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Abstract 22 

Background. Targeting interventions where most needed and effective is crucial for public health. 23 

Malaria control and elimination strategies increasingly rely on stratification to guide surveillance, to 24 

allocate vector control campaigns, and to prioritize access to community-based early diagnosis and 25 

treatment (EDT). We developed an original approach of dynamic clustering to improve local 26 

discrimination between heterogeneous malaria transmission settings. 27 

 28 

Methods. We analysed weekly malaria incidence records obtained from community-based EDT 29 

(malaria posts) in Karen/Kayin state, Myanmar. We smoothed longitudinal incidence series over 30 

multiple seasons using functional transformation. We regrouped village incidence series into clusters 31 

using a dynamic time warping clustering and compared them to the standard, 5-category annual 32 

incidence standard stratification. 33 

 34 

Results. We included 1,115 villages from 2016 to 2020. We identified eleven P. falciparum and P. 35 

vivax incidence clusters which differed by amplitude, trends and seasonality. Specifically the 124 36 

villages classified as “high transmission area” in the standard P. falciparum stratification belonged 37 

to the 11 distinct groups when accounting to inter-annual trends and intra-annual variations. Likewise 38 

for P. vivax, 399 “high transmission” villages actually corresponded to the 11 distinct dynamics. 39 

  40 

Conclusion. Our temporal dynamic clustering methodology is easy to implement and extracts more 41 

information than standard malaria stratification. Our method exploits longitudinal surveillance data to 42 

distinguish local dynamics, such as increasing inter-annual trends or seasonal differences, providing 43 

key information for decision-making. It is relevant to malaria strategies in other settings and to other 44 

diseases, especially when many countries deploy health information systems and collect increasing 45 

amounts of health outcome data. 46 
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 54 

Introduction 55 

During malaria control or pre-elimination phases, the World Health Organization (WHO) 56 

recommends countries to rely on a stratification process in order to allocate resources and 57 

interventions. Stratification aims to produce discrete maps differentiating areas based on transmission 58 

intensity and receptivity.1 Transmission intensity can be measured directly by entomological 59 

parameters (entomological inoculation rate) but require extensive efforts and significant resources.2,3 60 

In practice, clinical malaria incidence over one year, also called “annual parasite incidence” (API) is 61 

often used as a proxy of transmission. Receptivity is a complex concept without a straightforward 62 

quantitative measurement.3 In the context of prevention of reintroduction, it mainly refers to the ability 63 

of an ecosystem to enable malaria transmission even if it is not ongoing: presence of competent 64 

vectors, suitable climate and susceptible population.1 Vectorial capacity can provide important insights 65 

on receptivity, but due to lack of large scale entomological information, receptivity is often 66 

approximated using environmental (meteorological/landscape) data.1,3  Depending on data availability, 67 

stratification can be performed from broad (region, district) to fine (village, health area) geographical 68 

scales to fit operational needs. 69 

In the Greater Mekong Subregion (GMS), malaria persists in some high transmission foci where 70 

Plasmodium falciparum and P. vivax are responsible of most morbidity and mortality.4 P. falciparum 71 

elimination in this area has been prioritized in response to the emergence of artemisinin resistance.4–72 
6  73 

Myanmar remains the country with the highest malaria burden in the GMS, especially in mountainous 74 

borderlands. In accordance with WHO technical guidelines, Myanmar planned its 2016-2030 elimination 75 

strategy relying on API to stratify its regions and townships for operational planning.7 Townships are 76 

not the finest administrative division in Myanmar; it is subdivided in village tracts and villages. This 77 

stratification method is easily implemented based on routine data collections but the stratification may 78 

not be sufficient to adapt and optimize surveillance and intervention. When malaria control progresses, 79 

malaria transmission becomes increasingly heterogeneous and unstable, for example due to local 80 

differences in the environment sustaining transmission or in the impact of interventions. The complex 81 

settings of malaria elimination also imply sporadic epidemics, more unexpected temporal dynamics 82 

not addressed with classical approaches, and need to assess the whole time series evolution. To 83 

consider this variability, it is necessary to develop tools that describe more accurately malaria 84 

dynamics over several years.  85 

According to WHO and Myanmar NMCP report in 2015, stratification at township level identifies Karen 86 

state mostly as a moderate transmission area with high risk in the northern township.8 This state, 87 

located at the Myanmar-Thailand border, is a typical GMS elimination setting combining low incidence 88 

areas with persisting high transmission hotspots. In this state, the Malaria Elimination Task Force 89 

(METF) was launched in 2014. The program offered early diagnostic and treatment in over 1200 malaria 90 

posts (MPs) in four townships and targeted mass drug administration (MDA) in selected high 91 

prevalence village.9,10 It offered the opportunity to describe malaria heterogeneity at a finest 92 

geographical scale operationally relevant - the village.  93 
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This study proposed a method which allow stratification in settings where multiple, different malaria 94 

seasonality coexists, and where epidemiology and dynamics can change due to interventions or 95 

environmental drivers. We compared two malaria incidence stratifications (routine standard versus 96 

temporal dynamic clustering method) to discriminate malaria transmission settings at village scale. 97 

The temporal dynamic clustering method aimed to identify hotspots of transmission and temporal 98 

dynamics heterogeneities at village scale over several years and for each malaria species. It will help 99 

to further understand malaria epidemiology in the Karen state and optimize surveillance and 100 

interventions beyond conventional API-based stratification. This required to analyse hundreds of 101 

heterogeneous time series simultaneously without statistical assumptions. We propose a temporal 102 

dynamic clustering methodology to overcome this methodological hurdle. 103 

 104 
 105 

Method 106 

Study design and setting 107 

In this study, we analysed longitudinal records of P. falciparum and P. vivax malaria cases by malaria 108 

post (MP) of the Malaria Elimination Task Force (METF), between 2016 and 2020 in the Karen state of 109 

Myanmar along the Thailand border. 95% of villages identified in the target region hosted a malaria 110 

post, the vast majority opening between May 2014 and August 2016 (n=1057, 95%).11 MP systematically 111 

tested fever cases using a P. falciparum-P. vivax rapid diagnostic test (RDT) and sent weekly reports 112 

specifying the number of P. falciparum and P. vivax cases diagnosed.9 At the time of the analysis, 113 

malaria records were available until March 2020.  114 
 115 

Data of malaria incidence rate  116 

For each village, we estimated P. falciparum and P. vivax observed incidence as the weekly or annual 117 

case count recorded by MPs divided by the village population during study period. The population was 118 

estimated using the number of households in the village and an average of 5 members per household 119 

according to Myanmar census data.12   120 

 121 

Malaria stratification on annual parasite incidence (API) in 2019 122 

For each village, API was calculated as the sum of malaria cases in a year divided by the number of 123 

people at risk in a year and reported as cases per 1000 person.year at risk. Following WHO GMS 124 

guidelines, Myanmar national plan for malaria elimination distinguished 5 strata based on API (P. 125 

falciparum and P. vivax cases combined) in 2019: transmission free area (API=0 /1000 individuals under 126 

surveillance for more than 3 years), potential transmission area (API=0), low transmission area (API<1), 127 

moderate transmission area (API between 1-5) and high transmission area (API>5).7,13  128 
 129 

Statistical analysis: the temporal dynamic clustering  130 

In the region, malaria is seasonal with patterns which could vary between areas and time. The objective 131 

of the temporal dynamic clustering method is to group malaria dynamics with similar seasonality, 132 

amplitude, shape, and by associating malaria outbreaks occurring in the same season. The method 133 

includes 3 successive steps: 1/ functional transformation to smooth time series; 2/ dynamic time 134 
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warping (DTW) metric calculation on functional data; 3/ partitioning around medoid (PAM) clustering 135 

on DTW matrix (Sup. Fig. 1).  136 

The development of the temporal dynamic clustering responded to 3 challenges. First, the clustering 137 

method needed to consider not only amplitude but also malaria seasonality (i.e. intra-annual 138 

variability), curve shape, and allowing time lags to associate outbreaks occurring with few weeks of 139 

interval during the same season. Based on our previous comparison of metrics in the context of 140 

malaria, DTW metric was the most appropriate.14 Second, DTW algorithm performance is sensitive to 141 

sharp irregularities.15 Malaria time series at village scale were sharp and noisy, and required 142 

smoothing. In this complex elimination setting, environmental changes (meteorological, landscape, 143 

etc.), socio-political events or METF interventions occurrence induced differential dynamic variations 144 

and invalidated the stationarity assumption. It prevented the use of classical time series methods (e.g. 145 

ARIMA). Functional data transformation allowed to remove sharp irregularities, with smoothing 146 

parameters identical and optimized to the entire set of time series, and without stationarity 147 

assumptions. 148 

Analyses were conducted using R 4.0 (R Development Core Team, R Foundation for Statistical 149 

Computing, Vienna, Austria) and {fda}, {TSclust} and {dtw} packages. An R script is available in 150 

supplementary material to facilitate the implementation of the clustering method (Sup. Met. 1).  151 

 152 

Preliminary settings: village and time frame selection 153 

We grouped cases and population denominators from MPs located less than 500m away from each 154 

other in “villages” - the statistical unit of this study.  155 

Simultaneous functional transformation required time series with identical length. Because of MP 156 

were set up gradually, we selected a common study period based on calendar dates. We chose the 157 

period to include a maximal number of villages having at least one malaria case and to yield the period 158 

with the longest possible duration.  159 

We excluded villages with more than two missing successive weekly report (>1% missing data) from 160 

the analysis. For villages with less than two consecutive weeks missing, we imputed missing weekly 161 

reports by the average of the number of cases from the following and the previous weeks. Missing 162 

reports were due to omission, phone network problem, problem of access, loss of the report, etc. We 163 

excluded villages without population denominator (missing household count) from the analysis.   164 

 165 

1/ Smoothing malaria time series using functional data transformation 166 

Incidence time series were sharp, noisy, and sometimes seasonal. We used functional data to smooth 167 

simultaneously all the time series. For each time series, we estimated a function from its observed 168 

values. Every y time series of i weeks was transformed by a smooth function x(t), which was a linear 169 

combination of elementary function, i.e. cubic B-splines, and an error term (Equation 1, 2). Cubic B-170 

splines functions were grouped in a function basis ϕk (t) containing k functions. As recommended, the 171 

number of functions k was equal to the number of weeks included in the study period. 16 Coefficients c 172 

were estimated by minimizing the penalized (PEN) sum of squared errors (SSE) (Equation 3). The 173 

penalty was on the roughness of the function x(t) (i.e. measures the curvature of the curve). The 174 

smoothing parameter λ, indicating the emphasis of the penalization, was optimized by minimizing the 175 

sum of the GCV criterion of all v villages using a set of values of log(λ) ranging from 0 to 10 with a step 176 

of 0.25 (Equation 4).16 177 

Equation 1.     yi = x(ti) + εi 178 

Equation 2.    x(ti) =  ∑ ckϕk(ti)
k
k=1    179 
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Equation 3.   F(c) =  ∑ [yi − x(ti)]2 +  λ ∫(x′′(t))
2

dtn
i=1   180 

 181 

 182 

Equation 4.  λoptimal = arg min (∑ GCVv
V
v=1 ), with GCV(λ) = (

n

n−df(λ)
)(

SSE

n−df(λ)
) 183 

A square root transformation was applied before functional transformation to the incidence rate time 184 

series because of large-scale amplitude to the incidence rates.14 185 

 186 

2/ Distance between functional time series using the DTW metric  187 

The dynamic time warping metric is a flexible metric, which distinguished two time series according 188 

to their amplitude and phases by considering time lags. The algorithm calculated distance between 189 

two villages after compressing or stretching functional time series locally to make them as similar as 190 

possible. This metric can be parametrized to specify the time-window of the stretch. We chose a three 191 

months window to associate malaria outbreaks belonging to the same transmission season (cold or 192 

rainy season).17,18 193 

 194 

3/ PAM clustering on DTW matrix  195 

We applied partitioning around medoid (PAM) clustering to the distance matrix calculated with the DTW 196 

metric. PAM algorithm is similar to the k-means algorithm, except that the centre of each class, called 197 

“medoid”, corresponds to an observed time series and it is compatible with the DTW metric (i.e. a non-198 

Euclidian distance).19–21 We named each cluster based on visual assessment of its distinctive 199 

characteristics.  200 

Minimization of the intra-class inertia average (I) and parsimony principle determined the optimal 201 

number of clusters G. The conditional intra-class inertia (CI) was estimated for each G cluster by the 202 

average of the DTW distance between the n villages (v) included in the cluster and its medoids (M) 203 

(Equation 5).  204 

 205 

Equation 5.     I =  
∑ CIg

G
g=1

G
    with    CIg =

∑ d2(vI, Mg)
ng
i=1

ng
 206 

 207 

Sensitivity analysis  208 

Simple approaches to improve API stratification were (i) to divide the "high transmission area" 209 

category (>5 cases/1000py) in sub-categories and (ii) to consider stratification results over several 210 

years. We compared our temporal dynamic clustering with a third stratification from 2016 to 2019 based 211 

on API stratification but subdividing the high transmission area category according to incidence 212 

quartiles.  213 

 214 

 215 

Results  216 

API stratification for Myanmar in 2019  217 

Since 2014, 1,205 MPs were set up by the METF program and were grouped in 1,115 villages spreading 218 

over 4 townships. In 2019, 1,032 villages had active MP reporting. The median population in the villages 219 

was 200 and the IQR was 115-360. For the Northern township where most malaria cases occurred, the 220 

median village population was 142 (IQR=95-215). 221 

SSE PEN  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 28, 2023. ; https://doi.org/10.1101/2023.03.24.23287690doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.24.23287690
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

Table 1.  Annual parasite incidence (API, equivalent to annual malaria cases incidence /1000 individuals under 
surveillance) stratification in 2019 at village level. N(%).  

 Malaria (both 

species) 

P. falciparum P. vivax 

Transmission free area                                   

(API=0 for more than 3 years) 

298 (28.9) 586 (57.1) 324 (31.4) 

Potential transmission area (API=0) 167 (16.2) 250 (24.4) 154 (14.9) 
Low transmission area (API<1) 3 (0.3) 1 (0.1) 3 (0.3) 
Moderate transmission area (API=1-5) 65 (6.3) 40 (3.9) 64 (6.2) 
High transmission area (API>5) 499 (48.4) 149 (14.5) 487 (47.2) 

 
 
Figure 1.  Map of API stratification on annual parasite incidence in 2019 at village level for A) malaria (both 
species), B) P. falciparum and C) P. vivax. 
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 255 

According to API stratification on both malaria species in 2019, 48.4% (n=499) of the villages 256 

corresponded to a high transmission area and 28.9% (n=298) to a transmission-free area. Taking into 257 

account only P. falciparum cases, the proportion of villages in a transmission-free area increased to 258 

57,1%, twice more than in the overall malaria stratification. On the contrary, the proportion of villages 259 

in a high transmission area were divided by more than 3 to reach 14.5%. Considering P. vivax only, 260 

proportions were similar to the overall malaria stratification. This implied that malaria stratification is 261 

driven by P. vivax cases, which represented 91,9% of the total malaria burden (Tab. 1 & Fig. 1). 262 
 263 

Temporal dynamic clustering  264 

Village and study period selection 265 

Seven villages without population denominator were excluded. The period from March 2016 to February 266 

2020 maximized the number of villages included and the time series duration, with 676 villages 267 

followed over 206 weeks. Fourteen villages with >2 successive missing reports were excluded. Missing 268 

reports occurred rarely over time and villages (118 missing of 136,372 reports expected, i.e. 0.086%).  269 

The analysis included 662 villages (Sup. Fig. 2). Of 662 villages, 16.2% (n=107) belonged to the malaria 270 

transmission free stratum, 16.3% (n=108) belonged to the potential transmission stratum, 0.1% (n=1) to 271 

low, 5.9% (n=39) to moderate and 61.5% (n=407) to high transmission area strata. 272 

 273 
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P. falciparum clustering 274 

The 662 P. falciparum incidence rate time series were simultaneously transformed into functional data 275 

(k=206, λ=100, GCV=196). The temporal dynamic clustering identified 11 clusters (intra-class inertia=104) 276 

(Sup. Fig. 3). 277 

Most villages (81%, n=539) belong to the “very low” cluster, with a near zero P. falciparum incidence 278 

between 2016 and 2020. The “low” cluster regrouped 46 (7%) villages with sporadic cases and a low 279 

incidence rate. Two clusters exhibited an incidence peak during the rainy season in 2017 (0.8%, n=5) or 280 

2018 (2%, n=13). 40 villages exhibited a single incidence peak during the cold season and were grouped 281 

in three clusters according to the year: 2016 (2.7%, n=18), 2017 (2.6%, n=17) or 2018 (0.8%, n=5). One 282 

cluster including 10 villages (1.5%) presented a decreasing trend with peaks in both cold and rainy 283 

seasons. Two clusters regrouped villages with a high incidence rate until September 2018 (n=5 or 0.8% 284 

and n=3 or 0.5%). The 11th cluster corresponded to a single village (Fig. 2).  285 

When compared to API stratification, P. falciparum dynamic clustering distinguished villages according 286 

to both their current and previous incidence. Within the potential transmission stratum, the clustering 287 

distinguished villages with a consistently low incidence (n=22) from villages where incidence recently 288 

dropped after persisting at high levels (hotspot, n=2). Likewise, it identified 4 patterns in the high 289 

transmission stratum: 54 villages with a past incidence near zero, 36 villages with a past single 290 

outbreak, 6 villages with a decreasing tendency and 6 hotspots (Tab. 2).  291 

 292 

P. vivax clustering 293 

The 662 P. vivax incidence rate series were simultaneously transformed into functional data (k=206, 294 

λ=562, GCV=487.5). The temporal dynamic clustering identified 11 clusters (I=227) (Sup. Fig. 3).  295 

A majority of villages (69%, n=457) belonged to the “very low” incidence cluster across the study period. 296 

Two clusters presented a low incidence rate. One presented sporadic cases across years (n=69, 10%), 297 

whereas the other displayed an increasing trend (n=45, 7%). Two clusters exhibited a marked 298 

seasonality in the rainy season and were distinguished by their trend: one decreased over time (n=13, 299 

2%), whereas the other increased (n=23, 3.5%). A cold-season cluster was also identified (n=31, 5%), 300 

with its highest incidence during the 2017-18 cold season. Another cluster showed a low incidence until 301 

the end of 2017 and a rapid increase to a higher incidence rate after (n=14, 2%). One cluster identified 302 

villages with persistent cases (n=7, 1%). Finally, three clusters isolated individual villages (Fig. 3).  303 

When compared to Myanmar API stratification, P. vivax dynamic clustering identified 10 different 304 

patterns within the high transmission stratum according to past incidence amplitude, tendency, and 305 

seasonality. Conversely, the “very low” cluster included the other 4 strata. (Tab. 3)  306 

 307 

Geographical distribution of P. falciparum and P. vivax clusters 308 

All but one villages which did not belong to the “very low” cluster of P. falciparum incidence were 309 

grouped in the Northern part of the Karen state with one specific group at the extreme north (in yellow) 310 

corresponding to an outbreak in cold season 2018-19 (Fig. 4A). P. falciparum hotspots villages (in 311 

orange and pink) were concentrated in another specific area.  312 

Concerning P. vivax, villages which did not belong to the “very low” cluster of incidence were also 313 

grouped in the Northern part and along the Thailand-Myanmar border (Fig. 4B). Villages with a P. vivax 314 

increasing or persistent tendency (in pink, yellow, orange and red) were mostly localized in the 315 

Northeast part with a core composed of villages with a brutal incidence increasing in 2018 (in orange) 316 

or with persisting high incidence (in red). Another substantial aggregation of villages is present in the 317 

Southeast region with one P. vivax annual peak only in rainy season and with a decreasing tendency 318 

(in turquoise). Temporal dynamic clustering thus led to relevant spatial distribution of clusters.    319 
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Figure 2.  P. falciparum clustering. Temporal dynamic clustering identified eleven clusters. Black line 
corresponds to the central village (medoid) of each cluster. Coloured lines represent functional incidence 
rate of all villages included in the cluster across study period. When clusters contained only one village, only 
the medoid (black line) is presented corresponding to the time series of the village.    
 

 
 
Table 2. Comparison between WHO stratification and temporal dynamic clustering for P. falciparum. The 
number of villages for each cluster/stratum is presented (TA: transmission area). 
 

  API stratification  

  Free TA Potential TA Low TA Moderate TA High TA TOTAL 

Te
m

p
o

ra
l 

d
yn

a
m

ic
 c

lu
s
te

ri
n

g
 

Very low 317 145 1 22 54 539 

Low 0 22 0 3 21 46 

Cold 2016-2017 0 6 0 0 12 18 

Cold 2017-2018 0 6 0 2 9 17 

Cold 2018-2019 0 0 0 0 5 5 

Rainy 2017 0 1 0 0 4 5 

Rainy 2018 0 5 0 2 6 13 

Cold & rainy  
decreasing 

0 4 0 0 6 10 

Hotspot 1 0 2 0 0 3 5 

Hotspot 2 0 0 0 0 3 3 

V. 350 0 0 0 0 1 1 

 TOTAL 317 191 1 29 124 662 

 
 
 
 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 28, 2023. ; https://doi.org/10.1101/2023.03.24.23287690doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.24.23287690
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 

 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 

 410 

  411 

Figure 3.  P. vivax clustering. Temporal dynamic clustering identified eleven clusters. Black line corresponds 
to the central village (medoid) of each cluster. Coloured lines represent functional incidence rate of all villages 
included in the cluster across study period. When clusters contained only one village, only the medoid (black 
line) is presented corresponding to the time series of the village.    
 

 
 
Table 3. Comparison between API stratification and temporal dynamic clustering for P. vivax. The number of 
villages for each cluster/stratum is presented (TA: transmission area). 
 

  API stratification  

  Free TA Potential TA Low TA Moderate TA High TA TOTAL 

Te
m

p
o

ra
l 

d
yn

a
m

ic
 c

lu
s
te

ri
n

g
 

Very low 120 103 1 38 195 457 

Low 0 1 0 0 68 69 

Low increasing 0 0 0 0 45 45 

Rainy decreasing 0 0 0 0 13 13 

Rainy increasing 0 0 0 0 23 23 

Cold 0 0 0 0 31 31 

2018 increasing 0 0 0 0 14 14 

Persistent 0 0 0 0 7 7 

V. 1551 0 0 0 0 1 1 

V. 11001 0 0 0 0 1 1 

V. 11047 0 0 0 0 1 1 

 TOTAL 120 104 1 38 399 662 
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 447 

 448 

Sensitivity analysis  449 

In order to address the wide range of incidence in the high transmission category of the API 450 

stratification, we split this category by quartiles: 5-10, 10-30, 30-100, ≥ 100. We compared this 6-451 

category API stratification to the temporal dynamic clustering from 2016 to 2019 (Sup. Fig. 4-5). 6-452 

category stratification distinguished villages according to amplitude, some annual trends and no 453 

seasonality. The “Very low” clusters stood out from the others considering API categories (i.e. incidence 454 

amplitude). For P. vivax, the “2018 increasing” and “Rainy decreasing” clusters were identical 455 

Figure 4. Maps of village in the METF target region according to malaria clustering. A) P. falciparum clusters 
and B) P. vivax clusters with a zoom on Northern area.   
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considering API categories. For P. falciparum, “Cold 2017-2018" and “Rainy 2017” clusters or “Cold 2018-456 

2019” and “Rainy 2018” were also similar. 457 
 458 
 459 

Discussion 460 

     Based on WHO recommendations, stratification on API (combining P. falciparum and P. vivax) 461 

incidence at village level in 2019 identified 54.7% of the villages in a moderate or high transmission 462 

area. According to national guidelines, early diagnostic and treatment should be reinforced with 463 

preventive measures in those stratum representing 564 villages.7 Analyses distinguishing Plasmodium 464 

species showed that only 18.4% of the villages still had moderate or high P. falciparum transmission. 465 

It is consistent with global analysis showing that the proportion of cases attributable to P. vivax 466 

increased as P. falciparum incidence declined.22 In co-endemic countries, distinct analysis according 467 

to parasite species is necessary to adapt species-specific interventions. Moreover, in a P. falciparum 468 

pre-elimination setting, combined P. vivax survey could inform about P. falciparum receptivity (i.e. due 469 

to longer persistence) useful to target surveillance and prevent resurgence.  470 

 471 

     Even by considering Plasmodium species, API-based stratification pooled villages belonging to the 472 

P. falciparum hotspot cluster and low incidence patterns together, and all P. vivax dynamic patterns 473 

identified in the high transmission area stratum. API-based stratification could lead to coarse targeting 474 

interventions because of an insufficient discriminating stratification. By considering incidence past-475 

years evolutions (amplitude level, tendency) and seasonality variations (i.e. intra-annual variability), 476 

the temporal dynamic clustering was more discriminant and proved to be more adapted to allocate 477 

surveillance and intervention. The clustering allowed to identify villages where additional measures 478 

are necessary (e.g. increasing tendency, persisting high incidence, recently reach zero cases), or on 479 

the contrary the one where existing interventions appear sufficient (e.g. low incidence decreasing) 480 

(Details in table 4).7 It also identified intra-annual patterns and distinguished villages with one or two 481 

annual peaks, and their seasonality. This could be exploited to adapt supplies and community 482 

engagement towards preventive behaviours. It is also of interest to identify transmission bottlenecks 483 

and deployed sustainable elimination strategies by highlighting low transmission period.23 The 484 

temporal dynamic clustering provided rich information about malaria dynamics, which could not be 485 

obtained through a simple, or a more complex stratification on API. Sensitivity analyses were 486 

conducted by dividing the high transmission stratum in subcategories and considering all API values 487 

over the 2016-2020 periods, without equalling the precision of the DTW metric (i.e. seasonality with 488 

time lag) (Sup. Fig. 4, 5) 489 

 490 

     This study presented several strengths. First, the unique dataset collected by the METF community-491 

based MP network allowed studying malaria incidence at an unprecedented granularity (village-scale) 492 

in the GMS. Beyond identifying the northern area of the region with the highest malaria burden (already 493 

shown elsewhere8,10), clustering highlighted localized groups of few villages relevant for operation 494 

planning. P. falciparum and P. vivax dynamics also could be studied separately thanks to data richness.  495 

Second, we adapted existing methods into a straightforward, step-by-step analysis workflow allowing 496 

the exploration of the temporal dynamics of a large number of time series simultaneously without 497 

assuming stationarity. An open-access script makes methodology implementation simple and 498 

repeatable in other contexts (Sup. Met. 1).  499 

 500 
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Table 4. Surveillance and intervention recommendations according to API-based stratification (AS) and 
temporal dynamic clustering (TDC). 

Stratification Malaria epidemiology Surveillance and intervention recommendations  

AS & TDC Zero cases for few years Passive surveillance  

AS & TDC Recently reach zero cases Active surveillance (e.g. mobile team) 

TDC Low incidence with a 
decreasing tendency 

No additional measures than existing ones 

TDC Low incidence with an 
increasing tendency 

Additional interventions (e.g. reinforce preventive 
measure, early diagnostic & treatment)  

TDC Persisting high incidence Additional interventions (e.g. reinforce preventive 
measure, early diagnostic & treatment, mass 
intervention) 

TDC Single village with specific 
dynamics & high incidence 

Investigation  

 
 
 
 
 
 
 
 
 
 
 

 

 501 

 502 

 503 

 504 

 505 

 506 

 507 

 508 

 509 

 510 

 511 

 512 

     513 

    This study presented several limits. Functional transformation smoothing was necessary to 514 

transform series into continuous function and to optimize DTW algorithm.15 Because MP opened 515 

gradually, data was excluded to obtain a set of observations over the same calendar period. In total 516 

395 villages with late MP opening were excluded. However, these villages had in majority extremely 517 

low malaria incidence (4.3% villages with >5 P. falciparum case/year and 12.7% with >5 P. vivax 518 

case/year). Likewise, the first months of MP activity were excluded for MP opening earlier than the 519 

date chosen to initiate the study. This represented 12 months in average and may have prevented from 520 

identifying P. falciparum incidence patterns where it decreased quickly after providing access to 521 

diagnosis and treatment.  522 

Second, clustering analysed only clinical malaria incidence and thus transmission characteristics. 523 

According to WHO guidelines, taking into account malaria receptivity will improve this clustering. 524 

Combining P. falciparum and P. vivax analysis brings some information about receptivity, but this 525 

should to be completed with more detailed data including environmental characteristics.  526 

Finally, smaller towns could increase the variance of the incidence. It is a general concern with 527 

incidence estimation. Nevertheless, PAM clustering discriminated single outliers with a unique 528 

dynamic (e.g. Fig 3. I-K). It highlights villages where specific investigation is necessary (to understand 529 

if the unique profile identified corresponds to a truly specific situation or to correct potential data 530 

errors).” 531 

 532 

The method proposed here provides a thorough tool to exploit longitudinal routine case data and 533 

extract an untapped wealth of information for operational planning, allowing to gauge trends, 534 

seasonality shifts or periodic outbreaks. We applied it to a fine-grained village-level malaria incidence 535 

dataset. This approach relies on village-level data yet unavailable in many settings. Our method could 536 

be used to identify longitudinal incidence patterns at coarser scale in a country-wide approach (e.g. 537 

village tract or health area). WHO “high burden to high impact” approach promotes targeting areas 538 

where malaria burden is highest, leading to stratification beyond district level, e.g. health areas or 539 

health facility catchment areas.24,25 Other infectious diseases with highly heterogeneous dynamics 540 

driven by multiple factors could also be analysed in this workflow. 541 

 542 

     In conclusion, to be efficient, control and intervention planning need to take into account fine 543 

description of malaria dynamics. More sophisticated stratification than API over one year is needed to 544 

characterize it. The temporal dynamic clustering is an adapted methodology to support malaria 545 

surveillance and intervention planning which could be applied to a large number of spatial units at 546 
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different scales (health area, health district or region levels) in countries of the GMS, and in other 547 

regions of the world, particularly where malaria transmission is highly seasonal (Sahel, Southern 548 

Africa…). 549 
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