B CNN Standard ?\XX [251]
Non-linear features	
- 32 8/9 5-fold 85.5 - B FCNN - ?XXX [252	
MI 2 34/27 5-fold 82 94.1/66.7 B SVM RBF kernel ?X (253)	l
Raw data	
ICA 16 9/10 10-fold 99.5 - B Ensemble RNN-GRU + CNN ?√X? [254	
None 16 8/12 80:10:10 80 - B CNN Standard ?√. [255]	
Frequency-domain + Non-linear features	
t test 19 9/8 80:20 90 - B FCNN RBF √√√X [256 ⁻	
t test 19 17/11 - 78.5 80/71 B KNN - X√?√ [257	l
Eve Tracking	
Feature Selection ² ASD/TD Validation Accuracy Sen/Spe Age Classifier ³ AI Spec ⁴ Risk of bias Refe	rence
Interactions with parents	
Manual 6/26 LOCV 93.8 100/92.3 A VMM - ?? [258]	
Watching videos	
LLFS 61/72 10-fold 87.5 87.5/87.5 B SVM Linear kernel X-√√ [259 ⁻	
Manual 17/15 75:25 83.4 100/66.6 B LSTM - ?	
PCA 29/30 10-fold AUC 92 - A FCNN - ?-X√ [261]	
GA 76/30 5-fold AUC 82 69/93 B FCNN - ?	
Watching websites	
t test-RFE 15/15 80:20 91.6 92.9/90 C DT - √-√√ [263 ⁻	
Manual 15/15 70:30 70 - C LR Simple LR $\sqrt{-1/2}$ [264]	l
Manual 19/19 70:30 65 - C LR Simple LR X-√√ [265]	
None 15/15 66:33 60 - C STA - 	

Observing images

F score	20/19	LOOCV	92	93/92	С	Ensemble	CNN + SVM	$\sqrt{-\sqrt{\sqrt{-1}}}$	[267]
LLFS	14/14	75:25	59.3	68.4/50.6	В	DT	-	$\sqrt{-\sqrt{\sqrt{-1}}}$	[268]
			Salienc	y maps					
None	14/14	LOOCV	99.8	100/99.7	-	Ensemble	XGBoost	?-√?	[269]
None	20/19	LOOCV	99	100/98	-	Ensemble	CNN + LSTM	?-√?	[270]
Manual	37/37	5-fold	85.1	86.5/83.8	В	SVM	Linear kernel	$\sqrt{-\sqrt{\sqrt{-1}}}$	[271]
None	14/14	60:15:25	62.1	71/54	В	CNN	ResNet-50	?-√?	[272]
			Virtual	reality					
RFE	35/20	5-fold	86	91/82	В	SVM	Linear kernel	?-×√	[273]
LLFS	55/52	3-fold	73	81/65.8	С	Ensemble	-	√-√?	[274]
			Watchir	ng faces					
LLFS	29/48	LOOCV	88.5	93.1/86.2	В	SVM	RBF kernel	?-XX	[275]
LLFS	20/41	LOOCV	86.9	-	В	SVM	RBF kernel	?-XX	[276]
MRMR	77/80	10-fold	84.2	-	В	SVM	Linear kernel	$\sqrt{-\sqrt{\sqrt{-1}}}$	[277]
			Face-to-face	conversation	าร				
FFS	20/19	LOOCV	92.3	84.2/100	В	SVM	Linear kernel	√-√√	[278]
			Facial Re-	aggnition					
				cognition					
Feature Selection ²	ASD/TD*	Validation	Accuracy	Sen/Spe	Age	Classifier ³	Al Spec ⁴	Risk of bias	Reference
			Static facia	al features					
None	556/556	80:20	95	95/95	В	CNN	VGG-16 + TL	××√?	[279]
None	1507/1507**	90:10	94.6	-	В	CNN	MobileNet-V1	××√×	[280]
None	1269/1269**	92:8	91.5	93.4/89.7	В	CNN	DenseNet	XXVX	[281]
None	1468/1468**	80:20	91	-	В	CNN	VGG-16 + TL	××√×	[282]
None	1468/1468**	70:30	91	-	В	CNN	VGG-16 + TL	XXVX	[283]
None	1468/1468**	87:3:10	90.7	90.7/90.7	В	CNN	MobileNet-V1 + TL	XXVX	[284]
None	1468/1468**	86:4:10	90	88.5/91.7	В	CNN	Xception + TL	XXVX	[285]
None	1426/1374**	86:7:7	87	-	В	CNN	MobileNet-V1	$\times \checkmark \checkmark \times$	[286]
None	1568/1568**	81:16:3	87	87/87	В	CNN	MobileNet-V1 + TL	XXVX	[287]
			Facial attribut	te recognitic	on				
Manual	20/26	LOOCV	80.8	-	В	CNN	-	$\times \checkmark \checkmark \checkmark$	[288]
Manual	49/39	LOOCV	72.9	76/69	-	CNN	BottleNeck + TL	XXVX	[289]
			S-N	A RI					
Feature Selection ²	ASD/TD	Validation	Accuracy	Sen/Spe	Age	Classifier ³	Al Spec ⁴	Risk of bias	Reference
	•		•	· •	-		•		

Volume-based morphological features												
Manual	24/24*	LOOCV	98	-	B+C	Ensemble	RF	??√√	[290]			
None	74/208	10-fold	92	87/93	А	Ensemble	CNN + SFCNN	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[291]			
VBM	24/24	10-fold	92	-	В	SVM	RBF kernel	$\checkmark\checkmark\times\checkmark$	[292]			
F score	78/104*	10-fold	90.4	84.4/95.9	B+C	AE + Softmax	Stacked SAE	$\times \checkmark \checkmark \checkmark$	[293]			
VBM	60/60	LOOCV	86.7	86.4/86.8	С	SVM	Linear kernel	$\checkmark\checkmark\times\checkmark$	[294]			
VBM	36/36	LOOCV	81	81/81	С	LDA	PLS	$\checkmark\checkmark\times\checkmark$	[295]			
Manual	52/40	10-fold	77.2	-	В	SVM	Linear kernel	X?√√	[296]			
RFE	22/22	LOOCV	77	77/77	С	SVM	Linear kernel	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[297]			
LASSO	54/57*	10-fold	75.4	74.6/76	В	SVM	Linear kernel	XVV	[298]			
Manual	120/136*	80:20	73	92/68	С	SVM	Linear kernel	?√√√	[299]			
VBM	79/105*	75:25	70	53/72	B+C	DNN	PBL-McRBFN	?√√√	[300]			
None	1555/12623	66:17:17	66.4	-	All	CNN	Ensemble	XVV	[301]			
None	1060/1166*	5-fold	63.8	-	B+C	CNN	Fed-3D-Resnet-18	X?√√	[302]			
VBM	449/451*	75:25	59.6	-	B+C	DNN	PBL-McRBFN	XVV	[303]			
 VBM-RFE	38/38	LOOCV	AUC 80	-	В	SVM	Linear kernel	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[304]			
		Surfac	ce-based mo	rphological fe	eatures							
LASSO-DL	364/361*	10-fold	83	80/85	B+C	Ensemble	-	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[305]			
RFE	100/100*	60:40	80	72.5/67.5	B+C	Ensemble	-	?√√√	[306]			
LLFS-PCA	50/150*	5-fold	75	98.6/40	С	SVM	Linear kernel	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[307]			
			Cortical	thickness								
RFE	20/20	LOOCV	90	90/90	С	SVM	Linear kernel	$\times \checkmark \checkmark \checkmark$	[308]			
None	22/16	10-fold	87	95/75	В	LMT	-	$\checkmark\checkmark\times\checkmark$	[309]			
RFE	40/36	LOOCV	84.2	80/88.9	В	SVM	RBF kernel	X?X√	[310]			
MRMR	325/325*	5-fold	62	-	B+C	FCNN	-	$\times \checkmark \checkmark \checkmark$	[311]			
			Normaliz	zed image								
None	112/102*	5-fold	99	99/99	С	Ensemble	CNN + SFCNN	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[312]			
None	521/573*	-	87	-	-	CNN	ResNet-50	××?√	[313]			
DSM	171/176	65:22:13	84.4	85/84	А	CNN	CSResNet-18	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[314]			
GA	500/500*	5-fold	73	-	В	CNN	3D CNN	$\times \checkmark \checkmark \checkmark$	[315]			
None	500*	-	71	66/69	B+C	CNN	3D-ResNet	?×?√	[316]			
None	946/1046*	80:20	64	-	B+C	CNN	3D CNN	$\times \checkmark \checkmark \checkmark$	[317]			
	Vo	lume-based r	norphologica	al features + (Cortical tl	hickness						
t test-MRMR-RFE	58/59***	2-fold	96.3	95/97	В	SVM	Multi kernel	$\sqrt{?}$	[318]			
None	245/245*	90:10	60	-	B+C	LDA	-	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[319]			

None	83/105	70:30	AUC 64	-	С	AE + Softmax	Denoising AE	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[320]
	Su	urface-based r	morphological	l features +	Cortical t	hickness			
Elastic net-LASSO	100/100*	66:33	96.3	95.5/97	В	RR	-	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[321]
None	361/373*	LOOCV	60	57/64	B+C	Ensemble	RF	×?×√	[322]
		Surface-base	ed morphologi	ical features	s + Clinica	l data			
Manual	26/24*	70:30	88	80/92.9	-	Ensemble	RF	?√√√	[323]
	Surface-base	ed morpholog	gical features +	+ Volume-ba	ased mor	phological fea	itures		
RFE	209/530*	85:15	80	-	B+C	FCNN	-	$\times \checkmark \checkmark \checkmark$	[324]
Manual	539/573*	LOOCV	56.3	-	B+C	FCNN	-	$\times \checkmark \times \checkmark$	[325]
S	urface-based morpho	ological featur	res + Volume-l	based morp	hological	features + Co	ortical thickness		
LLFS	34/145***	10-fold	93.8	88/95	A	SVM	Linear kernel	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[326]
RFE	530/573*	5-fold	71.6	-	B+C	FCNN	-	$\times \checkmark \checkmark \checkmark$	[327]
None	325/325*	5-fold	59	-	B+C	SVM	Linear kernel	$\times \checkmark \checkmark \checkmark$	[328]
Manual	1060/1166*	75:25	AUC 79	-	B+C	LR	Simple LR	$\times \checkmark \checkmark \checkmark$	[329]
VBM	21/20	LOOCV	-	81/65	В	SVM	Linear kernel	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[330]
		Volume-base	ed morpholog	ical features	s + Clinica	l data			
Manual	220/303*	4-fold	64	63/64	All	SVM	Not mentioned	×??√	[331]
		His	stogram of ori	iented gradi	ients				
Threshold	55/209***	10-fold	76.2	-	В	CNN	Multi-channel	$\sqrt{\times}\sqrt{}$	[332]
LLFS	119/131*	10-fold	65	73/58	B+C	SVM	Linear kernel	×?√√	[333]
		P	Path signature	+ Clinical d	ata				
None	30/30	10-fold	87	83/90	А	FCNN	SFCNN	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[334]
			Curvelet s	sub-bands					
WT	76/75*	10-fold	AUC 75	77/82	В	SVM	RBF kernel	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[335]
			Voxel o	density					
t test	81/50	LOOCV	73.3	71.6/76	В	Ensemble	-	$\times \checkmark \times ?$	[336]
		Volume-base	d morphologi	cal features	+ Voxel d	ensity			
None	30/28*	10-fold	82	82.4/81.7	B+C	CNN	3D Grad-CAM	?√×√	[337]
		Histogram	n of oriented g	gradients +	Clinical da	ata			
MRMR	538/573*	80:20	64.1	75.7/51.9	B+C	SVM	RBF kernel	$\times \checkmark \checkmark \checkmark$	[191]
		St	tructural cova	riance netw	/ork				
None	518/567*	10-fold	71.8	81.3/68.8	B+C	CNN	ResNet	×√√√	[338]

Morphological brain networks

LLFS	155/186*	10-fold	76.7	-	B+C	GNN	Hypergraph	$\times \checkmark \checkmark \checkmark$	[339]
None	155/186*	10-fold	62.4	-	B+C	Ensemble	-	$\times \checkmark \checkmark \checkmark$	[340]
Graph based	155/186*	10-fold	52	-	B+C	SVM	Linear kernel	??√√	[341]
			T-fN	MRI					
Feature Selection ²	ASD/TD	Validation	Accuracy	Sen/Spe	Age	Classifier ³	Al Spec ⁴	Risk of bias	Reference
		D	ynamic bodie	s attention t	ask				
RFE	15/14	LOOCV	92.3	92.3/92.3	С	SVM	Linear kernel	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[342]
		Soci	al and non-so	cial attentio	n task				
t test	23/22	LOOCV	90	-	В	SVM	Linear kernel	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[343]
		Thi	nking about s	ocial interac	tions				
Manual	17/17***	LOOCV	97	-	С	NB	Gaussian	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[344]
			Biopoi	nt task					
Manual	82/48	85:7:8	87.1	-	-	CNN	2C 3D CNN	?√√?	[345]
None	72/43	60:20:20	79.8	72.6/85.4	-	GNN	BrainGNN	?√√√	[346]
Graph based	75/43	80:20	76	82/68.8	-	GNN	-	?√√?	[347]
PCA	82/48	85:7:8	F 89	-	-	CNN	2C 3D CNN	?√√?	[348]
		Bio	logical motior	n perception	task				
Bootstrap	21/19	10-fold	64.5	70.7/60.9	В	LSTM	-	?√×?	[349]
		Lang	uage task + Tl	heory of mir	nd task				
Manual-t test	13/14	LOOCV	96.3	-	С	LR	Simple LR	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[350]
			Cognitive o	control task					
Manual	29/29	LOOCV	82.8	82.8/82.8	-	LR	Simple LR	??√×	[351]
			Langua	ige task					
LLFS	30/30***	_	75.8	74.8/76.7	В	SNCAE	-	?√?√	[352]
			Response	to speech					
LLFS-WT	50/50***	4-fold	86	82/92	В	CNN	2D CNN	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[353]
LLFS-WT	50/50***	10-fold	80	84/76	В	CNN	2D CNN	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[354]
LLFS-WT-Manual	33/33***	4-fold	77.2	78.1/76.5	В	CNN	1D CNN	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[355]
			Other M	odalities					
Feature Selection ²	ASD/TD	Validation	Accuracy	Sen/Spe	Age	Classifier ³	Al Spec ⁴	Risk of bias	Reference
		Funct	ional near-inf	rared spectr	oscopy				
None	22/22	70:30	95.7	97.1/94.3	B	Ensemble	LSTM + CNN	$\times \sqrt{\sqrt{\sqrt{1}}}$	[356]

None	25/22									
	25/22	60:20:20	92.2	85/99.4	В	Ensemble	GRU + CNN	$\times \checkmark \checkmark \checkmark$	[357]	
Manual	25/22	50:50	91.9	81.6/94.6	В	SVM	Linear kernel	$\times \checkmark \checkmark \checkmark$	[358]	
			Kinemati	c features						_
Manual	15/15	LOOCV	96.7	100/93.8	В	SVM	Linear kernel	$\sqrt{-\sqrt{\sqrt{-1}}}$	[359]	
t test-FFS	18/20	LOOCV	92.1	88.9/95	В	DT	-	?-√√	[360]	
t test-FFS	20/23	LOOCV	88.4	85/91.3	В	KNN	-	$\sqrt{-\sqrt{\sqrt{-1}}}$	[361]	
Manual	16/16	10-fold	86.7	85.7/87.5	С	SVM	Linear kernel	√-×√	[362]	
 FDR	37/45	10-fold	AUC 93	83/85	В	Ensemble	RGF	$\sqrt{-\sqrt{\sqrt{-1}}}$	[363]	
			Response	e to name						
PCA	22/21	75:25	93	100/92.3	В	DT	-	$\sqrt{-\sqrt{\sqrt{-1}}}$	[364]	
			Video a	analysis						_
Manual	149/79	70:30	88.9	94.5/77.4	В	LR	Simple LR	X-√?	[365]	
LLFS	9/124	75:8:17	82	92/71	А	FCNN	-	?-√√	[366]	
			Taking	photos						_
None	16/21	60:20:20	83.7	-	С	CNN	VGG-16 + TL	$\sqrt{-\sqrt{\sqrt{-1}}}$	[367]	
			Vocal a	analysis						
Manual	1355/1257	45:55	86.5	84/89.2	В	Ensemble	RF	?-√√	[368]	
			PET	scan						
RFE	45/13	LOOCV	88	91/77	В	LDA	-	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[369]	
	,									
			Multi	modal						
Feature Selection ²	ASD/TD	Validation	Multi	modal Sen/Spe	Age	Classifier ³	Al Spec ⁴	Risk of bias	Reference	
Feature Selection ²	ASD/TD	Validation	Multin Accuracy rs-fMRI	modal sen/spe + S-MRI	Age	Classifier ³	Al Spec⁴	Risk of bias	Reference	
Feature Selection ²	ASD/TD 27/24*	Validation 70:30	Accuracy rs-fMRI 97.8	modal <u>Sen/Spe</u> + S-MRI 98/97.6	Age	Classifier ³	Al Spec ⁴	Risk of bias	Reference	_
Feature Selection ² Manual F score-AE	ASD/TD 27/24* 368/449*	Validation 70:30 10-fold	Accuracy rs-fMRI 97.8 85.1	modal <u>Sen/Spe</u> + S-MRI 98/97.6 81/89	Age B B+C	Classifier ³ CNN FCNN	AI Spec ⁴ TPNAS-Net	Risk of bias	Reference [370] [371]	_
Feature Selection ² Manual F score-AE LLFS	ASD/TD 27/24* 368/449* 72/113***	Validation 70:30 10-fold 4-fold	Multin Accuracy rs-fMRI 97.8 85.1 80.8	modal <u>Sen/Spe</u> + S-MRI 98/97.6 81/89 84.9/79.2	Age B B+C B	Classifier ³ CNN FCNN Ensemble	Al Spec ⁴ TPNAS-Net - RF	Risk of bias	Reference [370] [371] [372]	_
Feature Selection ² Manual F score-AE LLFS SMF-Graph based	ASD/TD 27/24* 368/449* 72/113*** 201/251*	Validation 70:30 10-fold 4-fold 95:5	Accuracy rs-fMRI 97.8 85.1 80.8 74.8	Sen/Spe + S-MRI 98/97.6 81/89 84.9/79.2	Age B B+C B B	Classifier ³ CNN FCNN Ensemble DT	Al Spec ⁴ TPNAS-Net - RF -	Risk of bias	Reference [370] [371] [372] [373]	
Feature Selection ² Manual F score-AE LLFS SMF-Graph based LLFS	ASD/TD 27/24* 368/449* 72/113*** 201/251* 561/521*	Validation 70:30 10-fold 4-fold 95:5	Accuracy rs-fMRI 97.8 85.1 80.8 74.8 73	modal Sen/Spe + S-MRI 98/97.6 81/89 84.9/79.2 - -	Age B B+C B B B+C	Classifier ³ CNN FCNN Ensemble DT Ensemble	Al Spec ⁴ TPNAS-Net - RF - RF	Risk of bias √ √ √ √ × √ √ √	Reference [370] [371] [372] [373] [374]	-
Feature Selection ² Manual F score-AE LLFS SMF-Graph based LLFS None	ASD/TD 27/24* 368/449* 72/113*** 201/251* 561/521* 481/526*	Validation 70:30 10-fold 4-fold 95:5 - 10-fold	Kultin Accuracy rs-fMRI 97.8 85.1 80.8 74.8 73 72.7	modal <u>Sen/Spe</u> + S-MRI 98/97.6 81/89 84.9/79.2 - - 67.8/76.6	Age B B+C B B B+C B+C	Classifier ³ CNN FCNN Ensemble DT Ensemble GNN	Al Spec ⁴ TPNAS-Net - RF - RF ANE + FCNN	Risk of bias $\sqrt[3]{\sqrt[3]{\sqrt[3]{\sqrt[3]{\sqrt[3]{\sqrt[3]{\sqrt[3]{\sqrt[3]{$	Reference [370] [371] [372] [373] [374] [375]	_
Feature Selection ² Manual F score-AE LLFS SMF-Graph based LLFS None PCA-MRMR	ASD/TD 27/24* 368/449* 72/113*** 201/251* 561/521* 481/526* 127/153*	Validation 70:30 10-fold 4-fold 95:5 - 10-fold 80:20	Accuracy rs-fMRI 97.8 85.1 80.8 74.8 73 72.7 70	modal <u>Sen/Spe</u> + S-MRI 98/97.6 81/89 84.9/79.2 - - 67.8/76.6 -	Age B B+C B B+C B+C B+C B+C B	Classifier ³ CNN FCNN Ensemble DT Ensemble GNN Ensemble	Al Spec ⁴ TPNAS-Net - RF - RF ANE + FCNN RF	Risk of bias ✓√√√ ×√√√ √√√√ ?√√√ ×√?√ ×√√√ √√√√	Reference [370] [371] [372] [373] [374] [375] [376]	_
Feature Selection ² Manual F score-AE LLFS SMF-Graph based LLFS None PCA-MRMR None	ASD/TD 27/24* 368/449* 72/113*** 201/251* 561/521* 481/526* 127/153* 116/69*	Validation 70:30 10-fold 4-fold 95:5 - 10-fold 80:20 10-fold	Accuracy rs-fMRI 97.8 85.1 80.8 74.8 73 72.7 70 65.6	modal Sen/Spe + S-MRI 98/97.6 81/89 84.9/79.2 - - 67.8/76.6 - 84/33	Age B B+C B B B+C B+C B+C B B B	Classifier ³ CNN FCNN Ensemble DT Ensemble GNN Ensemble DBN	Al Spec ⁴ TPNAS-Net - RF - RF ANE + FCNN RF -	Risk of bias $\sqrt[3]{\sqrt[3]{\sqrt[3]{\sqrt[3]{\sqrt[3]{\sqrt[3]{\sqrt[3]{\sqrt[3]{$	Reference [370] [371] [372] [373] [374] [375] [376] [377]	_
Feature Selection ² Manual F score-AE LLFS SMF-Graph based LLFS None PCA-MRMR None AE-LLFS-PCA-ICA	ASD/TD 27/24* 368/449* 72/113*** 201/251* 561/521* 481/526* 127/153* 116/69* 538/573*	Validation 70:30 10-fold 4-fold 95:5 - 10-fold 80:20 10-fold 70:30	Accuracy rs-fMRI 97.8 85.1 80.8 74.8 73 72.7 70 65.6 64.3	modal Sen/Spe + S-MRI 98/97.6 81/89 84.9/79.2 - 67.8/76.6 - 84/33 60/68.3	Age B B+C B B+C B+C B+C B B B+C	Classifier ³ CNN FCNN Ensemble DT Ensemble GNN Ensemble DBN SVM	AI Spec ⁴ TPNAS-Net - RF - RF ANE + FCNN RF - Multi kernel	Risk of bias ✓√√√ ×√√√ √√√√ ×√?√ ×√√√ ×√√√ ×√√√	Reference [370] [371] [372] [373] [374] [375] [376] [377] [378]	

rs-fMRI + DWI/DTI

Graph based	403/468*	80:20	60.9	53.5/69.4	B+C	SVM	RBF kernel	$\times \checkmark \checkmark \checkmark$	[380]		
			rs-fMRI + S-N	/IRI + DWI/D	TI						
LLFS	46/47	66:33	92.5	97.8/87.2	В	Ensemble	CRF	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[381]		
LLFS	31/23*	LOOCV	72.3	-	В	SVM	Linear kernel	?√√√	[382]		
		T-f	MRI + DWI/D	DTI + Clinical (data						
RFE-LLFS-t test	15/15	53:47	95.9	96.9/94.8	B+C	SVM	Linear kernel	?√√√	[383]		
			S-MRI +	DWI/DTI							
PCA	110/83***	10-fold	93.3	93.6/96.2	В	SVM	RBF kernel	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[384]		
RFE	58/48	5-fold	88.8	93/83.8	В	Ensemble	RF	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[385]		
t test	16/16	LOOCV	86.7	87.3/86.1	В	SVM	RBF kernel	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[386]		
VBM	14/33	70:30	75.3	24.8/97	В	Ensemble	RF	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[387]		
			EEG + Ey	e tracking							
PCA-FFS	24/28	80:20	100	-	-	NB	Gaussian	?√√?	[388]		
None	21/21	80:20	95	95/95	В	GNN	GFT + FCNN	$\sqrt{\sqrt{?}}$	[389]		
MRMR	49/48	-	85.4	-	В	SVM	Linear kernel	√√?√	[390]		
rs-fMRI + Genetic											
RFE-t test	47/24***	LOOCV	86	81/88	B+C	SVM	Multi kernel	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[391]		
			Kinematic +	- Eye tracking	5						
t test-LLFS	22/22	68:32	78	57/99	С	SVM	RBF kernel	$\sqrt{-\sqrt{\times}}$	[392]		
S-MRI + DTI + MRS											
RFE	19/18	LOOCV	91.9	-	С	DT	-	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	[393]		

Acc: Accuracy, ASD: Autism spectrum disorder, LOOCV: Leave-one-out cross-validation, Sen: Sensitivity, Spe: Specificity, TD: Typically developing.

DWI/DTI: Diffusion-weighted imaging/Diffusion-tensor imaging, EEG: Electroencephalography, rs-fMRI: Resting-state functional magnetic resonance imaging, S-MRI: Structural magnetic resonance imaging, T-fMRI: Task-based functional magnetic resonance imaging.

The classifications for the age are A: Toddlers (<2y), B: Children and adolescents (2-18y), C: Adults (>18y).

For the risk of bias, the first dot on the left is indicative of the patient selection domain, next is for the index test (modality) domain, next one is for the index test (AI algorithm) domain, and the last one on the right is indicative of the reference standard domain. \checkmark means low risk of bias, ? means unclear risk of bias, X means high risk of bias, and - means that domain is not applicable for the study.

* Data is from the ABIDE dataset

****** Data is from the Kaggle dataset.

*** Data is from the NDAR dataset.

1: AAL: Automated anatomical labelling atlas, BASC: Bootstrap analysis of stable clusters, CC200: Craddock-200 atlas, CC400: Craddock-400 atlas, DES: Destrieux atlas, DK: Desikan–Killiany atlas, DLA: Dictionary learning algorithm, DOS: Dosenbach atlas, HBM: Hierarchical Bayesian model, HO: Harvard-Oxford atlas, IP-TFP: Instantaneous phase transfer function perturbation, RBS: Region based segmentation, RSN: Resting-state networks, SBC: Social brain connectome atlas

2: AE: Autoencoder, BOF: Bag of feature, BS: Bootstrapping, DL: Dictionary learning, DR: Dual regression, DSM: Dominant-sequence model, EIIC: Extended invariant information clustering, EW: Element-wise filters, FFS: Forward feature selection, GA: Genetic algorithm, GARCH: Generalized autoregressive conditional heteroscedasticity, HMM: Hidden Markov model, IBP: Indian buffet processes, ICA: Independent component analysis, L1SCCA: L1-norm regularized sparse canonical correlation analysis, LASSO: Least absolute shrinkage and selector operation, LEAN: Layer-wise elimination of accessory nodes, LLFS: Local learning-based feature selection, MCNFD: Multi-site clustering and nested feature extraction, MI: Mutual information, MRMR: Maximal relevance and minimal redundancy, MSDL: Multi-subject dictionary learning, MSTEPS: Multiscale stepwise selection, PCA: Principal component analysis, RFE: Recursive feature elimination, S2n: Signal to nose ratio, SLR: Sparse low-rank representation, SMF: Spatial feature based detection, VBM: Voxel based morphometry, WT: Wavelet transform

3: AE: Autoencoder, CNN: Convolutional neural network, DBN: Deep belief network, DFA: Discriminant factor analysis, DNN: Deep neural network, DRBM: Discriminative restricted Boltzmann machine, DT: Decision tree, FCNN: Fully-connected neural network, FLDA: Fisher's linear discriminant analysis, GNN: Graph neural network, KNN: K-nearest neighbors, LDA: Linear discriminant analysis, LMT: Logistic model trees, NB: Naïve Bayes, LR: Logistic regression, LSTM: Long-short term memory, PNN: Probabilistic neural network, QDA: Quadratic discriminant analysis, RNN: Recurrent neural network, RR: Ridge regression, SNCAE: Stacked nonnegativity constraint autoencoder, Sparse-MVTC: Sparse multi-view task-centralized learning, STA: Scanpath trend analysis, SVM: Support vector machine, VMM: Variable-order Markov model

<u>4</u>: AE: Autoencoder, ANE: Attention-based node-edge, CNN: Convolutional neural network, CRF: Conditional random forest, DANN: Deep attention neural network, FCNN: Fully-connected neural network, GAT: Graph attention network, GFT: Graph Fourier transform, GRU: Gate recurrent unit, hi-GCN: Hierarchical graph convolutional network, ID: Invertible dynamic, LR: Logistic regression, LR-GCN: Low-rank subspace graph convolutional network, LSTM: Long-short term memory, MT: Multi template, PBL-McRBFN: Projection based learning metacognitive radial basis function network, PLS: Partial least squares, PNN: Probabilistic neural network, PTN: Prototypical network, RBF: Radial basis function, RF: Random forest, RGF: Regularized greedy forest, RNN: Recurrent neural network, s-GCN: Siamese graph convolutional network, SAE: Sparse autoencoder, SFCNN: Siamese fully connected neural network, Sparse-MVTC: Sparse multi-view task-centralized learning, TL: Transfer learning, TPNAS-Net: Topology preserving neural architecture search network

Bibliography

-)] X. Bi, J. Chen, Q. Sun, Y. Liu, Y. Wang, and X. Luo, 'Analysis of Asperger Syndrome Using Genetic-Evolutionary Random Support Vector Machine Cluster', *Front Physiol*, vol. 9, p. 1646, Nov. 2018, doi: 10.3389/fphys.2018.01646.
- .] R. W. Emerson *et al.*, 'Functional neuroimaging of high-risk 6-month-old infants predicts a diagnosis of autism at 24 months of age', *Sci Transl Med*, vol. 9, no. 393, p. eaag2882, Jun. 2017, doi: 10.1126/scitranslmed.aag2882.
- '] C. Wang, Z. Xiao, B. Wang, and J. Wu, 'Identification of Autism Based on SVM-RFE and Stacked Sparse Auto-Encoder', IEEE Access, vol. 7, pp. 118030–118036, 2019, doi: 10.1109/ACCESS.2019.2936639.
- A. M. Mahmoud and H. Karamti, 'Classifying a type of brain disorder in children: an effective fMRI based deep attempt', *Indonesian Journal of Electrical Engineering and Computer Science*, vol. 22, no. 1, p. 260, Apr. 2021, doi: 10.11591/ijeecs.v22.i1.pp260-269.
- [] C. P. Chen *et al.*, 'Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism', *Neuroimage Clin*, vol. 8, pp. 238–245, 2015, doi: 10.1016/j.nicl.2015.04.002.
- 5] C. Wang, Z. Xiao, and J. Wu, 'Functional connectivity-based classification of autism and control using SVM-RFECV on rs-fMRI data', *Physica Medica*, vol. 65, pp. 99–105, Sep. 2019, doi: 10.1016/j.ejmp.2019.08.010.
- i] T. lidaka, 'Resting state functional magnetic resonance imaging and neural network classified autism and control', Cortex, vol. 63, pp. 55–67, Feb. 2015, doi: 10.1016/j.cortex.2014.08.011.
- '] Y. Zhang *et al.*, 'Self-Paced Learning and Privileged Information based Cascaded Multi-column Classification algorithm for ASD diagnosis', in 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Nov. 2021, pp. 3281–3284. doi: 10.1109/EMBC46164.2021.9630150.
- V. Subbaraju, S. Sundaram, and S. Narasimhan, 'Identification of lateralized compensatory neural activities within the social brain due to autism spectrum disorder in adolescent males', European Journal of Neuroscience, vol. 47, no. 6, pp. 631–642, Mar. 2018, doi: 10.1111/ejn.13634.
- F. Huang et al., 'Self-weighted adaptive structure learning for ASD diagnosis via multi-template multi-center representation', Med Image Anal, vol. 63, p. 101662, Jul. 2020, doi: 10.1016/j.media.2020.101662.
- X. Guo, K. C. Dominick, A. A. Minai, H. Li, C. A. Erickson, and L. J. Lu, 'Diagnosing Autism Spectrum Disorder from Brain Resting-State Functional Connectivity Patterns Using a Deep Neural Network with a Novel Feature Selection Method', Front Neurosci, vol. 11, p. 460, Aug. 2017, doi: 10.3389/fnins.2017.00460.
- .] N. Yahata et al., 'A small number of abnormal brain connections predicts adult autism spectrum disorder', Nat Commun, vol. 7, no. 1, p. 11254, Sep. 2016, doi: 10.1038/ncomms11254.
- X. Li, Y. Gu, N. Dvornek, L. H. Staib, P. Ventola, and J. S. Duncan, 'Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results', *Med Image Anal*, vol. 65, p. 101765, Oct. 2020, doi: 10.1016/j.media.2020.101765.
- H. Sewani and R. Kashef, 'An Autoencoder-Based Deep Learning Classifier for Efficient Diagnosis of Autism', Children, vol. 7, no. 10, p. 182, Oct. 2020, doi: 10.3390/children7100182.
- N. A. Khan, S. A. Waheeb, A. Riaz, and X. Shang, 'A Three-Stage Teacher, Student Neural Networks and Sequential Feed Forward Selection-Based Feature Selection Approach for the Classification of Autism Spectrum Disorder', *Brain Sci*, vol. 10, no. 10, p. 754, Oct. 2020, doi: 10.3390/brainsci10100754.
- F. Huang, A. Elazab, L. OuYang, J. Tan, T. Wang, and B. Lei, 'Sparse Low-rank Constrained Adaptive Structure Learning using Multi-template for Autism Spectrum Disorder Diagnosis', in 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Apr. 2019, pp. 1555–1558. doi: 10.1109/ISBI.2019.8759487.
- B. Li, A. Sharma, J. Meng, S. Purushwalkam, and E. Gowen, 'Applying machine learning to identify autistic adults using imitation: An exploratory study', *PLoS One*, vol. 12, no. 8, p. e0182652, Aug. 2017, doi: 10.1371/journal.pone.0182652.
- B. S. Mahanand, S. Vigneshwaran, S. Suresh, and N. Sundararajan, 'An enhanced effect-size thresholding method for the diagnosis of Autism Spectrum Disorder using resting state functional MRI', in 2016 Second International Conference on Cognitive Computing and Information Processing (CCIP), Aug. 2016, pp. 1–6. doi: 10.1109/CCIP.2016.7802874.
- 3] D. K and V. R. Murthy Oruganti, 'A Machine Learning Approach for Diagnosing Neurological Disorders using Longitudinal Resting-State fMRI', in 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Jan. 2021, pp. 494–499. doi: 10.1109/Confluence51648.2021.9377173.

- F. Z. Benabdallah, A. D. El Maliani, and M. El Hassouni, 'A CNN Based 3D Connectivity Matrices Features for Autism Detection: Application on ABIDE I', in *Ubiquitous Networking*, 2021, pp. 293–302. doi: 10.1007/978-3-030-86356-2_24.
-] Z. Dai, H. Zhang, F. Lin, S. Feng, Y. Wei, and J. Zhou, 'The Classification System and Biomarkers for Autism Spectrum Disorder: A Machine Learning Approach', in *Bioinformatics Research and Applications*, 2021, pp. 289–299. doi: 10.1007/978-3-030-91415-8_25.
- .] H. Huang, X. Liu, Y. Jin, S. Lee, C. Wee, and D. Shen, 'Enhancing the representation of functional connectivity networks by fusing multi-view information for autism spectrum disorder diagnosis', Hum Brain Mapp, vol. 40, no. 3, pp. 833–854, Feb. 2019, doi: 10.1002/hbm.24415.
- L. Boppana, N. Shabnam, and T. Srivatsava, 'Deep Learning Approach for an early stage detection of Neurodevelopmental Disorders', in 2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC), Sep. 2021, pp. 1–6. doi: 10.1109/R10-HTC53172.2021.9641691.
- H. Chen *et al.*, 'Multivariate classification of autism spectrum disorder using frequency-specific resting-state functional connectivity—A multi-center study', *Prog Neuropsychopharmacol Biol Psychiatry*, vol. 64, pp. 1–9, Jan. 2016, doi: 10.1016/j.pnpbp.2015.06.014.
- W. Yin, S. Mostafa, and F. Wu, 'Diagnosis of Autism Spectrum Disorder Based on Functional Brain Networks with Deep Learning', *Journal of Computational Biology*, vol. 28, no. 2, pp. 146–165, Feb. 2021, doi: 10.1089/cmb.2020.0252.
- M. Plitt, K. A. Barnes, and A. Martin, 'Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards', *Neuroimage Clin*, vol. 7, pp. 359–366, 2015, doi: 10.1016/j.nicl.2014.12.013.
- j] J. S. Anderson et al., 'Functional connectivity magnetic resonance imaging classification of autism', Brain, vol. 134, no. 12, pp. 3742–3754, Dec. 2011, doi: 10.1093/brain/awr263.
- '] V. Subbaraju, M. B. Suresh, S. Sundaram, and S. Narasimhan, 'Identifying differences in brain activities and an accurate detection of autism spectrum disorder using resting state functionalmagnetic resonance imaging : A spatial filtering approach', *Med Image Anal*, vol. 35, pp. 375–389, Jan. 2017, doi: 10.1016/j.media.2016.08.003.
- M. Jung *et al.*, 'Surface-based shared and distinct resting functional connectivity in attention-deficit hyperactivity disorder and autism spectrum disorder', *The British Journal of Psychiatry*, vol. 214, no. 06, pp. 339–344, Jun. 2019, doi: 10.1192/bjp.2018.248.
- 1] A. Mahmoud, H. Karamti, and F. Alrowais, 'An Effective Sparse Autoencoders based Deep Learning Framework for fMRI Scans Classification', in *Proceedings of the 22nd International Conference on Enterprise Information Systems*, 2020, pp. 540–547. doi: 10.5220/0009397605400547.
- S. Shrivastava, U. Mishra, N. Singh, A. Chandra, and S. Verma, 'Control or Autism Classification using Convolutional Neural Networks on Functional MRI', in 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Jul. 2020, pp. 1–6. doi: 10.1109/ICCCNT49239.2020.9225506.
- .] X. Yang, P. T., and N. Zhang, 'A Deep Neural Network Study of the ABIDE Repository on Autism Spectrum Classification', International Journal of Advanced Computer Science and Applications, vol. 11, no. 4, pp. 1–6, 2020, doi: 10.14569/IJACSA.2020.0110401.
- B. Yamagata *et al.*, 'Machine learning approach to identify a resting-state functional connectivity pattern serving as an endophenotype of autism spectrum disorder', *Brain Imaging Behav*, vol. 13, no. 6, pp. 1689–1698, Dec. 2019, doi: 10.1007/s11682-018-9973-2.
- Y. Wang, J. Wang, F.-X. Wu, R. Hayrat, and J. Liu, 'AIMAFE: Autism spectrum disorder identification with multi-atlas deep feature representation and ensemble learning', *J Neurosci Methods*, vol. 343, p. 108840, Sep. 2020, doi: 10.1016/j.jneumeth.2020.108840.
- M. Tang, P. Kumar, H. Chen, and A. Shrivastava, 'Deep Multimodal Learning for the Diagnosis of Autism Spectrum Disorder', *J Imaging*, vol. 6, no. 6, p. 47, Jun. 2020, doi: 10.3390/jimaging6060047.
- 5] J. F. Agastinose Ronicko, J. Thomas, P. Thangavel, V. Koneru, G. Langs, and J. Dauwels, 'Diagnostic classification of autism using resting-state fMRI data improves with full correlation functional brain connectivity compared to partial correlation', *J Neurosci Methods*, vol. 345, p. 108884, Nov. 2020, doi: 10.1016/j.jneumeth.2020.108884.
- 5] X. Yang, M. S. Islam, and A. M. A. Khaled, 'Functional connectivity magnetic resonance imaging classification of autism spectrum disorder using the multisite ABIDE dataset', in 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), May 2019, pp. 1–4. doi: 10.1109/BHI.2019.8834653.

- [']] Z. Jiao, H. Li, and Y. Fan, 'Improving Diagnosis of Autism Spectrum Disorder and Disentangling its Heterogeneous Functional Connectivity Patterns Using Capsule Networks', in 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Apr. 2020, pp. 1331–1334. doi: 10.1109/ISBI45749.2020.9098524.
- G. Spera *et al.*, 'Evaluation of Altered Functional Connections in Male Children With Autism Spectrum Disorders on Multiple-Site Data Optimized With Machine Learning', *Front Psychiatry*, vol. 10, p. 620, Sep. 2019, doi: 10.3389/fpsyt.2019.00620.
-] J. Zhuang, N. C. Dvornek, X. Li, P. Ventola, and J. S. Duncan, 'Invertible Network for Classification and Biomarker Selection for ASD', in *International Conference on Medical Image Computing and Computer-Assisted Intervention*, Springer, 2019, pp. 700–708. doi: 10.1007/978-3-030-32248-9_78.
- S. Gupta, Y. H. Chan, and J. C. Rajapakse, 'Obtaining leaner deep neural networks for decoding brain functional connectome in a single shot', *Neurocomputing*, vol. 453, pp. 326–336, Sep. 2021, doi: 10.1016/j.neucom.2020.04.152.
- .] J. Zhang, F. Feng, T. Han, X. Gong, and F. Duan, 'Detection of Autism Spectrum Disorder using fMRI Functional Connectivity with Feature Selection and Deep Learning', *Cognit Comput*, Jan. 2022, doi: 10.1007/s12559-021-09981-z.
- F. Almuqhim and F. Saeed, 'ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data', Front Comput Neurosci, vol. 15, p. 654315, Apr. 2021, doi: 10.3389/fncom.2021.654315.
- A. Jahedi, C. A. Nasamran, B. Faires, J. Fan, and R.-A. Müller, 'Distributed Intrinsic Functional Connectivity Patterns Predict Diagnostic Status in Large Autism Cohort', Brain Connect, vol. 7, no. 8, pp. 515–525, Oct. 2017, doi: 10.1089/brain.2017.0496.
- P. Lanka, D. Rangaprakash, M. N. Dretsch, J. S. Katz, T. S. Denney, and G. Deshpande, 'Supervised machine learning for diagnostic classification from large-scale neuroimaging datasets', Brain Imaging Behav, vol. 14, no. 6, pp. 2378–2416, Dec. 2020, doi: 10.1007/s11682-019-00191-8.
- 5] Y. Zhao, F. Ge, S. Zhang, and T. Liu, '3D Deep Convolutional Neural Network Revealed the Value of Brain Network Overlap in Differentiating Autism Spectrum Disorder from Healthy Controls', in Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, 2018, pp. 172–180. doi: 10.1007/978-3-030-00931-1_20.
- 5] H. Li, N. A. Parikh, and L. He, 'A Novel Transfer Learning Approach to Enhance Deep Neural Network Classification of Brain Functional Connectomes', *Front Neurosci*, vol. 12, p. 491, Jul. 2018, doi: 10.3389/fnins.2018.00491.
- '] T. Eslami, V. Mirjalili, A. Fong, A. R. Laird, and F. Saeed, 'ASD-DiagNet: A Hybrid Learning Approach for Detection of Autism Spectrum Disorder Using fMRI Data', Front Neuroinform, vol. 13, p. 70, Nov. 2019, doi: 10.3389/fninf.2019.00070.
- 3] Z. Sherkatghanad *et al.*, 'Automated Detection of Autism Spectrum Disorder Using a Convolutional Neural Network', *Front Neurosci*, vol. 13, p. 1325, Jan. 2020, doi: 10.3389/fnins.2019.01325.
- N. Chaitra, P. A. Vijaya, and G. Deshpande, 'Diagnostic prediction of autism spectrum disorder using complex network measures in a machine learning framework', *Biomed Signal Process Control*, vol. 62, p. 102099, Sep. 2020, doi: 10.1016/j.bspc.2020.102099.
- 10] A. S. Heinsfeld, A. R. Franco, R. C. Craddock, A. Buchweitz, and F. Meneguzzi, 'Identification of autism spectrum disorder using deep learning and the ABIDE dataset', *Neuroimage Clin*, vol. 17, pp. 16–23, 2018, doi: 10.1016/j.nicl.2017.08.017.
- 1] R. Bhaumik, A. Pradhan, S. Das, and D. K. Bhaumik, 'Predicting Autism Spectrum Disorder Using Domain-Adaptive Cross-Site Evaluation', *Neuroinformatics*, vol. 16, no. 2, pp. 197–205, Apr. 2018, doi: 10.1007/s12021-018-9366-0.
- 12] J. Hu, L. Cao, T. Li, B. Liao, S. Dong, and P. Li, 'Interpretable Learning Approaches in Resting-State Functional Connectivity Analysis: The Case of Autism Spectrum Disorder', *Comput Math Methods Med*, vol. 2020, pp. 1–12, May 2020, doi: 10.1155/2020/1394830.
- 13] W. Cancino, G. Africano, and S. Pertuz, 'A Benchmark of Preprocessing Strategies for Autism Classification from Resting-State Functional Magnetic Resonance Imaging', in 2021 XXIII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), Sep. 2021, pp. 1–5. doi: 10.1109/STSIVA53688.2021.9592011.
- 14] W. Jung, D.-W. Heo, E. Jeon, J. Lee, and H.-I. Suk, 'Inter-regional High-Level Relation Learning from Functional Connectivity via Self-supervision', in *Medical Image Computing and Computer* Assisted Intervention – MICCAI 2021, 2021, pp. 284–293. doi: 10.1007/978-3-030-87196-3_27.

- 15] M. Wang, D. Zhang, J. Huang, D. Shen, and M. Liu, 'Low-Rank Representation for Multi-center Autism Spectrum Disorder Identification', in *Med Image Comput Comput Assist Interv*, vol. 11070, 2018, pp. 647–654. doi: 10.1007/978-3-030-00928-1_73.
- 16] Y. Liu, L. Xu, J. Li, J. Yu, and X. Yu, 'Attentional Connectivity-based Prediction of Autism Using Heterogeneous rs-fMRI Data from CC200 Atlas', *Exp Neurobiol*, vol. 29, no. 1, pp. 27–37, Feb. 2020, doi: 10.5607/en.2020.29.1.27.
- 17] T.-E. Kam, H.-I. Suk, and S.-W. Lee, 'Multiple functional networks modeling for autism spectrum disorder diagnosis', *Hum Brain Mapp*, vol. 38, no. 11, pp. 5804–5821, Nov. 2017, doi: 10.1002/hbm.23769.
- 18] J. M. Kernbach *et al.*, 'Shared endo-phenotypes of default mode dysfunction in attention deficit/hyperactivity disorder and autism spectrum disorder', *Transl Psychiatry*, vol. 8, no. 1, p. 133, Dec. 2018, doi: 10.1038/s41398-018-0179-6.
- A. Abraham *et al.*, 'Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example', *Neuroimage*, vol. 147, pp. 736–745, Feb. 2017, doi: 10.1016/j.neuroimage.2016.10.045.
- .0] M. Leming, J. M. Górriz, and J. Suckling, 'Ensemble Deep Learning on Large, Mixed-Site fMRI Datasets in Autism and Other Tasks', Int J Neural Syst, vol. 30, no. 07, p. 2050012, Jul. 2020, doi: 10.1142/S0129065720500124.
- .1] N. Okamoto and H. Akama, 'Extended Invariant Information Clustering Is Effective for Leave-One-Site-Out Cross-Validation in Resting State Functional Connectivity Modeling', Front Neuroinform, vol. 15, p. 709179, Dec. 2021, doi: 10.3389/fninf.2021.709179.
- .2] X. Xing, J. Ji, and Y. Yao, 'Convolutional Neural Network with Element-wise Filters to Extract Hierarchical Topological Features for Brain Networks', in 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Dec. 2018, pp. 780–783. doi: 10.1109/BIBM.2018.8621472.
- .3] A. J. Fredo, A. Jahedi, M. Reiter, and R.-A. Müller, 'Diagnostic classification of autism using resting-state fMRI data and conditional random forest', in 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Jul. 2018, vol. 12, no. 2.76, pp. 6–41.
- .4] I. Mhiri and I. Rekik, 'Joint functional brain network atlas estimation and feature selection for neurological disorder diagnosis with application to autism', *Med Image Anal*, vol. 60, p. 101596, Feb. 2020, doi: 10.1016/j.media.2019.101596.
- .5] G. Xu and Y. Liang, 'A Novel Two-stage Prediction Model to Classify Functional Connectivity for Brain Disease Diagnosis', in 2021 IEEE 4th International Conference on Computer and Communication Engineering Technology (CCET), Aug. 2021, pp. 63–68. doi: 10.1109/CCET52649.2021.9544424.
- .6] P. Kassraian-Fard, C. Matthis, J. H. Balsters, M. H. Maathuis, and N. Wenderoth, 'Promises, Pitfalls, and Basic Guidelines for Applying Machine Learning Classifiers to Psychiatric Imaging Data, with Autism as an Example', Front Psychiatry, vol. 7, p. 177, Dec. 2016, doi: 10.3389/fpsyt.2016.00177.
- .7] L. Dodero, H. Q. Minh, M. S. Biagio, V. Murino, and D. Sona, 'Kernel-based classification for brain connectivity graphs on the Riemannian manifold of positive definite matrices', in 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), Apr. 2015, pp. 42–45. doi: 10.1109/ISBI.2015.7163812.
- .8] J. A. Nielsen et al., 'Multisite functional connectivity MRI classification of autism: ABIDE results', Front Hum Neurosci, vol. 7, 2013, doi: 10.3389/fnhum.2013.00599.
- .9] K. Niu *et al.*, 'Multichannel Deep Attention Neural Networks for the Classification of Autism Spectrum Disorder Using Neuroimaging and Personal Characteristic Data', *Complexity*, vol. 2020, pp. 1–9, Jan. 2020, doi: 10.1155/2020/1357853.
- '0] M. A. Reiter, A. Jahedi, A. R. J. Fredo, I. Fishman, B. Bailey, and R.-A. Müller, 'Performance of machine learning classification models of autism using resting-state fMRI is contingent on sample heterogeneity', Neural Comput Appl, vol. 33, no. 8, pp. 3299–3310, Apr. 2021, doi: 10.1007/s00521-020-05193-y.
- X. Bi *et al.*, 'The Genetic-Evolutionary Random Support Vector Machine Cluster Analysis in Autism Spectrum Disorder', *IEEE Access*, vol. 7, pp. 30527–30535, 2019, doi: 10.1109/ACCESS.2019.2902889.
- 10.3389/fgene.2018.00018.

- 10.3389/fnhum.2018.00257. X. Bi, Y. Liu, Q. Jiang, Q. Shu, Q. Sun, and J. Dai, 'The Diagnosis of Autism Spectrum Disorder Based on the Random Neural Network Cluster', Front Hum Neurosci, vol. 12, p. 257, Jun. 2018, doi: 10.3389/fnhum.2018.00257.
- A. Kazeminejad and R. C. Sotero, 'Topological Properties of Resting-State fMRI Functional Networks Improve Machine Learning-Based Autism Classification', Front Neurosci, vol. 12, p. 1018, Jan. 2019, doi: 10.3389/fnins.2018.01018.
- P. Barttfeld *et al.*, 'State-dependent changes of connectivity patterns and functional brain network topology in autism spectrum disorder', *Neuropsychologia*, vol. 50, no. 14, pp. 3653–3662, Dec. 2012, doi: 10.1016/j.neuropsychologia.2012.09.047.
- '6] J.-W. Sun, R. Fan, Q. Wang, Q.-Q. Wang, X.-Z. Jia, and H.-B. Ma, 'Identify abnormal functional connectivity of resting state networks in Autism spectrum disorder and apply to machine learningbased classification', Brain Res, vol. 1757, p. 147299, Apr. 2021, doi: 10.1016/j.brainres.2021.147299.
- [7] C. Zu *et al.*, 'Identifying disease-related subnetwork connectome biomarkers by sparse hypergraph learning', *Brain Imaging Behav*, vol. 13, no. 4, pp. 879–892, Aug. 2019, doi: 10.1007/s11682-018-9899-8.
- [8] C. Shi, J. Zhang, and X. Wu, 'An fMRI Feature Selection Method Based on a Minimum Spanning Tree for Identifying Patients with Autism', Symmetry (Basel), vol. 12, no. 12, p. 1995, Dec. 2020, doi: 10.3390/sym12121995.
- '9] S. Gupta, J. C. Rajapakse, and R. E. Welsch, 'Ambivert degree identifies crucial brain functional hubs and improves detection of Alzheimer's Disease and Autism Spectrum Disorder', Neuroimage Clin, vol. 25, p. 102186, 2020, doi: 10.1016/j.nicl.2020.102186.
- R. Anirudh and J. J. Thiagarajan, 'Bootstrapping Graph Convolutional Neural Networks for Autism Spectrum Disorder Classification', in ICASSP 2019 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2019, pp. 3197–3201. doi: 10.1109/ICASSP.2019.8683547.
- 1] L. Shao, C. Fu, Y. You, and D. Fu, 'Classification of ASD based on fMRI data with deep learning', *Cogn Neurodyn*, vol. 15, no. 6, pp. 961–974, Dec. 2021, doi: 10.1007/s11571-021-09683-0.
- S. Mostafa, L. Tang, and F.-X. Wu, 'Diagnosis of Autism Spectrum Disorder Based on Eigenvalues of Brain Networks', *IEEE Access*, vol. 7, pp. 128474–128486, 2019, doi: 10.1109/ACCESS.2019.2940198.
- 13] Y. Chen, A. Liu, X. Fu, J. Wen, and X. Chen, 'An Invertible Dynamic Graph Convolutional Network for Multi-Center ASD Classification', *Front Neurosci*, vol. 15, p. 828512, Feb. 2022, doi: 10.3389/fnins.2021.828512.
- [4] Y. Wang, J. Liu, Y. Xiang, J. Wang, Q. Chen, and J. Chong, 'MAGE: Automatic diagnosis of autism spectrum disorders using multi-atlas graph convolutional networks and ensemble learning', *Neurocomputing*, vol. 469, pp. 346–353, Jan. 2022, doi: 10.1016/j.neucom.2020.06.152.
- 15] Y. Song, T. M. Epalle, and H. Lu, 'Characterizing and Predicting Autism Spectrum Disorder by Performing Resting-State Functional Network Community Pattern Analysis', *Front Hum Neurosci*, vol. 13, p. 203, Jun. 2019, doi: 10.3389/fnhum.2019.00203.
- 16] L. Zhang, J.-R. Wang, and Y. Ma, 'Graph Convolutional Networks via Low-Rank Subspace for Multi-Site rs-fMRI ASD Diagnosis', in 2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Oct. 2021, pp. 1–6. doi: 10.1109/CISP-BMEI53629.2021.9624374.
- [7] Z. Rakhimberdina, X. Liu, and T. Murata, 'Population Graph-Based Multi-Model Ensemble Method for Diagnosing Autism Spectrum Disorder', Sensors, vol. 20, no. 21, p. 6001, Oct. 2020, doi: 10.3390/s20216001.
- [8] M. Cao et al., 'Using DeepGCN to identify the autism spectrum disorder from multi-site resting-state data', Biomed Signal Process Control, vol. 70, p. 103015, Sep. 2021, doi: 10.1016/j.bspc.2021.103015.
- [9] C. Yang, P. Wang, J. Tan, Q. Liu, and X. Li, 'Autism spectrum disorder diagnosis using graph attention network based on spatial-constrained sparse functional brain networks', *Comput Biol Med*, vol. 139, p. 104963, Dec. 2021, doi: 10.1016/j.compbiomed.2021.104963.
- S. Parisot *et al.*, 'Disease prediction using graph convolutional networks: Application to Autism Spectrum Disorder and Alzheimer's disease', *Med Image Anal*, vol. 48, pp. 117–130, Aug. 2018, doi: 10.1016/j.media.2018.06.001.

- 1] S. Ataei, N. Attar, S. Aliakbary, and F. Bakouie, 'Graph theoretical approach for screening autism on brain complex networks', SN Appl Sci, vol. 1, no. 9, p. 1122, Sep. 2019, doi: 10.1007/s42452-019-1079-y.
- 12] S. Parisot *et al.*, 'Spectral Graph Convolutions for Population-Based Disease Prediction', in *International conference on medical image computing and computer-assisted intervention*, Springer, 2017, pp. 177–185. doi: 10.1007/978-3-319-66179-7_21.
- [3] C. J. Brown, J. Kawahara, and G. Hamarneh, 'Connectome priors in deep neural networks to predict autism', in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Apr. 2018, pp. 110–113. doi: 10.1109/ISBI.2018.8363534.
- D. Yao *et al.*, 'Triplet Graph Convolutional Network for Multi-scale Analysis of Functional Connectivity Using Functional MRI', in *Graph Learning in Medical Imaging*, 2019, pp. 70–78. doi: 10.1007/978-3-030-35817-4_9.
- H. Jiang, P. Cao, M. Xu, J. Yang, and O. Zaiane, 'Hi-GCN: A hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction', *Comput Biol Med*, vol. 127, p. 104096, Dec. 2020, doi: 10.1016/j.compbiomed.2020.104096.
- E. Tolan and Z. Isik, 'Graph Theory Based Classification of Brain Connectivity Network for Autism Spectrum Disorder', in *Bioinformatics and Biomedical Engineering*, 2018, pp. 520–530. doi: 10.1007/978-3-319-78723-7_45.
- M. Sadeghi, R. Khosrowabadi, F. Bakouie, H. Mahdavi, C. Eslahchi, and H. Pouretemad, 'Screening of autism based on task-free fMRI using graph theoretical approach', *Psychiatry Res Neuroimaging*, vol. 263, pp. 48–56, May 2017, doi: 10.1016/j.pscychresns.2017.02.004.
- [48] L. Dodero, F. Sambataro, V. Murino, and D. Sona, 'Kernel-Based Analysis of Functional Brain Connectivity on Grassmann Manifold', in *Medical Image Computing and Computer-Assisted Intervention MICCAI 2015*, 2015, pp. 604–611. doi: 10.1007/978-3-319-24574-4_72.
- [9] S. I. Ktena et al., 'Metric learning with spectral graph convolutions on brain connectivity networks', Neuroimage, vol. 169, pp. 431–442, Apr. 2018, doi: 10.1016/j.neuroimage.2017.12.052.
- A. Kazeminejad and R. C. Sotero, 'The Importance of Anti-correlations in Graph Theory Based Classification of Autism Spectrum Disorder', Front Neurosci, vol. 14, p. 676, Aug. 2020, doi: 10.3389/fnins.2020.00676.
- i1] K. Byeon, J. Kwon, J. Hong, and H. Park, 'Artificial Neural Network Inspired by Neuroimaging Connectivity: Application in Autism Spectrum Disorder', in 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), Feb. 2020, pp. 575–578. doi: 10.1109/BigComp48618.2020.00013.
- 52] S. M. Jain, 'Detection of Autism using Magnetic Resonance Imaging data and Graph Convolutional Neural Networks', Rochester Institute of Technology, Rochester, 2018.
- 3] E. Jun and H.-I. Suk, Connectomics in NeuroImaging, vol. 10511. Cham: Springer International Publishing, 2017. doi: 10.1007/978-3-319-67159-8.
- [4] T. Price, C.-Y. Wee, W. Gao, and D. Shen, 'Multiple-Network Classification of Childhood Autism Using Functional Connectivity Dynamics', in International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2014, pp. 177–184. doi: 10.1007/978-3-319-10443-0_23.
- 5] Z. Xiao, C. Wang, N. Jia, and J. Wu, 'SAE-based classification of school-aged children with autism spectrum disorders using functional magnetic resonance imaging', *Multimed Tools Appl*, vol. 77, no. 17, pp. 22809–22820, Sep. 2018, doi: 10.1007/s11042-018-5625-1.
- ⁵⁶] M. Naghashzadeh, M. Yazdi, and A. Zolghadrasli, 'Classification of autism spectrum disorders individuals and controls using phase and envelope features from resting-state fMRI data', *Comput Methods Biomech Biomed Eng Imaging Vis*, vol. 10, no. 1, pp. 55–66, Jan. 2022, doi: 10.1080/21681163.2021.1972343.
- [7] M. I. Al-Hiyali, N. Yahya, I. Faye, Z. Khan, and K. Alsaih, 'Classification of BOLD FMRI Signals using Wavelet Transform and Transfer Learning for Detection of Autism Spectrum Disorder', in 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Mar. 2021, pp. 94–98. doi: 10.1109/IECBES48179.2021.9398803.
- ⁵⁸ F. Zhao, Z. Chen, I. Rekik, S.-W. Lee, and D. Shen, 'Diagnosis of Autism Spectrum Disorder Using Central-Moment Features From Low- and High-Order Dynamic Resting-State Functional Connectivity Networks', *Front Neurosci*, vol. 14, p. 258, Apr. 2020, doi: 10.3389/fnins.2020.00258.
- i9] X. Ma, X.-H. Wang, and L. Li, 'Identifying individuals with autism spectrum disorder based on the principal components of whole-brain phase synchrony', *Neurosci Lett*, vol. 742, p. 135519, Jan. 2021, doi: 10.1016/j.neulet.2020.135519.

- J. Liu, Y. Sheng, W. Lan, R. Guo, Y. Wang, and J. Wang, 'Improved ASD classification using dynamic functional connectivity and multi-task feature selection', *Pattern Recognit Lett*, vol. 138, pp. 82– 87, Oct. 2020, doi: 10.1016/j.patrec.2020.07.005.
- 51] A. S. Karampasi, A. D. Savva, V. Ch. Korfiatis, I. Kakkos, and G. K. Matsopoulos, 'Informative Biomarkers for Autism Spectrum Disorder Diagnosis in Functional Magnetic Resonance Imaging Data on the Default Mode Network', *Applied Sciences*, vol. 11, no. 13, p. 6216, Jul. 2021, doi: 10.3390/app11136216.
- i2] E. Jun, E. Kang, J. Choi, and H.-I. Suk, 'Modeling regional dynamics in low-frequency fluctuation and its application to Autism spectrum disorder diagnosis', *Neuroimage*, vol. 184, pp. 669–686, Jan. 2019, doi: 10.1016/j.neuroimage.2018.09.043.
- 3] G. Fan et al., 'Abnormal Brain Regions in Two-Group Cross-Location Dynamics Model of Autism', IEEE Access, vol. 8, pp. 94526–94534, 2020, doi: 10.1109/ACCESS.2020.2995209.
- i4] M. A. Bayram, İ. Özer, and F. Temurtas, 'Deep Learning Methods for Autism Spectrum Disorder Diagnosis Based on fMRI Images', Sakarya University Journal of Computer and Information Sciences, vol. 4, no. 1, pp. 142–155, Apr. 2021, doi: 10.35377/saucis.04.01.879735.
- 5] Y. Liu, L. Xu, J. Yu, J. Li, and X. Yu, 'Identification of autism spectrum disorder using multi-regional resting-state data through an attention learning approach', *Biomed Signal Process Control*, vol. 69, p. 102833, Aug. 2021, doi: 10.1016/j.bspc.2021.102833.
- i6] P. S. Dammu and R. S. Bapi, 'Employing Temporal Properties of Brain Activity for Classifying Autism Using Machine Learning', in *Pattern Recognition and Machine Intelligence*, 2019, pp. 193–200. doi: 10.1007/978-3-030-34872-4_22.
- [7] C.-Y. Wee, P.-T. Yap, and D. Shen, 'Diagnosis of Autism Spectrum Disorders Using Temporally Distinct Resting-State Functional Connectivity Networks', CNS Neurosci Ther, vol. 22, no. 3, pp. 212–219, Mar. 2016, doi: 10.1111/cns.12499.
- i8] M. A. Aghdam, A. Sharifi, and M. M. Pedram, 'Diagnosis of Autism Spectrum Disorders in Young Children Based on Resting-State Functional Magnetic Resonance Imaging Data Using Convolutional Neural Networks', J Digit Imaging, vol. 32, no. 6, pp. 899–918, Dec. 2019, doi: 10.1007/s10278-019-00196-1.
- i9] A. D. Savva, A. S. Karampasi, and G. K. Matsopoulos, 'Deriving resting-state fMRI biomarkers for classification of autism spectrum disorder', in *Autism 360°*, Elsevier, 2020, pp. 101–123. doi: 10.1016/B978-0-12-818466-0.00006-X.
- '0] N. C. Dvornek, P. Ventola, K. A. Pelphrey, and J. S. Duncan, Machine Learning in Medical Imaging, vol. 10541. Cham: Springer International Publishing, 2017. doi: 10.1007/978-3-319-67389-9.
- '1] R. Tejwani, A. Liska, H. You, J. Reinen, and P. Das, 'Autism Classification Using Brain Functional Connectivity Dynamics and Machine Learning', arXiv preprint arXiv:1712.08041, Dec. 2017.
- ^{'2}] M. D. Schirmer *et al.*, 'Neuropsychiatric disease classification using functional connectomics results of the connectomics in neuroimaging transfer learning challenge', *Med Image Anal*, vol. 70, p. 101972, May 2021, doi: 10.1016/j.media.2021.101972.
- '3] L. Rabany *et al.*, 'Dynamic functional connectivity in schizophrenia and autism spectrum disorder: Convergence, divergence and classification', *Neuroimage Clin*, vol. 24, p. 101966, 2019, doi: 10.1016/j.nicl.2019.101966.
- '4] B. Huang, 'Diagnosis of autism spectrum disorder by causal influence strength learned from resting-state fMRI data', in *Neural Engineering Techniques for Autism Spectrum Disorder*, Elsevier, 2021, pp. 237–267. doi: 10.1016/B978-0-12-822822-7.00012-0.
- ^{'5}] H. Haghighat, M. Mirzarezaee, B. Nadjar Araabi, and A. Khadem, 'An age-dependent Connectivity-based computer aided diagnosis system for Autism Spectrum Disorder using Resting-state fMRI', *Biomed Signal Process Control*, vol. 71, p. 103108, Jan. 2022, doi: 10.1016/j.bspc.2021.103108.
- '6] M. S. Ahammed, S. Niu, M. R. Ahmed, J. Dong, X. Gao, and Y. Chen, 'DarkASDNet: Classification of ASD on Functional MRI Using Deep Neural Network', Front Neuroinform, vol. 15, p. 635657, Jun. 2021, doi: 10.3389/fninf.2021.635657.
- ⁷] M. S. Ahammed, S. Niu, M. R. Ahmed, J. Dong, X. Gao, and Y. Chen, 'Bag-of-Features Model for ASD fMRI Classification using SVM', in 2021 Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS), Jan. 2021, pp. 52–57. doi: 10.1109/ACCTCS52002.2021.00019.
- '8] Z. Xiao, J. Wu, C. Wang, N. Jia, and X. Yang, 'Computer-aided diagnosis of school-aged children with ASD using full frequency bands and enhanced SAE: A multi-institution study', *Exp Ther Med*, vol. 17, no. 5, pp. 4055–4063, Mar. 2019, doi: 10.3892/etm.2019.7448.

- '9] O. Dekhil *et al.*, 'Identifying Personalized Autism Related Impairments Using Resting Functional MRI and ADOS Reports', in *Medical Image Computing and Computer Assisted Intervention MICCAI 2018*, 2018, pp. 240–248. doi: 10.1007/978-3-030-00931-1_28.
- S. Vigneshwaran, B. S. Mahanand, S. Suresh, and N. Sundararajan, 'Using regional homogeneity from functional MRI for diagnosis of ASD among males', in 2015 International Joint Conference on Neural Networks (IJCNN), Jul. 2015, pp. 1–8. doi: 10.1109/IJCNN.2015.7280562.
- 1] S. Rane, E. Jolly, A. Park, H. Jang, and C. Craddock, 'Developing predictive imaging biomarkers using whole-brain classifiers: Application to the ABIDE I dataset', *Res Ideas Outcomes*, vol. 3, p. e12733, Mar. 2017, doi: 10.3897/rio.3.e12733.
- [2] F. Zhao, H. Zhang, I. Rekik, Z. An, and D. Shen, 'Diagnosis of Autism Spectrum Disorders Using Multi-Level High-Order Functional Networks Derived From Resting-State Functional MRI', Front Hum Neurosci, vol. 12, p. 184, May 2018, doi: 10.3389/fnhum.2018.00184.
- 13] Y. Liang, B. Liu, and H. Zhang, 'A Convolutional Neural Network Combined With Prototype Learning Framework for Brain Functional Network Classification of Autism Spectrum Disorder', IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 29, pp. 2193–2202, 2021, doi: 10.1109/TNSRE.2021.3120024.
- [4] J. Wang, Q. Wang, H. Zhang, J. Chen, S. Wang, and D. Shen, 'Sparse Multiview Task-Centralized Ensemble Learning for ASD Diagnosis Based on Age- and Sex-Related Functional Connectivity Patterns', IEEE Trans Cybern, vol. 49, no. 8, pp. 3141–3154, Aug. 2019, doi: 10.1109/TCYB.2018.2839693.
- 15] J. Wang, Q. Wang, S. Wang, and D. Shen, 'Sparse Multi-view Task-Centralized Learning for ASD Diagnosis', in *Mach Learn Med Imaging*, vol. 10541, 2017, pp. 159–167. doi: 10.1007/978-3-319-67389-9_19.
- 36] S. Sartipi, M. G. Shayesteh, and H. Kalbkhani, 'Diagnosing of Autism Spectrum Disorder based on GARCH Variance Series for rs-fMRI data', in 2018 9th International Symposium on Telecommunications (IST), Dec. 2018, pp. 86–90. doi: 10.1109/ISTEL.2018.8661147.
- 37] A. Bernas, A. P. Aldenkamp, and S. Zinger, 'Wavelet coherence-based classifier: A resting-state functional MRI study on neurodynamics in adolescents with high-functioning autism', Comput Methods Programs Biomed, vol. 154, pp. 143–151, Feb. 2018, doi: 10.1016/j.cmpb.2017.11.017.
- 18] M. A. Syed, Z. Yang, X. P. Hu, and G. Deshpande, 'Investigating Brain Connectomic Alterations in Autism Using the Reproducibility of Independent Components Derived from Resting State Functional MRI Data', *Front Neurosci*, vol. 11, p. 459, Sep. 2017, doi: 10.3389/fnins.2017.00459.
- L. Q. Uddin *et al.*, 'Salience Network–Based Classification and Prediction of Symptom Severity in Children With Autism', JAMA Psychiatry, vol. 70, no. 8, p. 869, Aug. 2013, doi: 10.1001/jamapsychiatry.2013.104.
- 10] M. Yang et al., 'Large-Scale Brain Functional Network Integration for Discrimination of Autism Using a 3-D Deep Learning Model', Front Hum Neurosci, vol. 15, p. 687288, Jun. 2021, doi: 10.3389/fnhum.2021.687288.
- 1] S. Ghiassian, R. Greiner, P. Jin, and M. R. G. Brown, 'Using Functional or Structural Magnetic Resonance Images and Personal Characteristic Data to Identify ADHD and Autism', *PLoS One*, vol. 11, no. 12, p. e0166934, Dec. 2016, doi: 10.1371/journal.pone.0166934.
- 12] M. Khosla, K. Jamison, A. Kuceyeski, and M. R. Sabuncu, '3D Convolutional Neural Networks for Classification of Functional Connectomes', in *Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support*, Springer, 2018, pp. 137–145. doi: 10.1007/978-3-030-00889-5_16.
- 13] A. Karampasi *et al.*, 'A Machine Learning fMRI Approach in the Diagnosis of Autism', in 2020 IEEE International Conference on Big Data (Big Data), Dec. 2020, pp. 3628–3631. doi: 10.1109/BigData50022.2020.9378453.
- 14] Y. You, H. Liu, S. Zhang, and L. Shao, 'Classification of Autism Based on fMRI Data with Feature-Fused Convolutional Neural Network', in *Cyberspace Data and Intelligence, and Cyber-Living, Syndrome, and Health*, 2020, pp. 77–88. doi: 10.1007/978-981-33-4336-8_7.
- 15] A. Rathore, S. Palande, J. S. Anderson, B. A. Zielinski, P. T. Fletcher, and B. Wang, 'Autism Classification Using Topological Features and Deep Learning: A Cautionary Tale', in *Med Image Comput Comput Assist Interv*, vol. 11766, 2019, pp. 736–744. doi: 10.1007/978-3-030-32248-9_82.
- 16] A. Sadiq, M. I. Al-Hiyali, N. Yahya, T. B. Tang, and D. M. Khan, 'Non-Oscillatory Connectivity Approach for Classification of Autism Spectrum Disorder Subtypes Using Resting-State fMRI', IEEE Access, vol. 10, pp. 14049–14061, 2022, doi: 10.1109/ACCESS.2022.3146719.

- 17] R. M. Thomas, S. Gallo, L. Cerliani, P. Zhutovsky, A. El-Gazzar, and G. van Wingen, 'Classifying Autism Spectrum Disorder Using the Temporal Statistics of Resting-State Functional MRI Data With 3D Convolutional Neural Networks', *Front Psychiatry*, vol. 11, p. 440, May 2020, doi: 10.3389/fpsyt.2020.00440.
- 18] L. Herath, D. Meedeniya, M. A. J. C. Marasingha, and V. Weerasinghe, 'Autism spectrum disorder diagnosis support model using Inception V3', in 2021 International Research Conference on Smart Computing and Systems Engineering (SCSE), Sep. 2021, vol. 4, pp. 1–7. doi: 10.1109/SCSE53661.2021.9568314.
- 19] M. R. Ahmed, Y. Zhang, Y. Liu, and H. Liao, 'Single Volume Image Generator and Deep Learning-Based ASD Classification', IEEE J Biomed Health Inform, vol. 24, no. 11, pp. 3044–3054, Nov. 2020, doi: 10.1109/JBHI.2020.2998603.
- 10] N. Dominic, T. W. Cenggoro, A. Budiarto, and B. Pardamean, 'Transfer learning using inception-ResNet-v2 model to the augmented neuroimages data for autism spectrum disorder classification', *Communications in Mathematical Biology and Neuroscience*, vol. 2021, p. Article ID 39, 2021, doi: 10.28919/cmbn/5565.
- 1] N. Adluru *et al.*, 'Classification in DTI using shapes of white matter tracts', in 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Sep. 2009, pp. 2719–2722. doi: 10.1109/IEMBS.2009.5333386.
- 12] Z. Zhang and W. Zheng, 'The Discriminative Power of White Matter Microstructures for Autism Diagnosis', *IFAC-PapersOnLine*, vol. 53, no. 5, pp. 446–451, 2020, doi: 10.1016/j.ifacol.2021.04.121.
- 13] F. Zhang *et al.*, 'Fiber clustering based white matter connectivity analysis for prediction of Autism Spectrum Disorder using diffusion tensor imaging', in 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Apr. 2016, pp. 564–567. doi: 10.1109/ISBI.2016.7493331.
- 14] M. Ingalhalikar, D. Parker, L. Bloy, T. P. L. Roberts, and R. Verma, 'Diffusion based abnormality markers of pathology: Toward learned diagnostic prediction of ASD', *Neuroimage*, vol. 57, no. 3, pp. 918–927, Aug. 2011, doi: 10.1016/j.neuroimage.2011.05.023.
- 15] F. Zhang *et al.*, 'Whole brain white matter connectivity analysis using machine learning: An application to autism', *Neuroimage*, vol. 172, pp. 826–837, May 2018, doi: 10.1016/j.neuroimage.2017.10.029.
- 16] M. Mostapha, M. F. Casanova, G. Gimel'farb, and A. El-Baz, 'Towards Non-invasive Image-Based Early Diagnosis of Autism', in *Medical Image Computing and Computer-Assisted Intervention MICCAI 2015*, 2015, pp. 160–168. doi: 10.1007/978-3-319-24571-3_20.
- 17] Y. ElNakieb *et al.*, 'The Role of Diffusion Tensor MR Imaging (DTI) of the Brain in Diagnosing Autism Spectrum Disorder: Promising Results', *Sensors*, vol. 21, no. 24, p. 8171, Dec. 2021, doi: 10.3390/s21248171.
- N. Lange et al., 'Atypical diffusion tensor hemispheric asymmetry in autism', Autism Research, vol. 3, no. 6, pp. 350–358, Dec. 2010, doi: 10.1002/aur.162.
- 19] Y. A. Elnakieb et al., 'Computer Aided Autism Diagnosis Using Diffusion Tensor Imaging', IEEE Access, vol. 8, pp. 191298–191308, 2020, doi: 10.1109/ACCESS.2020.3032066.
- .0] J. Kang, Y. Jin, G. Liang, and X. Li, 'Accurate assessment of low-function autistic children based on EEG feature fusion', *Journal of Clinical Neuroscience*, vol. 90, pp. 351–358, Aug. 2021, doi: 10.1016/j.jocn.2021.06.022.
- .1] E. Grossi, C. Olivieri, and M. Buscema, 'Diagnosis of autism through EEG processed by advanced computational algorithms: A pilot study', *Comput Methods Programs Biomed*, vol. 142, pp. 73– 79, Apr. 2017, doi: 10.1016/j.cmpb.2017.02.002.
- .2] M. Ahmadlou, H. Adeli, and A. Adeli, 'Fuzzy Synchronization Likelihood-wavelet methodology for diagnosis of autism spectrum disorder', *J Neurosci Methods*, vol. 211, no. 2, pp. 203–209, Nov. 2012, doi: 10.1016/j.jneumeth.2012.08.020.
- .3] H. Behnam, A. Sheikhani, M. R. Mohammadi, M. Noroozian, and P. Golabi, 'Abnormalities in Connectivity of Quantitative Electroencephalogram Background Activity in Autism Disorders especially in Left Hemisphere and Right Temporal', in *Tenth International Conference on Computer Modeling and Simulation (uksim 2008)*, Apr. 2008, pp. 82–87. doi: 10.1109/UKSIM.2008.68.
- .4] W. Jamal, S. Das, I.-A. Oprescu, K. Maharatna, F. Apicella, and F. Sicca, 'Classification of autism spectrum disorder using supervised learning of brain connectivity measures extracted from synchrostates', J Neural Eng, vol. 11, no. 4, p. 046019, Aug. 2014, doi: 10.1088/1741-2560/11/4/046019.
- .5] T. Wadhera and D. Kakkar, 'Social cognition and functional brain network in autism spectrum disorder: Insights from EEG graph-theoretic measures', *Biomed Signal Process Control*, vol. 67, p. 102556, May 2021, doi: 10.1016/j.bspc.2021.102556.

- .6] F. H. Duffy and H. Als, 'A stable pattern of EEG spectral coherence distinguishes children with autism from neuro-typical controls a large case control study', *BMC Med*, vol. 10, no. 1, p. 64, Dec. 2012, doi: 10.1186/1741-7015-10-64.
- .7] G. S. Bajestani, M. Behrooz, A. G. Khani, M. Nouri-Baygi, and A. Mollaei, 'Diagnosis of autism spectrum disorder based on complex network features', *Comput Methods Programs Biomed*, vol. 177, pp. 277–283, Aug. 2019, doi: 10.1016/j.cmpb.2019.06.006.
- .8] N. Satheesh Kumar, J. Mohanalin, and J. Mahil, 'Recognition of autism in children via electroencephalogram behaviour using particle swarm optimization based ANFIS classifier', *Multimed Tools Appl*, vol. 79, no. 13–14, pp. 8747–8766, Apr. 2020, doi: 10.1007/s11042-018-6290-0.
- .9] D. Abdolzadegan, M. H. Moattar, and M. Ghoshuni, 'A robust method for early diagnosis of autism spectrum disorder from EEG signals based on feature selection and DBSCAN method', *Biocybern Biomed Eng*, vol. 40, no. 1, pp. 482–493, Jan. 2020, doi: 10.1016/j.bbe.2020.01.008.
- '0] W. J. Bosl, T. Loddenkemper, and C. A. Nelson, 'Nonlinear EEG biomarker profiles for autism and absence epilepsy', *Neuropsychiatr Electrophysiol*, vol. 3, no. 1, p. 1, Dec. 2017, doi: 10.1186/s40810-017-0023-x.
- 1] T. Heunis *et al.*, 'Recurrence quantification analysis of resting state EEG signals in autism spectrum disorder a systematic methodological exploration of technical and demographic confounders in the search for biomarkers', *BMC Med*, vol. 16, no. 1, p. 101, Dec. 2018, doi: 10.1186/s12916-018-1086-7.
- [2] T. A. Manoharan and M. Radhakrishnan, 'Region-Wise Brain Response Classification of ASD Children Using EEG and BiLSTM RNN', Clin EEG Neurosci, p. 155005942110549, Nov. 2021, doi: 10.1177/15500594211054990.
- W. J. Bosl, H. Tager-Flusberg, and C. A. Nelson, 'EEG Analytics for Early Detection of Autism Spectrum Disorder: A data-driven approach', Sci Rep, vol. 8, no. 1, p. 6828, Dec. 2018, doi: 10.1038/s41598-018-24318-x.
- S. Ibrahim, R. Djemal, and A. Alsuwailem, 'Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis', *Biocybern Biomed Eng*, vol. 38, no. 1, pp. 16–26, 2018, doi: 10.1016/j.bbe.2017.08.006.
- 1. Castelhano, P. Tavares, S. Mouga, G. Oliveira, and M. Castelo-Branco, 'Stimulus dependent neural oscillatory patterns show reliable statistical identification of autism spectrum disorder in a face perceptual decision task', *Clinical Neurophysiology*, vol. 129, no. 5, pp. 981–989, May 2018, doi: 10.1016/j.clinph.2018.01.072.
- '6] A. K. Subudhi, M. Mohanty, S. K. Sahoo, S. K. Mohanty, and B. Mohanty, 'Automated Delimitation and Classification of Autistic Disorder Using EEG Signal', IETE J Res, pp. 1–9, Nov. 2020, doi: 10.1080/03772063.2020.1844076.
- 17] J. Eldridge, A. E. Lane, M. Belkin, and S. Dennis, 'Robust features for the automatic identification of autism spectrum disorder in children', *J Neurodev Disord*, vol. 6, no. 1, p. 12, Dec. 2014, doi: 10.1186/1866-1955-6-12.
- 18] A. Gui et al., 'Attentive brain states in infants with and without later autism', Transl Psychiatry, vol. 11, no. 1, p. 196, Dec. 2021, doi: 10.1038/s41398-021-01315-9.
- !9] E. Askari, S. K. Setarehdan, A. Sheikhani, M. R. Mohammadi, and M. Teshnehlab, 'Computational model for detection of abnormal brain connections in children with autism', J Integr Neurosci, vol. 17, no. 3, pp. 237–248, Aug. 2018, doi: 10.31083/JIN-180075.
- R. Djemal, K. AlSharabi, S. Ibrahim, and A. Alsuwailem, 'EEG-Based Computer Aided Diagnosis of Autism Spectrum Disorder Using Wavelet, Entropy, and ANN', *Biomed Res Int*, vol. 2017, pp. 1–9, 2017, doi: 10.1155/2017/9816591.
- 1] T.-H. Pham *et al.,* 'Autism Spectrum Disorder Diagnostic System Using HOS Bispectrum with EEG Signals', *Int J Environ Res Public Health*, vol. 17, no. 3, p. 971, Feb. 2020, doi: 10.3390/ijerph17030971.
- [2] F. Salehi, M. Jaloli, R. Coben, and A. M. Nasrabadi, 'Estimating brain effective connectivity from EEG signals of patients with autism disorder and healthy individuals by reducing volume conduction effect', *Cogn Neurodyn*, vol. 16, no. 3, pp. 519–529, Jun. 2022, doi: 10.1007/s11571-021-09730-w.
- [3] F. A. Alturki, K. AlSharabi, A. M. Abdurraqeeb, and M. Aljalal, 'EEG Signal Analysis for Diagnosing Neurological Disorders Using Discrete Wavelet Transform and Intelligent Techniques', Sensors, vol. 20, no. 9, p. 2505, Apr. 2020, doi: 10.3390/s20092505.

- 14] X. Li, E. Cai, L. Qin, and J. Kang, '[Abnormal electroencephalogram features extraction of autistic children based on wavelet transform combined with empirical modal decomposition].', Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, vol. 35, no. 4, pp. 524–529, 2018, doi: 10.7507/1001-5515.201705067.
- [5] E. Askari, S. K. Setarehdan, A. Sheikhani, M. R. Mohammadi, and M. Teshnehlab, 'Modeling the connections of brain regions in children with autism using cellular neural networks and electroencephalography analysis', Artif Intell Med, vol. 89, pp. 40–50, Jul. 2018, doi: 10.1016/j.artmed.2018.05.003.
- 16] Y. Jayawardana, M. Jaime, and S. Jayarathna, 'Analysis of Temporal Relationships between ASD and Brain Activity through EEG and Machine Learning', in 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI), Jul. 2019, pp. 151–158. doi: 10.1109/IRI.2019.00035.
- M. Baygin *et al.*, 'Automated ASD detection using hybrid deep lightweight features extracted from EEG signals', *Comput Biol Med*, vol. 134, p. 104548, Jul. 2021, doi: 10.1016/j.compbiomed.2021.104548.
- [8] A. Sheikhani, H. Behnam, M. Noroozian, M. R. Mohammadi, and M. Mohammadi, 'Abnormalities of quantitative electroencephalography in children with Asperger disorder in various conditions', *Res Autism Spectr Disord*, vol. 3, no. 2, pp. 538–546, Apr. 2009, doi: 10.1016/j.rasd.2008.11.002.
- 19] M. N. A. Tawhid, S. Siuly, and H. Wang, 'Diagnosis of autism spectrum disorder from EEG using a time-frequency spectrogram image-based approach', *Electron Lett*, vol. 56, no. 25, pp. 1372–1375, Dec. 2020, doi: 10.1049/el.2020.2646.
- E. Abdulhay *et al.*, 'Computer-aided autism diagnosis via second-order difference plot area applied to EEG empirical mode decomposition', *Neural Comput Appl*, vol. 32, no. 15, pp. 10947–10956, Aug. 2020, doi: 10.1007/s00521-018-3738-0.
- 1] D. Haputhanthri *et al.,* 'An EEG based Channel Optimized Classification Approach for Autism Spectrum Disorder', in 2019 Moratuwa Engineering Research Conference (MERCon), Jul. 2019, pp. 123–128. doi: 10.1109/MERCon.2019.8818814.
- [2] M. I. Kamel *et al.*, 'EEG based Autism Diagnosis Using Regularized Fisher Linear Discriminant Analysis', International Journal of Image, Graphics and Signal Processing, vol. 4, no. 3, pp. 35–41, Apr. 2012, doi: 10.5815/ijigsp.2012.03.06.
- [3] W. Khazaal Shams and A. W. Abdul Rahman, 'Characterizing autistic disorder based on Principle Component Analysis', in 2011 IEEE Symposium on Industrial Electronics and Applications, Sep. 2011, pp. 653–657. doi: 10.1109/ISIEA.2011.6108797.
- 4] E. A. Alsaggaf and M. I. Kamel, 'Using EEGs to diagnose autism disorder by classification algorithm', Life Sci J, vol. 11, no. 6, pp. 305–308, 2014, doi: 10.7537/marslsj110614.40.
- IS] N. Razali and A. Wahab, '2D affective space model (ASM) for detecting autistic children', in 2011 IEEE 15th International Symposium on Consumer Electronics (ISCE), Jun. 2011, pp. 536–541. doi: 10.1109/ISCE.2011.5973888.
- A. Salekin and N. Russo, 'Understanding autism', in Proceedings of the Workshop on Medical Cyber Physical Systems and Internet of Medical Things, May 2021, pp. 12–16. doi: 10.1145/3446913.3460317.
- [7] M. Radhakrishnan, K. Ramamurthy, K. K. Choudhury, D. Won, and T. A. Manoharan, 'Performance Analysis of Deep Learning Models for Detection of Autism Spectrum Disorder from EEG Signals', *Traitement du Signal*, vol. 38, no. 3, pp. 853–863, Jun. 2021, doi: 10.18280/ts.380332.
- [48] A. Sheikhani, H. Behnam, M. R. Mohammadi, M. Noroozian, and P. Golabi, 'Analysis of quantitative Electroencephalogram background activity in Autism disease patients with Lempel-Ziv complexity and Short Time Fourier Transform measure', in 2007 4th IEEE/EMBS International Summer School and Symposium on Medical Devices and Biosensors, Aug. 2007, pp. 111–114. doi: 10.1109/ISSMDBS.2007.4338305.
- [9] Q. Mohi-Ud-Din and A. K. Jayanthy, 'EEG feature extraction using wavelet transform for classifying autism spectrum disorder', *Mater Today Proc*, Mar. 2021, doi: 10.1016/j.matpr.2021.01.803.
- J. Zhao, J. Song, X. Li, and J. Kang, 'A study on EEG feature extraction and classification in autistic children based on singular spectrum analysis method', *Brain Behav*, vol. 10, no. 12, p. e01721, Dec. 2020, doi: 10.1002/brb3.1721.
- 1] M. Ranjani and P. Supraja, 'Classifying the Autism and Epilepsy Disorder Based on EEG Signal Using Deep Convolutional Neural Network (DCNN)', in 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Mar. 2021, pp. 880–886. doi: 10.1109/ICACITE51222.2021.9404634.

- 52] A. R. Aslam, N. Hafeez, H. Heidari, and M. A. Bin Altaf, 'An 8.62 μ W Processor for Autism Spectrum Disorder Classification using Shallow Neural Network', in 2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (AICAS), Jun. 2021, pp. 1–4. doi: 10.1109/AICAS51828.2021.9458412.
- ³] N. Ghoreishi, A. Goshvarpour, S. Zare-Molekabad, N. Khorshidi, and S. Baratzade, 'Classification of autistic children using polar-based lagged state-space indices of EEG signals', *Signal Image Video Process*, vol. 15, no. 8, pp. 1805–1812, Nov. 2021, doi: 10.1007/s11760-021-01928-z.
- [4] G. Bouallegue, R. Djemal, S. A. Alshebeili, and H. Aldhalaan, 'A Dynamic Filtering DF-RNN Deep-Learning-Based Approach for EEG-Based Neurological Disorders Diagnosis', *IEEE Access*, vol. 8, pp. 206992–207007, 2020, doi: 10.1109/ACCESS.2020.3037995.
- 5] N. A. Ali, 'Autism spectrum disorder classification on electroencephalogram signal using deep learning algorithm', *IAES International Journal of Artificial Intelligence (IJ-AI)*, vol. 9, no. 1, p. 91, Mar. 2020, doi: 10.11591/ijai.v9.i1.pp91-99.
- ⁵⁶] M. Ahmadlou, H. Adeli, and A. Adeli, 'Fractality and a Wavelet-Chaos-Neural Network Methodology for EEG-Based Diagnosis of Autistic Spectrum Disorder', *Journal of Clinical Neurophysiology*, vol. 27, no. 5, pp. 328–333, Oct. 2010, doi: 10.1097/WNP.0b013e3181f40dc8.
- [7] A. Sheikhani, H. Behnam, M. R. Mohammadi, M. Noroozian, and M. Mohammadi, 'Detection of Abnormalities for Diagnosing of Children with Autism Disorders Using of Quantitative Electroencephalography Analysis', J Med Syst, vol. 36, no. 2, pp. 957–963, Apr. 2012, doi: 10.1007/s10916-010-9560-6.
- [8] D. Alie, M. H. Mahoor, W. I. Mattson, D. R. Anderson, and D. S. Messinger, 'Analysis of eye gaze pattern of infants at risk of autism spectrum disorder using Markov models', in 2011 IEEE Workshop on Applications of Computer Vision (WACV), Jan. 2011, pp. 282–287. doi: 10.1109/WACV.2011.5711515.
- 59] S. Ozdemir, I. Akin-Bulbul, I. Kok, and S. Ozdemir, 'Development of a visual attention based decision support system for autism spectrum disorder screening', *International Journal of Psychophysiology*, vol. 173, pp. 69–81, Mar. 2022, doi: 10.1016/j.ijpsycho.2022.01.004.
- i0] R. Carette, F. Cilia, G. Dequen, J. Bosche, J.-L. Guerin, and L. Vandromme, 'Automatic Autism Spectrum Disorder Detection Thanks to Eye-Tracking and Neural Network-Based Approach', in *Internet of Things (IoT) Technologies for HealthCare*, 2018, pp. 75–81. doi: 10.1007/978-3-319-76213-5_11.
- 51] R. Carette, M. Elbattah, F. Cilia, G. Dequen, J.-L. Guérin, and J. Bosche, 'Learning to Predict Autism Spectrum Disorder based on the Visual Patterns of Eye-tracking Scanpaths', in Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies, 2019, pp. 103–112. doi: 10.5220/0007402601030112.
- 32] J. S. Oliveira et al., 'Computer-aided autism diagnosis based on visual attention models using eye tracking', Sci Rep, vol. 11, no. 1, p. 10131, Dec. 2021, doi: 10.1038/s41598-021-89023-8.
- 3] E. Khalaji, 'A machine learning approach for detecting high-functioning autism using web-based eye-tracking data', Middle East Technical University, Ankara, 2021.
- i4] V. Yaneva, L. A. Ha, S. Eraslan, Y. Yesilada, and R. Mitkov, 'Detecting Autism Based on Eye-Tracking Data from Web Searching Tasks', in *Proceedings of the 15th International Web for All Conference*, Apr. 2018, pp. 1–10. doi: 10.1145/3192714.3192819.
- i5] V. Yaneva, L. A. Ha, S. Eraslan, Y. Yesilada, and R. Mitkov, 'Detecting High-Functioning Autism in Adults Using Eye Tracking and Machine Learning', *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, vol. 28, no. 6, pp. 1254–1261, Jun. 2020, doi: 10.1109/TNSRE.2020.2991675.
- i6] S. Eraslan, Y. Yesilada, V. Yaneva, and S. Harper, 'Autism detection based on eye movement sequences on the web', in *Proceedings of the 17th International Web for All Conference*, Apr. 2020, pp. 1–10. doi: 10.1145/3371300.3383340.
- M. Jiang and Q. Zhao, 'Learning Visual Attention to Identify People with Autism Spectrum Disorder', in 2017 IEEE International Conference on Computer Vision (ICCV), Oct. 2017, pp. 3287–3296.
 doi: 10.1109/ICCV.2017.354.
- i8] G. Arru, P. Mazumdar, and F. Battisti, 'Exploiting Visual Behaviour for Autism Spectrum Disorder Identification', in 2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Jul. 2019, pp. 637–640. doi: 10.1109/ICMEW.2019.00123.
- S. Rahman, S. Rahman, O. Shahid, Md. T. Abdullah, and J. A. Sourov, 'Classifying Eye-Tracking Data Using Saliency Maps', in 2020 25th International Conference on Pattern Recognition (ICPR), Jan. 2021, pp. 9288–9295. doi: 10.1109/ICPR48806.2021.9412308.
- '0] S. Chen and Q. Zhao, 'Attention-Based Autism Spectrum Disorder Screening With Privileged Modality', in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Oct. 2019, pp. 1181–1190. doi: 10.1109/ICCV.2019.00127.

- '1] G. Wan et al., 'Applying Eye Tracking to Identify Autism Spectrum Disorder in Children', J Autism Dev Disord, vol. 49, no. 1, pp. 209–215, Jan. 2019, doi: 10.1007/s10803-018-3690-y.
- '2] S. Liaqat *et al.*, 'Predicting ASD diagnosis in children with synthetic and image-based eye gaze data', Signal Process Image Commun, vol. 94, p. 116198, May 2021, doi: 10.1016/j.image.2021.116198.
- '3] M. Alcañiz *et al.*, 'Eye gaze as a biomarker in the recognition of autism spectrum disorder using virtual reality and machine learning: A proof of concept for diagnosis', *Autism Research*, vol. 15, no. 1, pp. 131–145, Jan. 2022, doi: 10.1002/aur.2636.
- '4] Y. Lin, Y. Gu, Y. Xu, S. Hou, R. Ding, and S. Ni, 'Autistic spectrum traits detection and early screening: A machine learning based eye movement study', Journal of Child and Adolescent Psychiatric Nursing, vol. 35, no. 1, pp. 83–92, Feb. 2022, doi: 10.1111/jcap.12346.
- ^{'5}] W. Liu, M. Li, and L. Yi, 'Identifying children with autism spectrum disorder based on their face processing abnormality: A machine learning framework', *Autism Research*, vol. 9, no. 8, pp. 888–898, Aug. 2016, doi: 10.1002/aur.1615.
- '6] W. Liu, X. Yu, B. Raj, L. Yi, X. Zou, and M. Li, 'Efficient autism spectrum disorder prediction with eye movement: A machine learning framework', in 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), Sep. 2015, pp. 649–655. doi: 10.1109/ACII.2015.7344638.
- ⁷] J. Kang, X. Han, J.-F. Hu, H. Feng, and X. Li, 'The study of the differences between low-functioning autistic children and typically developing children in the processing of the own-race and otherrace faces by the machine learning approach', *Journal of Clinical Neuroscience*, vol. 81, pp. 54–60, Nov. 2020, doi: 10.1016/j.jocn.2020.09.039.
- '8] Z. Zhao, H. Tang, X. Zhang, X. Qu, X. Hu, and J. Lu, 'Classification of Children With Autism and Typical Development Using Eye-Tracking Data From Face-to-Face Conversations: Machine Learning Model Development and Performance Evaluation', J Med Internet Res, vol. 23, no. 8, p. e29328, Aug. 2021, doi: 10.2196/29328.
- '9] A. Lu and M. Perkowski, 'Deep Learning Approach for Screening Autism Spectrum Disorder in Children with Facial Images and Analysis of Ethnoracial Factors in Model Development and Application', Brain Sci, vol. 11, no. 11, p. 1446, Oct. 2021, doi: 10.3390/brainsci11111446.
- 30] M. Beary, A. Hadsell, R. Messersmith, and M.-P. Hosseini, 'Diagnosis of Autism in Children using Facial Analysis and Deep Learning', arXiv preprint arXiv:2008.02890, Aug. 2020.
- 1] P. V. K. Sandeep and N. S. Kumar, 'Autism Detection in Children with Facial Cues using Dense Net Deep Learning Architecture', Design Engineering, vol. 2021, no. 9, pp. 7506–7520, 2021.
- 32] S. Ram Arumugam, S. Ganesh Karuppasamy, S. Gowr, O. Manoj, and K. Kalaivani, 'A Deep Convolutional Neural Network based Detection System for Autism Spectrum Disorder in Facial images', in 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Nov. 2021, pp. 1255–1259. doi: 10.1109/I-SMAC52330.2021.9641046.
- 3 S. R. Arumugam, R. Balakrishna, R. Khilar, O. Manoj, and C. S. Shylaja, 'Prediction of Autism Spectrum Disorder in Children using Face Recognition', in 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), Oct. 2021, pp. 1246–1250. doi: 10.1109/ICOSEC51865.2021.9591679.
- [4] T. Akter *et al.*, 'Improved Transfer-Learning-Based Facial Recognition Framework to Detect Autistic Children at an Early Stage', *Brain Sci*, vol. 11, no. 6, p. 734, May 2021, doi: 10.3390/brainsci11060734.
- K. K. Mujeeb Rahman and M. M. Subashini, 'Identification of Autism in Children Using Static Facial Features and Deep Neural Networks', Brain Sci, vol. 12, no. 1, p. 94, Jan. 2022, doi: 10.3390/brainsci12010094.
- [6] Y. Khosla, P. Ramachandra, and N. Chaitra, 'Detection of autistic individuals using facial images and deep learning', in 2021 IEEE International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS), Dec. 2021, pp. 1–5. doi: 10.1109/CSITSS54238.2021.9683205.
- 37] R. Sadik, S. Anwar, and M. L. Reza, 'AutismNet: Recognition of Autism Spectrum Disorder from Facial Expressions using MobileNet Architecture', International Journal of Advanced Trends in Computer Science and Engineering, vol. 10, no. 1, pp. 327–334, Feb. 2021, doi: 10.30534/ijatcse/2021/471012021.
- 18] B. Banire, D. Al Thani, M. Qaraqe, and B. Mansoor, 'Face-Based Attention Recognition Model for Children with Autism Spectrum Disorder', *J Healthc Inform Res*, vol. 5, no. 4, pp. 420–445, Dec. 2021, doi: 10.1007/s41666-021-00101-y.
- B. Li *et al.*, 'A Facial Affect Analysis System for Autism Spectrum Disorder', in 2019 IEEE International Conference on Image Processing (ICIP), Sep. 2019, pp. 4549–4553. doi: 10.1109/ICIP.2019.8803604.

- 10] D.-Y. Song, C.-C. Topriceanu, D. C. Ilie-Ablachim, M. Kinali, and S. Bisdas, 'Machine learning with neuroimaging data to identify autism spectrum disorder: a systematic review and meta-analysis', *Neuroradiology*, vol. 63, no. 12, pp. 2057–2072, Dec. 2021, doi: 10.1007/s00234-021-02774-z.
- 1] K. Gao, Y. Sun, S. Niu, and L. Wang, 'Unified framework for early stage status prediction of autism based on infant structural magnetic resonance imaging', *Autism Research*, vol. 14, no. 12, pp. 2512–2523, Dec. 2021, doi: 10.1002/aur.2626.
- 12] L. Q. Uddin *et al.*, 'Multivariate Searchlight Classification of Structural Magnetic Resonance Imaging in Children and Adolescents with Autism', *Biol Psychiatry*, vol. 70, no. 9, pp. 833–841, Nov. 2011, doi: 10.1016/j.biopsych.2011.07.014.
- 13] Y. Kong, J. Gao, Y. Xu, Y. Pan, J. Wang, and J. Liu, 'Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier', *Neurocomputing*, vol. 324, pp. 63–68, Jan. 2019, doi: 10.1016/j.neucom.2018.04.080.
- 14] J. M. Górriz *et al.*, 'A Machine Learning Approach to Reveal the NeuroPhenotypes of Autisms', *Int J Neural Syst*, vol. 29, no. 07, p. 1850058, Sep. 2019, doi: 10.1142/S0129065718500582.
- 15] W. Sato *et al.,* 'Reduced Gray Matter Volume in the Social Brain Network in Adults with Autism Spectrum Disorder', *Front Hum Neurosci*, vol. 11, p. 395, Aug. 2017, doi: 10.3389/fnhum.2017.00395.
- 16] F. Segovia et al., 'Identifying endophenotypes of autism: a multivariate approach', Front Comput Neurosci, vol. 8, p. 60, Jun. 2014, doi: 10.3389/fncom.2014.00060.
- 17] C. Ecker *et al.*, 'Investigating the predictive value of whole-brain structural MR scans in autism: A pattern classification approach', *Neuroimage*, vol. 49, no. 1, pp. 44–56, Jan. 2010, doi: 10.1016/j.neuroimage.2009.08.024.
- 18] L. Wang, C.-Y. Wee, X. Tang, P.-T. Yap, and D. Shen, 'Multi-task feature selection via supervised canonical graph matching for diagnosis of autism spectrum disorder', *Brain Imaging Behav*, vol. 10, no. 1, pp. 33–40, Mar. 2016, doi: 10.1007/s11682-015-9360-1.
- 19] N. Denier, G. Steinberg, L. T. Elst, and T. Bracht, 'The role of head circumference and cerebral volumes to phenotype male adults with autism spectrum disorder', *Brain Behav*, vol. 12, no. 3, p. e2460, Mar. 2022, doi: 10.1002/brb3.2460.
- 10] S. Vigneshwaran, B. S. Mahanand, S. Suresh, and R. Savitha, 'Autism spectrum disorder detection using projection based learning meta-cognitive RBF network', in *The 2013 International Joint Conference on Neural Networks (IJCNN)*, Aug. 2013, pp. 1–8. doi: 10.1109/IJCNN.2013.6706777.
- 1] M. J. Leming, S. Baron-Cohen, and J. Suckling, 'Single-participant structural similarity matrices lead to greater accuracy in classification of participants than function in autism in MRI', *Mol Autism*, vol. 12, no. 1, p. 34, Dec. 2021, doi: 10.1186/s13229-021-00439-5.
- 12] Z. Fan, J. Su, K. Gao, D. Hu, and L.-L. Zeng, 'A Federated Deep Learning Framework for 3D Brain MRI Images', in 2021 International Joint Conference on Neural Networks (IJCNN), Jul. 2021, pp. 1– 6. doi: 10.1109/IJCNN52387.2021.9534376.
- 13] V. Subbaraju, S. Sundaram, S. Narasimhan, and M. B. Suresh, 'Accurate detection of autism spectrum disorder from structural MRI using extended metacognitive radial basis function network', *Expert Syst Appl*, vol. 42, no. 22, pp. 8775–8790, Dec. 2015, doi: 10.1016/j.eswa.2015.07.031.
- 14] S. Calderoni, A. Retico, L. Biagi, R. Tancredi, F. Muratori, and M. Tosetti, 'Female children with autism spectrum disorder: An insight from mass-univariate and pattern classification analyses', *Neuroimage*, vol. 59, no. 2, pp. 1013–1022, Jan. 2012, doi: 10.1016/j.neuroimage.2011.08.070.
- 15] Y. Fu *et al.,* 'A novel pipeline leveraging surface-based features of small subcortical structures to classify individuals with autism spectrum disorder', *Prog Neuropsychopharmacol Biol Psychiatry*, vol. 104, p. 109989, Jan. 2021, doi: 10.1016/j.pnpbp.2020.109989.
- 16] I. Bilgen, G. Guvercin, and I. Rekik, 'Machine learning methods for brain network classification: Application to autism diagnosis using cortical morphological networks', J Neurosci Methods, vol. 343, p. 108799, Sep. 2020, doi: 10.1016/j.jneumeth.2020.108799.
- O. Graa and I. Rekik, 'Multi-view learning-based data proliferator for boosting classification using highly imbalanced classes', J Neurosci Methods, vol. 327, p. 108344, Nov. 2019, doi: 10.1016/j.jneumeth.2019.108344.
- 18] C. Ecker *et al.*, 'Describing the Brain in Autism in Five Dimensions--Magnetic Resonance Imaging-Assisted Diagnosis of Autism Spectrum Disorder Using a Multiparameter Classification Approach', *Journal of Neuroscience*, vol. 30, no. 32, pp. 10612–10623, Aug. 2010, doi: 10.1523/JNEUROSCI.5413-09.2010.

- 19] Y. Jiao, R. Chen, X. Ke, K. Chu, Z. Lu, and E. H. Herskovits, 'Predictive models of autism spectrum disorder based on brain regional cortical thickness', *Neuroimage*, vol. 50, no. 2, pp. 589–599, Apr. 2010, doi: 10.1016/j.neuroimage.2009.12.047.
- .0] L. Squarcina *et al.*, 'Automatic classification of autism spectrum disorder in children using cortical thickness and support vector machine', *Brain Behav*, vol. 11, no. 8, p. e2238, Aug. 2021, doi: 10.1002/brb3.2238.
- .1] A. Demirhan, 'The effect of feature selection on multivariate pattern analysis of structural brain MR images', *Physica Medica*, vol. 47, pp. 103–111, Mar. 2018, doi: 10.1016/j.ejmp.2018.03.002.
- .2] S. Tummala, 'Deep Learning Framework using Siamese Neural Network for Diagnosis of Autism from Brain Magnetic Resonance Imaging', in 2021 6th International Conference for Convergence in Technology (I2CT), Apr. 2021, pp. 1–5. doi: 10.1109/I2CT51068.2021.9418143.
- .3] R. Nur Syahindah Husna, A. R. Syafeeza, N. Abdul Hamid, Y. C. Wong, and R. Atikah Raihan, 'Functional Magnetic Resonance Imaging for Autism Spectrum Disorder Detection Using Deep Learning', J Teknol, vol. 83, no. 3, pp. 45–52, Apr. 2021, doi: 10.11113/jurnalteknologi.v83.16389.
- .4] X. Guo *et al.*, 'Diagnosing autism spectrum disorder in children using conventional MRI and apparent diffusion coefficient based deep learning algorithms', *Eur Radiol*, vol. 32, no. 2, pp. 761–770, Feb. 2022, doi: 10.1007/s00330-021-08239-4.
- .5] H. Shahamat and M. Saniee Abadeh, 'Brain MRI analysis using a deep learning based evolutionary approach', *Neural Networks*, vol. 126, pp. 218–234, Jun. 2020, doi: 10.1016/j.neunet.2020.03.017.
- .6] X. Chen, Z. Wang, F. A. Cheikh, and M. Ullah, '3D-Resnet Fused Attention for Autism Spectrum Disorder Classification', in *Image and Graphics*, 2021, pp. 607–617. doi: 10.1007/978-3-030-87358-5_49.
- .7] F. Ke, S. Choi, Y. H. Kang, K.-A. Cheon, and S. W. Lee, 'Exploring the Structural and Strategic Bases of Autism Spectrum Disorders With Deep Learning', *IEEE Access*, vol. 8, pp. 153341–153352, 2020, doi: 10.1109/ACCESS.2020.3016734.
- .8] C.-Y. Wee, L. Wang, F. Shi, P.-T. Yap, and D. Shen, 'Diagnosis of autism spectrum disorders using regional and interregional morphological features', *Hum Brain Mapp*, vol. 35, no. 7, pp. 3414–3430, Jul. 2014, doi: 10.1002/hbm.22411.
- .9] S. Haar, S. Berman, M. Behrmann, and I. Dinstein, 'Anatomical Abnormalities in Autism?', Cerebral Cortex, vol. 26, no. 4, pp. 1440–1452, Apr. 2016, doi: 10.1093/cercor/bhu242.
- W. H. L. Pinaya, A. Mechelli, and J. R. Sato, 'Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: A large-scale multi-sample study', *Hum Brain Mapp*, vol. 40, no. 3, pp. 944–954, Feb. 2019, doi: 10.1002/hbm.24423.
- 1] E. P. K. Pua, G. Ball, C. Adamson, S. Bowden, and M. L. Seal, 'Quantifying individual differences in brain morphometry underlying symptom severity in Autism Spectrum Disorders', Sci Rep, vol. 9, no. 1, p. 9898, Dec. 2019, doi: 10.1038/s41598-019-45774-z.
- [2] G. J. Katuwal, N. D. Cahill, S. A. Baum, and A. M. Michael, 'The predictive power of structural MRI in Autism diagnosis', in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Aug. 2015, pp. 4270–4273. doi: 10.1109/EMBC.2015.7319338.
- 13] M. Mishra and U. C. Pati, 'Autism Spectrum Disorder Detection using Surface Morphometric Feature of sMRI in Machine Learning', in 2021 8th International Conference on Smart Computing and Communications (ICSCC), Jul. 2021, pp. 17–20. doi: 10.1109/ICSCC51209.2021.9528240.
- [4] M. T. Ali et al., 'Autism Classification Using SMRI: A Recursive Features Selection Based on Sampling from Multi-Level High Dimensional Spaces', in 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Apr. 2021, pp. 267–270. doi: 10.1109/ISBI48211.2021.9433973.
- H. Sharif and R. A. Khan, 'A novel machine learning based framework for detection of Autism Spectrum Disorder (ASD)', arXiv preprint arXiv:1903.11323, Mar. 2019, doi: 10.1080/08839514.2021.2004655.
- 16] H. C. Hazlett *et al.*, 'Early brain development in infants at high risk for autism spectrum disorder', *Nature*, vol. 542, no. 7641, pp. 348–351, Feb. 2017, doi: 10.1038/nature21369.
- 17] M. T. Ali et al., 'The Role of Structure MRI in Diagnosing Autism', Diagnostics, vol. 12, no. 1, p. 165, Jan. 2022, doi: 10.3390/diagnostics12010165.
- '8] M. R. Sabuncu and E. Konukoglu, 'Clinical Prediction from Structural Brain MRI Scans: A Large-Scale Empirical Study', Neuroinformatics, vol. 13, no. 1, pp. 31–46, Jan. 2015, doi: 10.1007/s12021-014-9238-1.

- !9] E. Ferrari *et al.*, 'Dealing with confounders and outliers in classification medical studies: The Autism Spectrum Disorders case study', Artif Intell Med, vol. 108, p. 101926, Aug. 2020, doi: 10.1016/j.artmed.2020.101926.
- 10] I. Gori *et al.*, 'Gray Matter Alterations in Young Children with Autism Spectrum Disorders: Comparing Morphometry at the Voxel and Regional Level', *Journal of Neuroimaging*, vol. 25, no. 6, pp. 866–874, Nov. 2015, doi: 10.1111/jon.12280.
- 1] J. Germann *et al.*, 'Involvement of the habenula in the pathophysiology of autism spectrum disorder', *Sci Rep*, vol. 11, no. 1, p. 21168, Dec. 2021, doi: 10.1038/s41598-021-00603-0.
- [2] G. Li, M. Liu, Q. Sun, D. Shen, and L. Wang, 'Early Diagnosis of Autism Disease by Multi-channel CNNs', in *Mach Learn Med Imaging*, vol. 11046, 2018, pp. 303–309. doi: 10.1007/978-3-030-00919-9_35.
- 13] T. Chen *et al.*, 'The Development of a Practical Artificial Intelligence Tool for Diagnosing and Evaluating Autism Spectrum Disorder: Multicenter Study', *JMIR Med Inform*, vol. 8, no. 5, p. e15767, May 2020, doi: 10.2196/15767.
- [4] X. Zhang et al., 'Siamese Verification Framework for Autism Identification During Infancy Using Cortical Path Signature Features', in 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Apr. 2020, pp. 1–4. doi: 10.1109/ISBI45749.2020.9098385.
- ¹⁵ C. Alvarez-Jimenez, N. Múnera-Garzón, M. A. Zuluaga, N. F. Velasco, and E. Romero, 'Autism spectrum disorder characterization in children by capturing local-regional brain changes in MRI', *Med Phys*, vol. 47, no. 1, pp. 119–131, Jan. 2020, doi: 10.1002/mp.13901.
- [6] E. Varol, B. Gaonkar, G. Erus, R. Schultz, and C. Davatzikos, 'Feature ranking based nested support vector machine ensemble for medical image classification', in 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), May 2012, pp. 146–149. doi: 10.1109/ISBI.2012.6235505.
- [7] R. Yang, F. Ke, H. Liu, M. Zhou, and H.-M. Cao, 'Exploring sMRI Biomarkers for Diagnosis of Autism Spectrum Disorders Based on Multi Class Activation Mapping Models', IEEE Access, vol. 9, pp. 124122–124131, 2021, doi: 10.1109/ACCESS.2021.3069211.
- J. Gao *et al.*, 'Multisite Autism Spectrum Disorder Classification Using Convolutional Neural Network Classifier and Individual Morphological Brain Networks', *Front Neurosci*, vol. 14, p. 629630, Jan. 2021, doi: 10.3389/fnins.2020.629630.
- [9] M. Madine, I. Rekik, and N. Werghi, 'Diagnosing Autism Using T1-W MRI With Multi-Kernel Learning and Hypergraph Neural Network', in 2020 IEEE International Conference on Image Processing (ICIP), Oct. 2020, pp. 438–442. doi: 10.1109/ICIP40778.2020.9190924.
- 10] M. Soussia and I. Rekik, 'Unsupervised Manifold Learning Using High-Order Morphological Brain Networks Derived From T1-w MRI for Autism Diagnosis', *Front Neuroinform*, vol. 12, p. 70, Oct. 2018, doi: 10.3389/fninf.2018.00070.
- 1] N. Georges, I. Mhiri, and I. Rekik, 'Identifying the best data-driven feature selection method for boosting reproducibility in classification tasks', *Pattern Recognit*, vol. 101, p. 107183, May 2020, doi: 10.1016/j.patcog.2019.107183.
- G. Chanel, S. Pichon, L. Conty, S. Berthoz, C. Chevallier, and J. Grèzes, 'Classification of autistic individuals and controls using cross-task characterization of fMRI activity', *Neuroimage Clin*, vol. 10, pp. 78–88, 2016, doi: 10.1016/j.nicl.2015.11.010.
- [3] P. Odriozola, L. Q. Uddin, C. J. Lynch, J. Kochalka, T. Chen, and V. Menon, 'Insula response and connectivity during social and non-social attention in children with autism', Soc Cogn Affect Neurosci, vol. 11, no. 3, pp. 433–444, Mar. 2016, doi: 10.1093/scan/nsv126.
- [4] M. A. Just, V. L. Cherkassky, A. Buchweitz, T. A. Keller, and T. M. Mitchell, 'Identifying Autism from Neural Representations of Social Interactions: Neurocognitive Markers of Autism', *PLoS One*, vol. 9, no. 12, p. e113879, Dec. 2014, doi: 10.1371/journal.pone.0113879.
- 5 X. Li, N. C. Dvornek, J. Zhuang, P. Ventola, and J. S. Duncan, 'Brain Biomarker Interpretation in ASD Using Deep Learning and fMRI', in *Med Image Comput Comput Assist Interv*, vol. 11072, 2018, pp. 206–214. doi: 10.1007/978-3-030-00931-1_24.
- [6] X. Li et al., 'BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis', Med Image Anal, vol. 74, p. 102233, Dec. 2021, doi: 10.1016/j.media.2021.102233.
- X. Li, N. C. Dvornek, Y. Zhou, J. Zhuang, P. Ventola, and J. S. Duncan, 'Graph Neural Network for Interpreting Task-fMRI Biomarkers', in *Med Image Comput Comput Assist Interv*, vol. 11768, 2019, pp. 485–493. doi: 10.1007/978-3-030-32254-0_54.

- [48] X. Li et al., '2-Channel convolutional 3D deep neural network (2CC3D) for fMRI analysis: ASD classification and feature learning', in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Apr. 2018, pp. 1252–1255. doi: 10.1109/ISBI.2018.8363798.
- N. C. Dvornek, D. Yang, P. Ventola, and J. S. Duncan, 'Learning Generalizable Recurrent Neural Networks from Small Task-fMRI Datasets', in *Med Image Comput Comput Assist Interv*, vol. 11072, 2018, pp. 329–337. doi: 10.1007/978-3-030-00931-1_38.
- i0] D. L. Murdaugh, S. V. Shinkareva, H. R. Deshpande, J. Wang, M. R. Pennick, and R. K. Kana, 'Differential Deactivation during Mentalizing and Classification of Autism Based on Default Mode Network Connectivity', PLoS One, vol. 7, no. 11, p. e50064, Nov. 2012, doi: 10.1371/journal.pone.0050064.
- 1] H. Wang, C. Chen, and H. Fushing, 'Extracting Multiscale Pattern Information of fMRI Based Functional Brain Connectivity with Application on Classification of Autism Spectrum Disorders', *PLoS One*, vol. 7, no. 10, p. e45502, Oct. 2012, doi: 10.1371/journal.pone.0045502.
- R. Haweel *et al.*, 'Functional Magnetic Resonance Imaging Based Framework for Autism Diagnosis', in 2019 Fifth International Conference on Advances in Biomedical Engineering (ICABME), Oct. 2019, pp. 1–4. doi: 10.1109/ICABME47164.2019.8940348.
- 3] R. Haweel et al., 'A robust DWT–CNN-based CAD system for early diagnosis of autism using task-based fMRI', Med Phys, vol. 48, no. 5, pp. 2315–2326, May 2021, doi: 10.1002/mp.14692.
- [4] R. Haweel et al., 'A Novel DWT-Based Discriminant Features Extraction From Task-Based Fmri: An Asd Diagnosis Study Using Cnn', in 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Apr. 2021, pp. 196–199. doi: 10.1109/ISBI48211.2021.9433768.
- 5] R. Haweel, N. Seada, S. Ghoniemy, N. S. Alghamdi, and A. El-Baz, 'A CNN Deep Local and Global ASD Classification Approach with Continuous Wavelet Transform Using Task-Based FMRI', Sensors, vol. 21, no. 17, p. 5822, Aug. 2021, doi: 10.3390/s21175822.
- [6] L. Xu et al., 'Characterizing autism spectrum disorder by deep learning spontaneous brain activity from functional near-infrared spectroscopy', J Neurosci Methods, vol. 331, p. 108538, Feb. 2020, doi: 10.1016/j.jneumeth.2019.108538.
- [7] L. Xu, X. Geng, X. He, J. Li, and J. Yu, 'Prediction in Autism by Deep Learning Short-Time Spontaneous Hemodynamic Fluctuations', *Front Neurosci*, vol. 13, p. 1120, Nov. 2019, doi: 10.3389/fnins.2019.01120.
- [8] J. Li, L. Qiu, L. Xu, E. V. Pedapati, C. A. Erickson, and U. Sunar, 'Characterization of autism spectrum disorder with spontaneous hemodynamic activity', *Biomed Opt Express*, vol. 7, no. 10, p. 3871, Oct. 2016, doi: 10.1364/BOE.7.003871.
- A. Crippa *et al.*, 'Use of Machine Learning to Identify Children with Autism and Their Motor Abnormalities', J Autism Dev Disord, vol. 45, no. 7, pp. 2146–2156, Jul. 2015, doi: 10.1007/s10803-015-2379-8.
- i0] Z. Zhao *et al.*, 'Identifying Autism with Head Movement Features by Implementing Machine Learning Algorithms', *J Autism Dev Disord*, vol. 52, no. 7, pp. 3038–3049, Jul. 2022, doi: 10.1007/s10803-021-05179-2.
- 51] Z. Zhao *et al.*, 'Applying Machine Learning to Identify Autism With Restricted Kinematic Features', *IEEE Access*, vol. 7, pp. 157614–157622, 2019, doi: 10.1109/ACCESS.2019.2950030.
- W. Li, Z. Wang, L. Zhang, L. Qiao, and D. Shen, 'Remodeling Pearson's Correlation for Functional Brain Network Estimation and Autism Spectrum Disorder Identification', *Front Neuroinform*, vol. 11, p. 55, Aug. 2017, doi: 10.3389/fninf.2017.00055.
- i3] A. Anzulewicz, K. Sobota, and J. T. Delafield-Butt, 'Toward the Autism Motor Signature: Gesture patterns during smart tablet gameplay identify children with autism', *Sci Rep*, vol. 6, no. 1, p. 31107, Aug. 2016, doi: 10.1038/srep31107.
- [4] W. Liu, T. Zhou, C. Zhang, X. Zou, and M. Li, 'Response to name: A dataset and a multimodal machine learning framework towards autism study', in 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), Oct. 2017, pp. 178–183. doi: 10.1109/ACII.2017.8273597.
- 5] Q. Tariq, J. Daniels, J. N. Schwartz, P. Washington, H. Kalantarian, and D. P. Wall, 'Mobile detection of autism through machine learning on home video: A development and prospective validation study', *PLoS Med*, vol. 15, no. 11, p. e1002705, Nov. 2018, doi: 10.1371/journal.pmed.1002705.
- i6] C. Wu et al., 'Machine Learning Based Autism Spectrum Disorder Detection from Videos', in 2020 IEEE International Conference on E-health Networking, Application & Services (HEALTHCOM), Mar. 2021, vol. 2020, pp. 1–6. doi: 10.1109/HEALTHCOM49281.2021.9398924.

- M. Ruan, 'Image and Video-Based Autism Spectrum Disorder Detection via Deep Learning', Benjamin M. Statler College of Engineering and Mineral Resources, Morgantown, West Virginia, 2020.
- i8] M. J. Maenner, M. Yeargin-Allsopp, K. Van Naarden Braun, D. L. Christensen, and L. A. Schieve, 'Development of a Machine Learning Algorithm for the Surveillance of Autism Spectrum Disorder', PLoS One, vol. 11, no. 12, p. e0168224, Dec. 2016, doi: 10.1371/journal.pone.0168224.
- i9] E. Duchesnay *et al.*, 'Feature selection and classification of imbalanced datasets', *Neuroimage*, vol. 57, no. 3, pp. 1003–1014, Aug. 2011, doi: 10.1016/j.neuroimage.2011.05.011.
- '0] S. Liu, F. Ge, L. Zhao, T. Wang, D. Ni, and T. Liu, 'NAS-optimized topology-preserving transfer learning for differentiating cortical folding patterns', *Med Image Anal*, vol. 77, p. 102316, Apr. 2022, doi: 10.1016/j.media.2021.102316.
- '1] M. Rakić, M. Cabezas, K. Kushibar, A. Oliver, and X. Lladó, 'Improving the detection of autism spectrum disorder by combining structural and functional MRI information', *Neuroimage Clin*, vol. 25, p. 102181, 2020, doi: 10.1016/j.nicl.2020.102181.
- ^{'2}] O. Dekhil *et al.,* 'A Personalized Autism Diagnosis CAD System Using a Fusion of Structural MRI and Resting-State Functional MRI Data', *Front Psychiatry*, vol. 10, p. 392, Jul. 2019, doi: 10.3389/fpsyt.2019.00392.
- '3] S. Itani and D. Thanou, 'Combining anatomical and functional networks for neuropathology identification: A case study on autism spectrum disorder', *Med Image Anal*, vol. 69, p. 101986, Apr. 2021, doi: 10.1016/j.media.2021.101986.
- '4] O. Dekhil et al., 'A Comprehensive Framework for Differentiating Autism Spectrum Disorder From Neurotypicals by Fusing Structural MRI and Resting State Functional MRI', Semin Pediatr Neurol, vol. 34, p. 100805, Jul. 2020, doi: 10.1016/j.spen.2020.100805.
- ^{'5}] Y. Chen *et al.*, 'Attention-Based Node-Edge Graph Convolutional Networks for Identification of Autism Spectrum Disorder Using Multi-Modal MRI Data', in *Pattern Recognition and Computer Vision*, 2021, pp. 374–385. doi: 10.1007/978-3-030-88010-1_31.
- '6] Y. Zhou, F. Yu, and T. Duong, 'Multiparametric MRI Characterization and Prediction in Autism Spectrum Disorder Using Graph Theory and Machine Learning', *PLoS One*, vol. 9, no. 6, p. e90405, Jun. 2014, doi: 10.1371/journal.pone.0090405.
- ⁷] M. Akhavan Aghdam, A. Sharifi, and M. M. Pedram, 'Combination of rs-fMRI and sMRI Data to Discriminate Autism Spectrum Disorders in Young Children Using Deep Belief Network', *J Digit Imaging*, vol. 31, no. 6, pp. 895–903, Dec. 2018, doi: 10.1007/s10278-018-0093-8.
- '8] B. Sen, N. C. Borle, R. Greiner, and M. R. G. Brown, 'A general prediction model for the detection of ADHD and Autism using structural and functional MRI', *PLoS One*, vol. 13, no. 4, p. e0194856, Apr. 2018, doi: 10.1371/journal.pone.0194856.
- '9] K. M and S. Jaganathan, 'Graph Convolutional Model to Diagnose Autism Spectrum Disorder Using Rs-Fmri Data', in 2021 5th International Conference on Computer, Communication and Signal Processing (ICCCSP), May 2021, pp. 1–5. doi: 10.1109/ICCCSP52374.2021.9465490.
- A. Brahim and N. Farrugia, 'Graph Fourier transform of fMRI temporal signals based on an averaged structural connectome for the classification of neuroimaging', Artif Intell Med, vol. 106, p. 101870, Jun. 2020, doi: 10.1016/j.artmed.2020.101870.
- 1] A. Eill *et al.*, 'Functional Connectivities Are More Informative Than Anatomical Variables in Diagnostic Classification of Autism', *Brain Connect*, vol. 9, no. 8, pp. 604–612, Oct. 2019, doi: 10.1089/brain.2019.0689.
- 12] A. Crimi, L. Dodero, V. Murino, and D. Sona, 'Case-control discrimination through effective brain connectivity', in 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Apr. 2017, pp. 970–973. doi: 10.1109/ISBI.2017.7950677.
- [3] G. Deshpande, L. E. Libero, K. R. Sreenivasan, H. D. Deshpande, and R. K. Kana, 'Identification of neural connectivity signatures of autism using machine learning', *Front Hum Neurosci*, vol. 7, p. 670, 2013, doi: 10.3389/fnhum.2013.00670.
- [4] A. Irimia, X. Lei, C. M. Torgerson, Z. J. Jacokes, S. Abe, and J. D. Van Horn, 'Support Vector Machines, Multidimensional Scaling and Magnetic Resonance Imaging Reveal Structural Brain Abnormalities Associated With the Interaction Between Autism Spectrum Disorder and Sex', *Front Comput Neurosci*, vol. 12, p. 93, Nov. 2018, doi: 10.3389/fncom.2018.00093.
- 35] J. I. Kim et al., 'Classification of Preschoolers with Low-Functioning Autism Spectrum Disorder Using Multimodal MRI Data', J Autism Dev Disord, Jan. 2022, doi: 10.1007/s10803-021-05368-z.

- 16] C. J. Goch et al., 'Global Changes in the Connectome in Autism Spectrum Disorders', in Computational Diffusion MRI and Brain Connectivity, Springer, 2014, pp. 239–247. doi: 10.1007/978-3-319-02475-2_22.
- 57] S. Payabvash *et al.*, 'White Matter Connectome Edge Density in Children with Autism Spectrum Disorders: Potential Imaging Biomarkers Using Machine-Learning Models', *Brain Connect*, vol. 9, no. 2, pp. 209–220, Mar. 2019, doi: 10.1089/brain.2018.0658.
- 18] S. Thapaliya, S. Jayarathna, and M. Jaime, 'Evaluating the EEG and Eye Movements for Autism Spectrum Disorder', in 2018 IEEE International Conference on Big Data (Big Data), Dec. 2018, pp. 2328–2336. doi: 10.1109/BigData.2018.8622501.
- S. Zhang, D. Chen, Y. Tang, and L. Zhang, 'Children ASD Evaluation Through Joint Analysis of EEG and Eye-Tracking Recordings With Graph Convolution Network', Front Hum Neurosci, vol. 15, p. 651349, May 2021, doi: 10.3389/fnhum.2021.651349.
- J. Kang, X. Han, J. Song, Z. Niu, and X. Li, 'The identification of children with autism spectrum disorder by SVM approach on EEG and eye-tracking data', *Comput Biol Med*, vol. 120, p. 103722, May 2020, doi: 10.1016/j.compbiomed.2020.103722.
- 1] P. Lu, X. Li, L. Hu, and L. Lu, 'Integrating genomic and resting State fMRI for efficient autism spectrum disorder classification', *Multimed Tools Appl*, vol. 81, no. 14, pp. 19183–19194, Jun. 2022, doi: 10.1007/s11042-020-10473-9.
- 12] A. Vabalas, E. Gowen, E. Poliakoff, and A. J. Casson, 'Applying Machine Learning to Kinematic and Eye Movement Features of a Movement Imitation Task to Predict Autism Diagnosis', Sci Rep, vol. 10, no. 1, p. 8346, Dec. 2020, doi: 10.1038/s41598-020-65384-4.
- 13] L. E. Libero, T. P. DeRamus, A. C. Lahti, G. Deshpande, and R. K. Kana, 'Multimodal neuroimaging based classification of autism spectrum disorder using anatomical, neurochemical, and white matter correlates', *Cortex*, vol. 66, pp. 46–59, May 2015, doi: 10.1016/j.cortex.2015.02.008.