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ABSTRACT14

The placebo and nocebo effects highlight the importance of expectations in modulating pain perception, but in
every day life we don’t need an external source of information to form expectations about pain. The brain can
learn to predict pain in a more fundamental way, simply by experiencing fluctuating, non-random streams of
noxious inputs, and extracting their temporal regularities. This process is called statistical learning. Here we
address two key open questions: (1) does statistical learning modulate pain perception? and (2) is it different
in people with chronic musculoskeletal pain? In a first experiment, we asked 27 participants to both rate and
predict pain intensity levels in sequences of fluctuating heat pain. Using a computational approach, we show
that probabilistic expectations and confidence were used to weight pain perception and prediction. Given that
statistical learning involves supramodal processes, we developed an online, stock market game to assess the
ability to explicitly predict volatile and stochastic time series, probing the most fundamental components of
statistical learning. The game was played by 56 chronic back pain and 55 healthy participants. We show that
back pain participants learn the statistics of the sequence more slowly than controls. In conclusion, this study
shows that statistical learning shapes pain experience and can be disrupted in common chronic pain conditions,
opening a new path of research into the brain mechanisms of pain regulation.
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1 INTRODUCTION29

Clinical pain typically varies over time; in most pain states, the brain receives a stream of volatile and noisy30

noxious signals, which are also auto-correlated in time. The temporal structure of these signals is important,31

because the human brain has evolved the exceptional ability to extract regularities from streams of auto-correlated32

sensory signals, a process called statistical learning [1–7]. In the context of pain, statistical learning can allow the33

brain to predict future pain, which is crucial for orienting behaviour and maximising well-being [8, 9]. Statistical34

learning might also be fundamental to the ability of the nervous system to endogenously regulate pain. Indeed,35

statistical learning generates predictions about forthcoming pain. We already know that pain expectations can36

modulate pain levels by gating the reciprocal transmission of neural signals between the brain and spinal cord, as37

shown by previous work on placebo and nocebo effects [10–14].38

Recent work using temporal sequences of noxious inputs has shown that the pain system supports the39

statistical learning of the basic rate of getting pain by engaging both somatosensory and supramodal cortical40

regions [8]. Specifically, both sensorimotor cortical regions and the ventral striatum encode probabilistic41
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predictions about pain intensity, which are updated as a function of learning by engaging parietal and prefrontal42

regions. According to a Bayesian inference framework, both the predictive inference and its confidence should, in43

theory, modulate the neural response to noxious inputs and affect perception, as a function of learning. In support44

of this conjecture, there is evidence that the confidence of probabilistic pain predictions modulates the cortical45

response to pain [9]. The relationship is inverse: the lower the confidence, the higher is the early cortical response46

to noxious inputs (and viceversa), as measured by EEG. This is expected based on Bayesian inference theory:47

when confidence is low, the brain relies less on his prior beliefs and more on sensory evidence to respond to the48

input. Bayesian inference theory also predicts that prior expectations and their confidence scale perception [15].49

Thus, we hypothesise that the predictions generated by learning the statistics of noxious inputs in dynamically50

evolving sequences of stimuli modulate the perception of forthcoming inputs.51

We address this question in the first experiment of this study. Specifically, we asked healthy participants to52

both rate the perceived and predicted intensity of pain, and their confidence (Fig. 1a-b), in thermal sequences53

with varying levels of temporal regularity (Fig. 1c). We contrasted four models of statistical learning, which54

varied according to the inference strategy used (i.e., optimal Bayesian inference or an heuristic) and the role55

of expectations on perception. All models used confidence ratings to weight the inference. We anticipate56

that probabilistic learning weighted by confidence and expectations modulates pain perception. This provides57

behavioural evidence for a link between learning and endogenous pain regulation.58

One reason why this is important is that it might help understand individual differences in the ability to59

endogenously regulate pain. This is particularly relevant for chronic pain, given that endogenous pain regulation60

can be dysfunctional in several chronic pain conditions [16–21]. Although there is ample evidence for changes61

in the functional anatomy and connectivity of endogenous pain modulatory systems in chronic pain, their62

computational mechanisms are poorly understood. We speculate that there might be a close relationship between63

statistical learning and the ability to effectively regulate pain endogenously. Disrupted statistical learning could64

result in dysfunctional endogenous pain regulation, and vice versa, in a vicious loop that leads to pain deregulation65

(i.e. deregulated pain is more difficult to learn and predict, which makes it harder to control).66

Given that (1) statistical learning modulates pain perception (Experiment 1) and (2) the core mechanisms of67

statistical learning are shared by a range of cognitive processes across sensory domains and modalities [22], in a68

second experiment we investigated whether statistical learning of dynamically-changing and noisy sequences69

is altered in people with chronic back pain vs. the general population. We selected back pain as condition of70

interest simply because it is one of the most prevalent causes of disability worldwide [23], affecting approx.71

10% of adults in the U.S. [24]. The experiment was designed iteratively with people with lived experience72

of chronic back pain, using a systems engineering approach to study design. The result was an open-source,73

phone-based online game that assessed supramodal aspects of statistical learning, which could be easily scaled-up74

for future digital healthcare applications. Experiment 2 shows that statistical learning of fluctuating values is75

indeed disrupted in chronic back pain, opening a promising new path of research on the relationship between76

statistical learning and endogenous pain regulation.77

2 RESULTS78

2.1 Modelling strategy79

In Experiment 1, participants were required to rate their perceived and predicted pain, whereas in Experiment 280

they were required to predict the fluctuating value of shares in noisy and volatile timeseries. In both Experiments81

1 and 2, we tested two main families of learning strategies: an optimal Bayesian inference strategy (whereby82

uncertainty weights the learning rate) and an heuristic (a non-probabilistic delta rule, whereby the learning rate83

is fixed). These two approaches should be viewed as complimentary [25, 26]. As a baseline, we included a84

random-response model (please see Methods for a formal treatment of the computational models).85

According to a Bayesian strategy, on each trial, participants update their beliefs about the feature of interest86

(thermal stimuli or stock market values) based on probabilistic inference, maintaining a full posterior distribution87

over its values [26, 27]. Operating within a Bayesian paradigm, participants are assumed to track and, following88

new information, update both the mean of the sequence of interest and the uncertainty around it [28]. In most89

cases, such inference makes an assumption about environmental dynamics. For example, a common assumption90

is that the underlying mean (a hidden/latent state) evolves linearly according to a Gaussian random walk, with91
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Fig. 1. Experiment 1 task design. On each trial, each participant received a thermal stimulus lasting 2s from a sequence of intensities. This was followed by a
perception (A) or a prediction (B) input screen, where the y-axis indicates the level of perceived/predicted intensity (0-100) centred around participant’s pain
threshold, and the x-axis indicates the level of confidence in one’s perception (0-1). The inter-stimulus interval (ISI; black screen) lasted 2.5s. C: Example
intensity sequences are plotted in green, participant’s perception and prediction responses are in red and black. D: Participant’s confidence rating for perception
(red) and prediction (black) trials. Experiment 2 task design. D: Schematic of a single trial of the stock market game. After an inter-trial interval lasting 0.2 s,
participants predict the value of their shares and then rate their confidence in their prediction out of 5. Then the actual share price is revealed for 2 s. This is
repeated for a total of 200 trials. F: Display of stock market game interface on a phone screen. The game layout was formatted so it could be played on phones,
tablets, and desktops. G: Participant’s predictions (black) of the stock market values (green), including participant’s confidence ratings (red).
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the rate of this evolution defined by the the variance of this Gaussian walk (volatility). The observed value is then92

drawn from another Gaussian with that mean, which has some observation noise (stochasticity). In this case, the93

observer can infer the latent states through the process of Bayesian filtering [27], using the Kalman Filter (KF)94

algorithm [29].95

Sequence learning can also be captured by an heuristic to the Bayesian learning, i.e. a simple reinforcement96

learning (RL) rule. Here, participants maintain and update a point-estimate of the expected value of the sequence97

in an adaptive manner, within a non-stationary environment. RL explicitly involves correcting the tracked mean of98

the sequence proportionally to a trial-by-trial prediction error (PE) - a difference between the expected and actual99

value of the sequence [30]. Importantly, RL agents do not assume any specific dynamics of the environment and100

hence are considered model-free.101

Both models perform some form of error correction about the underlying sequence. The rate at which this102

occurs is captured by the learning rate α ∈ [0,1] element. The higher the learning rate, the faster participants103

update their beliefs about the sequence after each observation. In case of the RL model, the learning rate α is a104

free parameter that is constant across the trials. On the other hand, the learning rate in the KF model αt (also105

known as the kalman gain) is calculated on every trial. It depends on participants’ trial-wise belief uncertainty106

as well as their overall estimation of the inherent noise in the environment (stochasticity, s). In turn, the belief107

uncertainty is updated after each observation and depends on participants sense of volatility (v) and stochasticity108

(s) in the environment.109

Crucially, we also used participants’ trial-by-trial confidence ratings to measure to what extent confidence110

plays a role in learning. This is captured by the confidence scaling factor C, which defines the extent to which111

confidence affects response (un-)certainty. Intuitively, the higher the confidence scaling factor C, the less112

important role confidence plays in participant’s response. With relatively low values of C, when the confidence is113

low, participants responses are more noisy, i.e. less certain. We demonstrate this in Fig. 2 by plotting hypothetical114

responses (A-F) and the effect on the noise scaling (G-L) as a function of C and confidence ratings.115
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Fig. 2. Confidence scaling factor demonstration. A-F: For a range of values of the confidence scaling factor C, we simulated a set of typical responses a
participant would make for various levels of confidence ratings. The belief about the mean of the sequence is set at 50, while the response noise at 10. The
confidence scaling factor C effectively scales the response noise, adding or reducing response uncertainty. G-L: The effect of different levels of parameter C on
noise scaling. As C increases the effect of confidence is diminished.

2.2 Experiment 1: pain perception and prediction116

In the first experiment we set out to establish whether pain perception is modulated by statistical learning, i.e.117

whether participants rely on extracted temporal regularities in rating their pain. In particular, following the work118

by [26], the primary aim of the experiment was to determine whether the expectations participants hold about the119

sequence inform their perceptual beliefs about the intensity of the stimuli. To that end, we recruited 27 healthy120

participants to complete a psycho-physical experiment where we delivered four different, 80-trial-long sequences121

(conditions) of evolving thermal stimuli. On each trial, a 2s thermal stimulus was applied, following which122

participants where asked to either rate their perception of the intensity (Fig. 1a) or to predict the intensity of the123

next stimulus in the sequence (Fig. 1b). Participants also reported their response confidence.124

As a secondary aim, we evaluated how participants perform when we manipulate levels of volatility and125

stochasticity [31]. The volatility can be conceived of as how quickly (or slowly) the sequence evolves over126
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time. In Kalman-Filter models, this is referred to as the process noise. There are two main families of volatility:127

within-context volatility (which we explicitly manipulated in Experiment 2) and between-context volatility, i.e.128

how likely a context, such as a reward rate, is to switch from trial to trial [32]. In Experiment 1, we varied the129

level of volatility and stochasticity across blocks (i.e. conditions), whilst we fixed their overall level within each130

block; the level of volatility was defined by the number of trials until the mean intensity level changes. The131

changes were often subtle and participants were not informed when they happened. Given that volatility was132

fixed within condition, we treated it as a single-context scenario from the point of view of modelling [32], and133

we did not interpret its effect on the learning rate [31]. The stochasticity is the additional noise that is added on134

each trial to the underlying mean, often referred to as the observation noise. In Experiment 1, we set two levels135

(low/high) of each type of uncertainty, achieving a 2x2 factorial design, with the order of conditions randomised136

across participants. A set of four example sequences of thermal intensities delivered to one of the participant’s137

can be found in Fig. 1c, alongside their ratings of perception and predictions. Additionally, example confidence138

ratings for each type of response are plotted in Fig. 1d. We refer the reader to the Methods section for a detailed139

description of the generative process of the sequences.140

2.2.1 Model-naive performance141

Prior to modelling, we first checked whether participant’s performance in the task was affected by the sequence142

condition. As a measure of performance, we calculated the root mean squared error (RMSE) of participants143

responses (ratings and predictions) compared to the normative noxious input for each condition as in Fig. 3 (see144

also Methods). The lower the RMSE, the more accurate participants’ responses are. Performance in different145

conditions was analysed with a repeated measures ANOVA, whose results are reported in full in Supplementary146

Table 1. Although volatility did not affect rating accuracy (F(1,26) = 0.96, p = 0.336,η2
p = 0.036), we found a147

2-way interaction between the level of stochasticity of the sequence (low, high) and the type of rating provided148

(perceived intensity vs. prediction) (F(1,26) = 29.842, p < 0.001,η2
p = 0.534). We followed up this interaction149

in post-hoc comparisons, as reported in Supplementary Table 2. The performance score differences between all150

the pairs of stochasticity and response type interactions were significant, apart from the perception ratings in the151

stochastic environment as compared with perception and prediction performance in the low stochastic setting.152

Intuitively, the RMSE score analysis revealed an overall trend of participants performing worse on the prediction153

task, in particular when the level of stochasticity is high.154
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Fig. 3. Participant’s model-naive performance in the task. Violin plots of participant Root Mean Square Error (RMSE) for each condition for A: rating and B:
prediction responses as compared with the input.

2.2.2 Modelling results155

To evaluate the effect of expectation on perceived intensity (on top of statistical learning modulating perception),156

we expanded the standard RL and KF models by adding a perceptual weighting element, γ ∈ [0,1] (similarly157

to [26]). Essentially, γ governs how much each participant relies on the normative input on each trial, and how158

much their expectation of the input influences their reported perception - i.e. they take a weighted average of159

the two. The higher the γ , the bigger the impact of the expectation on perception. Again, in the case of the160

Reinforcement Learning model (eRL - expectation weighted RL), γ is a free parameter that is constant across161

trials, while in the Kalman Filter model (eKF - expectation weighted KF), γt is calculated on every trial and162

depends on: (1) the participants’ trial-wise belief uncertainty, (2) their overall estimation of the inherent noise in163

the environment (stochasticity, s) and (3) the participant’s subjective uncertainty about the level of intensity, ε .164

5

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.23.23287656doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.23.23287656
http://creativecommons.org/licenses/by/4.0/


Thus, in total we tested 5 models in Experiment 1: RL and KF (perception not-weighted by expectations), eRL165

and eKF (perception weighted by expectations), and a baseline random model. We then proceeded to fit these166

5 computational models to participants’ responses. For parameter estimation, we used hierarchical Bayesian167

methods, where we obtained group- and individual-level estimates for each model parameter (see Methods).168

Sequence conditions169

We fit each model for each condition sequence. Example trial-by-trial model prediction plots from one participant170

can be found in Supplementary Fig. 5. To establish which of the models fitted the data best, we ran model171

comparison analysis based on the difference in expected log point-wise predictive density (ELPD) between172

models. The models are ranked according to the ELPD (with the largest providing the best fit). The ratio between173

the ELPD difference and the standard error around it provides a significance test proxy through the sigma effect.174

In each condition, the expectation weighted models provided significantly better fit than models without this175

element (Fig. 4a-d), suggesting that regardless of the levels of volatility and stochasticity, participants still176

weigh perception of the stimuli with their expectation. In particular, we found that the expectation-weighted KF177

model offered a better fit than the eRL, although in conditions of high stochasticity this difference was short of178

significance against the eRL model. This suggests that in learning about temporal regularities in the sequences of179

thermal stimuli, participants’ expectations play a significant role in the perception of the stimulus. Moreover, this180

process was best captured by a model that updates the observer’s belief about the mean and the uncertainty of the181

sequence in a Bayesian manner.182
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Fig. 4. Model comparison for each sequence condition (A-D). The dots indicate the ELPD difference between the winning model (eKF) every other model. The
line indicates the standard error (SE) of the difference. The non-winning models’ ELPD differences are annotated with the ratio between the ELPD difference
and SE indicating the sigma effect, a significance heuristic.

We also found that as the confidence in the response decreases, the response uncertainty is scaled linearly183

with a negative slope ranging between 0.112-0.276 across conditions (Fig. 5), confirming the intuition that less184

confidence leads to bigger uncertainty.185
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Fig. 5. (A-D): The effect of the confidence scaling factor on noise scaling for each condition. Each coloured line corresponds to one participant, with the black
line indicating the mean across all participants. The mean slope for each condition is annotated.

As an additional check, for each participant, condition and response type (perception and prediction),186

we plotted participants’ ratings against model predicted ratings and calculated a grand mean correlation in187

Supplementary Fig. 6.188

7

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.23.23287656doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.23.23287656
http://creativecommons.org/licenses/by/4.0/


Next, we checked whether the parameters of the the winning eKF model differed across different sequence189

conditions. There were no differences for the group-level parameters; i.e., we did not detect significant differences190

between conditions in a hypothetical healthy participant group as generalised from our population of participants.191

However, we found some differences at the individual-level of parameters (i.e. within our specific population192

of recruited participants), which we detected by performing repeated-measures ANOVAs (see Supplementary193

Fig. 9 for visualisation). The stochasticity parameter s was affected by the interaction between the levels of194

stochasticity and volatility (F(1,26) = 35.108, p < 0.001,η2
p = 0.575), and was higher in highly stochastic and195

volatile conditions as compared to conditions where either volatility (t = 7.735, pbon f < 0.001), stochasticity196

(t = 9.396, pbon f < 0.001) or both were low (t = 8.826, pbon f < 0.001). This suggests that, while participants’197

performance was generally worse in highly stochastic environments, participants seem to have attributed this to198

only one source - stochasticity (s), regardless of the source of higher uncertainty in the sequence (stochasticity or199

volatility).200

The response noise ξ was modulated by the level of volatility (F(1,26) = 5.079, p = 0.033,η2
p = 0.163),201

where it was smaller in highly volatile conditions. Moreover, we detected a significant interaction between202

volatility and stochasticity on the confidence scaling factor C (F(1,26) = 81.258, p < 0.001,η2
p = 0.758),203

where the values C were overall lower when either volatility (t =−11.570, pbon f < 0.001), stochasticity (t =204

−6.165, pbon f < 0.001) or both (t = −4.575, pbon f < 0.001) were high as compared to the conditions where205

both levels of noise were low. This indicates there may have been some trade-off between ξ and C, as lower206

values of C introduce additional uncertainty when participant’s confidence is low.207

Lastly, we found the initial uncertainty belief w0 was affected by the interaction between volatility and208

stochasticity (F(1,26) = 5275.367, p < 0.001,η2
p = 0.995) without a consistent pattern, with significant differ-209

ences between each pair reported in Supplementary Table 17. All the other effects were not significant, and can210

be found in the Supplementary Tables 10-24.211

In summary, we formalised the process behind pain perception and prediction in noxious time-series within212

the framework of sequential learning, where the best description of participants’ statistical learning was captured213

through Bayesian filtering, in particular using a confidence-weighted Kalman Filter model. Most importantly, we214

discovered that, in addition to weighing their responses with confidence, participants used their expectations215

about stimulus intensity levels to form a judgement as to what they perceived. This mechanism was present216

across various levels of uncertainty that defined the sequences (volatility and stochasticity).217

2.3 Experiment 2: statistical learning and chronic back pain218

Given that statistical learning is involved in endogenously modulating pain perception, we wondered whether the219

fundamental components of statistical learning are affected in people with chronic pain. Indeed, one of the core220

mechanisms proposed to explain chronic pain is a dysfunction of the descending pain modulatory system, and221

this is based on ample neurophysiological and pharmacological evidence [16–21]. However, the computational222

mechanisms of dysfunctional pain regulation in chronic pain are poorly understood. We hypothesise that there223

might be a close relationship between statistical learning and the ability to effectively regulate pain endogenously.224

Disrupted statistical learning could result in dysfunctional endogenous pain regulation, and vice versa, in a vicious225

loop that leads to pain deregulation (i.e. deregulated pain is more difficult to learn and predict, which makes226

it harder to control). Importantly, learning the statistics of time-varying sensory inputs is an ubiquitous neural227

function involved in many tasks across sensory modalities, from the visual to auditory systems, including the228

pain system. Statistical learning is governed by general computational principles, shared across modalities, and229

partially shared neurobiological basis [22]. Whereas Experiment 1 focused specifically on statistical learning for230

pain inputs, Experiment 2 targets fundamental, supramodal aspects of statistical learning which could characterise231

an individual statistical learning strategy.232

In collaboration with a group of people with lived experience of chronic pain, we designed an online game233

where participants made explicit predictions about stochastic and volatile time-series. In the game, participants234

played the role of a stockbroker predicting how a company’s share price fluctuated over a series of days (where235

each trial represents a day). Participants were informed that the value of their shares was $100 before the first236

trial. At the start of each trial participants were asked to predict the value of their shares on that day and rate their237

confidence in their prediction. Then the actual value of their shares was subsequently revealed. A schematic of238

a single trial is depicted in Fig. 1e. This was repeated for 200 trials in total. Fig. 1g shows one example of a239
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participant’s share price predictions and confidence ratings over the course of the game. The generative model of240

the sequence is detailed in the Methods. The main difference with Experiment 1 was that the level of volatility241

and stochasticity of the sequence slowly evolved within each sequence.242

We compared the performance of people with chronic back pain (N = 56) to age-matched healthy controls243

(N = 55). We chose back pain as condition of interest, because it is the most common chronic pain disorder244

[23]; however, there is no reason to think that the findings would not generalise to other chronic pain conditions.245

For the chronic pain participant group, we recruited individuals who had experienced pain in their back for a246

duration of over 6 months [33]. Chronic pain is associated with emotional comorbidity, particularly anxiety and247

depression, and these have been linked with impaired cognitive functions, including statistical learning [34].248

Therefore, to reduce confounding factors in the group comparison, we selected controls with low psychological249

questionnaire scores for anxiety and depression as well as pain. Participant questionnaire scores are displayed in250

the Supplementary Table 25.251

Before starting the task, participants rated the intensity of pain they were experiencing in their back and their252

current level of fatigue out of 10. Unsurprisingly, back pain participants gave significantly higher ratings than253

controls for their levels of pain (Bayesian Independent Samples T-Test, BF10 = 3.136×1014 ) and fatigue (BF10254

= 3.608×108).255

Before the computational analysis, we compared how well the back pain participants performed in the game256

relative to the controls. Participants’ predictions and confidence ratings are displayed in the Supplementary Fig.257

10-13. As a model-naive measure of performance, we calculated the RMSE of participant predictions compared258

to the sequence outcomes. Using this measure, we found prediction performance was comparable across groups259

(Bayesian Independent Samples T-Test, BF10 = 0.250).260

2.3.1 Computational modelling results261

We fit the RL, KF and random models to the participant prediction and confidence rating data, fitting the back262

pain and control participant groups separately. We based the model comparison analysis on the difference in263

log point-wise predictive density (ELPD) between models, as in Experiment 1, to determine which model best264

fit the participant data. Models were ranked according to the ELPD, where greater ELPD indicates a better fit.265

For each model, the ELPD difference relative the best fitting model and its standard error are shown in Table 1.266

Additionally shown is the sigma effect, the ratio between the ELPD and the standard error, which is a proxy for267

significance.268

For both the pain and control groups (Fig. 6), the model comparison shows the KF and RL models fit the data269

significantly better than the random model. The ELPD difference between the KF and RL was not significant,270

indicating they provided similar closeness of fit. Additionally we calculated the correlation between participant271

predictions and model predictions as a measure of model accuracy. For each group, we found that the RL and KF272

mean Pearson correlation coefficients (r) were identical to 2 significant figures. The correlation between model273

prediction and participant prediction was greater for the control group (KF: r = 0.64, RL: r = 0.64) than the back274

pain group (KF: r = 0.56 , RL: r = 0.56), see Supplementary Fig. 14. This indicates that the KF and RL models275

provided a similar closeness of fit to the data and similar prediction accuracy.276

Table 1. Model comparison for the online task sequence. Reinforcement learning (RL), Kalman filter (KF) and random response (Random) models were fitted
to the back pain and control groups separately. expected log predictive density (ELPD) difference between the best performing model (lowest LOOIC
(leave-one-out cross-validation information criterion)) and each model are displayed, alongside the standard error (SE) of the difference.

Group Model ELPD difference SE difference Sigma effect LOOIC

Back Pain KF 0.000 0.000 — 106,205.063
RL −4.419 17.510 0.252 106,213.903

Random −1,817.335 93.371 19.464 109,839.732

Controls RL 0.000 0.000 — 102,315.536
KF −1.964 4.535 0.343 102,318.599

Random −2904.378 116.794 24.874 108,124.417
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Fig. 6. Model comparison for each subject group (top is back pain and bottom is controls). The dots indicate the ELPD (expected log predictive density)
difference between the model with the lowest LOOIC (leave-one-out cross-validation information criterion) and each model. The line indicates the standard error
(SE) of the difference. The non-winning models’ ELPD differences are annotated with the ratio between the ELPD difference and SE indicating the sigma effect,
a significance heuristic.

2.3.2 Parameter Analysis277

Next, we compared the RL and KF parameter estimates between the back pain and control groups. The278

models were hierarchically parameterised, such that the individual-level parameters were scaled by group-level279

parameters. The models were simultaneously fitted to the group and to the individuals to obtain the joint280

probability distribution for all parameters. Therefore, we obtained estimates for group-level means as well as281

individual estimates, regularised by group level statistics.282

To determine whether there were any differences at the group parameter level, we compared the 95% highest283

density intervals (HDIs) of the posterior distributions across groups. If the HDI of the difference between the back284

pain and control group posteriors did not contain 0, we concluded the group-level posteriors were significantly285

different. In the RL model, the back pain group-level mean learning rate was significantly lower than the controls286

(95% HDI difference (Back pain – Controls) = [-0.281, -0.010]); Fig. 7a.287

For the individual-level parameters, we performed Bayesian independent samples T-tests to compare back288

pain and control groups. For the RL model, the learning rate α parameters were again significantly lower for the289

back pain vs. control groups (BF10 = 10.487); Fig. 7b. This indicates back pain participants learned the statistics290

of the sequences more slowly than controls, confirming findings at the group parameter level. Additionally, the291

confidence scaling factor C was significantly lower for the back pain vs. control group (BF10 = 806,177.442);292

Fig. 7d. The parameter C modulates how the confidence rating scales the magnitude of the prediction noise,293

such that smaller C values increase the magnitude of the confidence scaling term, leading to noisier responses.294

Therefore, the lower C estimates of the back pain group indicate they gave noisier responses in the game, more295

strongly affected by confidence, compared to controls.296

For the KF model, stochasticity s estimates were significantly higher for the back pain vs. control group297

(BF10 = 27,332.251; Fig. 8b). This indicates back pain participants estimated the stochasticity of the sequences298

to be greater than controls. The initial uncertainty w0 parameters were significantly higher for back pain vs.299

control group (BF10 = 2.438× 1011; Fig. 8d), indicating their initial estimation of noise of the sequences300

was higher. The KF confidence scaling factor C was significantly lower for the back pain vs. control group301

(BF10 = 1.170×106; Fig. 8f). This reiterates the finding from the RL model parameter comparison - that the302

chronic pain vs. control groups provided noisier responses, more strongly influenced by confidence.303

Additionally, the mean Kalman gain ᾱt over the whole game was calculated for each participant. The ᾱt304

values were highly correlated with the RL learning rate α (Bayesian Pearson Correlation, Pearson’s r = 0.975,305

BF10 = 1.182×1069 ). As with α , ᾱt values were significantly lower in back pain participants than controls306

(BF10 = 10.977; Fig. 8g). Therefore, the KF results also indicate back pain participants displayed slower learning307

of the statistics of the game sequences.308

In summary, for both the control and back pain groups, the RL and KF models fit the participant data309

10

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.23.23287656doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.23.23287656
http://creativecommons.org/licenses/by/4.0/


Table 2. Bayesian Independent Samples T-Test comparing the fitted parameters of the back pain group and control group. Reinforcement learning (RL) model
individual level parameters: learning rate (α), prediction noise (ξ ), initial estimate (E0), confidence scaling factor (C). Kalman filter (KF) model individual level
parameters: volatility (v), stochasticity (s), prediction noise (ξ ), initial estimate uncertainty (w0), initial estimate (E0), confidence scaling factor (C), mean
Kalman filter learning rate over the 200 trials, (ᾱt ).

Model Parameter BF10 Error %

RL α 10.487* < 0.001
ξ 0.202 0.030

E0 0.493 0.020
C 806,177.442* < 0.001

KF v 3.721 0.007
s 27,332.251* < 0.001
ξ 0.202 0.030

w0 2.438×1011* < 0.001
E0 0.456 0.021
C 1.170×106 * < 0.001
ᾱt 10.977* < 0.001
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Fig. 7. Fitted parameter distributions of the reinforcement learning (RL) model. Density plots for (A) group-level mean learning rate, α , posterior, and (C)
group-level mean confidence scaling factor, C, posterior. Back pain and control group posteriors are superimposed. Horizontal bar indicates separation between
peaks of the distributions. Star indicates a significant difference between posteriors, i.e. the 95% highest density intervals (HDIs) of the distributions do not
overlap. Raincloud plots of individual-level parameter estimates for (B) α and (D) C. Black points represent individual parameter estimates for each participant.
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Fig. 8. Fitted parameter distributions of the Kalman filter (KF) model. Density plots of group-level mean parameter posteriors for (A) stochasticity s, and (C)
confidence scaling factor C. Back pain and control group posteriors are superimposed. Raincloud plots of individual-level parameter estimates for (B)
stochasticity s, (D) confidence scaling factor C, (E) initial uncertainty w0. (F) Raincloud plot of the mean Kalman filter learning rate over the 200 trials, ᾱt . Black
points represent individual values for each participant.
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significantly better than the random baseline, although there was no significant difference in the closeness of fit310

between the RL and KF models. Comparison of model parameter estimates between groups revealed significant311

group differences. RL learning rate α parameters and KF average Kalman gain ᾱt values were significantly312

lower for the back pain participants vs. controls, indicating back pain participants learned the statistics of the313

sequence more slowly than controls.314

At the level of individual parameters, confidence scaling factor C estimates for both the RL and KF models315

were lower for back pain participants than controls, suggesting that back pain participants provided more uncertain316

predictions which were more strongly affected by confidence. KF initial uncertainty w0 and stochasticity s317

estimates were higher for the back pain group, indicating back pain participants had greater initial uncertainty318

and perceived greater stochasticity in the sequence.319

3 DISCUSSION320

Statistical learning allows the brain to extract regularities from streams of sensory inputs and is central to321

perception and cognitive function. Despite its fundamental role, it has often been overlooked in the field of322

pain research. Yet, chronic pain appears to fluctuate over time, in ways that are non-random. For instance,323

[35–37] reported that chronic back pain ratings vary periodically, over several seconds-minutes and in absence of324

movements. This temporal aspect of pain is important because periodic temporal structures are easy to learn for325

the brain [1, 8]. If the temporal evolution of pain is learned, it can be used by the brain to regulate its responses326

to forthcoming pain, effectively shaping how much pain it experiences. Indeed, Experiment 1 shows that healthy327

participants extract temporal regularities from sequences of noxious stimuli and use this probabilistic knowledge328

to form confidence-weighted judgements and predictions about the level of pain intensity they experience in the329

sequence. We formalised our results within a Bayesian inference framework, where the belief about the level of330

pain intensity is updated on each trial according to the the amount of uncertainty participants ascribe to the stimuli331

and the environment. Importantly, their perception and prediction of pain were influenced by the expected level332

of intensity that participants held about the sequence before responding. This phenomenon remained unchanged333

when we varied different levels of inherent uncertainty in the sequences of stimuli (stochasticity and volatility).334

Using a similar theoretical approach, Experiment 2 shows that statistical learning for noisy and volatile335

sequences of fluctuating values is slower in adults with chronic back pain than age-matched controls. This is336

important because sub-optimal learning to predict information about the value of events in the context of pain337

could affect the ability of the nervous system to endogenous regulate its responses to forthcoming negative states,338

such as pain. This finding opens a new path of research, to determine whether maladaptive statistical learning339

increase both the risk and severity of chronic pain conditions.340

3.1 Statistical inference and learning in pain sequences341

The first main contribution of our work is towards the understanding of the phenomenon of statistical learning in342

the context of pain. Statistical learning is an important function that the brain employs across the lifespan, with343

relevance to perception, cognition and learning [6]. The large majority of past research on statistical learning344

focused on visual and auditory perception [1, 3, 4, 38], with the nociceptive system receiving relatively little345

attention [39]. Recently, we showed that the human brain can learn to predict a sequence of two pain levels (low346

and high) in a manner consistent with optimal Bayesian inference, by engaging sensorimotor regions, parietal,347

premotor regions and dorsal striatum [8]. We also found that the confidence of these probabilistic inferences348

modulates the cortical response to pain, as expected by hierarchical Bayesian inference theory [9]. Here we349

tested sequences with a much larger range of stimulus intensities to elucidate the effect of statistical learning and350

expectations on pain perception. As predicted by hierarchical Bayesian inference theory, we find that the pain351

intensity judgements are scaled by both probabilistic expectations and confidence.352

Hence, our work highlights the inferential nature of the nociceptive system [26, 39–42], where in addition to353

the sheer input received by the nociceptors, there is a wealth of a priori knowledge and beliefs the agent holds354

about themselves and the environment that need to be integrated to form a judgement about pain [43–46]. This355

has an immediate significance for the real world, where weights need to be assigned to prior beliefs and/or stimuli356

to successfully protect the organism from further damage, but only to an extent to which it is beneficial.357

Secondly, our results regarding the effect of expectation on pain perception relate to a much larger literature358
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on this topic. The prime example would be placebo analgesia (i.e. the expectation of pain relief decreasing pain359

perception) and nocebo hyperalgesia (i.e. the expectation of high level of pain increasing its perception; [10, 42,360

47, 48]. Recent work attempted to capture such expectancy effects within the Bayesian inference framework.361

For example, [28] showed that in addition to expectation influencing perceived pain in general, higher level of362

uncertainty around that expectation attenuated its effect on perception. Similarly, [49] demonstrated that when363

the discrepancy between the expectation and outcome (prediction error) is unusually large, the role of expectation364

is significantly reduced and so the placebo and nocebo effects are not that strong. An unusually large prediction365

error could be thought of as contributing to increased uncertainty about the stimuli, which mirrors the results366

from [28] Bayesian framework. Nevertheless, the types of stimuli used in the above studies (i.e. noxious stimuli367

cued by non-noxious stimuli) differed from the more ecologically valid sequences of pain that are reported by368

chronic pain patients [35], as we indicated above. Furthermore, [26] used a conditioning paradigm and also369

found that expectations influence both perception and learning, in a self-reinforcing loop. Our work has followed370

a similar modelling strategy to [26], but it goes beyond simple conditioning schedules or sequences of two-level371

discrete painful stimuli, showing expectancy effects even when the intensities are allowed to vary across a wider372

range of values and according to more complex statistical temporal structures. Additionally, given the reported373

role of confidence in perception of pain [9, 50], we draw a more complete picture by including participants374

confidence ratings in our modelling analysis.375

3.2 Statistical inference in the context of chronic back pain376

Statistical learning is known to be mediated by both modality-specific and supramodal mechanisms [22].377

Although the former can only be probed using paradigms that involve the presentation of noxious stimuli,378

the most fundamental, supramodal components of statistical learning can be investigated using more abstract379

sequence learning tasks, such as that used in Experiment 2. We designed volatile and noisy sequences of share380

values, which would yield gains and losses on each trial. This is an abstraction from the dynamic time-series of381

pain states that patients experience, which fluctuate between states of relief (i.e. gains) and flares (i.e. losses,382

from the point of view of their value).383

The results from Experiment 2 indicate that statistical learning in people with chronic pain is significantly384

altered. By fitting computational models to the online prediction game data of participants and comparing RL385

and KF parameter estimates of the back pain participants vs controls, we found the following key differences.386

Firstly, back pain participants learned the statistics of the time-series more slowly than controls - the difference387

was significant at both individual and group-parameters levels in both the RL and KF models. Secondly, the388

estimation of the initial uncertainty and stochasticity of the sequence in the KF model appeared to be greater389

in chronic back pain participants than controls, although only at the level of individual parameters. It is likely390

that the greater noise in the estimates of the back pain group underlies their lower learning rates. The greater391

the random noise (stochasticity) of a sequence, the less informative each observation is about the true value392

relative to the long term mean. For optimal learning, as the stochasticity of a sequence increases, the slower393

expectations are updated, hence the lower the learning rate. Finally, the predictions of back pain participants394

were more strongly affected by confidence, resulting in noisier responses.395

Future studies would need to determine whether these general features of statistical learning extend to the396

perception and anticipation of noxious time-series. Our findings predict slower learning of the statistics of397

fluctuating pain signals, greater perceived stochasticity, and greater uncertainty in the prediction of future pain.398

Experiment 1 shows that statistical learning is implicated in the endogenous regulation of pain. Therefore, it399

could, in principle, influence how a pain state evolves. Once a pain state is initiated, how an individual learns and400

anticipates the fluctuating pain signals may contribute to determine how well it can be regulated by the nervous401

system, thus affecting the severity and recurrence of pain flares. This, in turn, would affect whether aversive402

associations with the instigating stimulus are extinguished or reinforced [41]. In chronic pain, dysfunctional403

learning may promote the amplification and maintenance of pain signals, contributing to the reinforcement of404

aversive associations with incident stimuli, as well as the persistence of pain [51–53].405

The present finding of slower statistical learning in chronic back pain is a first step in the direction of both406

quantifying and understanding learning in the context of chronic pain. The idea that maladaptive learning407

is causally implicated in chronic pain is not new, being rooted in cognitive accounts of pain [53–55] and408

neuroimaging evidence of alterations in brain networks involved in value-based learning [36, 56–61]. However,409
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very few studies have actually quantified learning in the context of chronic pain and no study, to the best of410

our knowledge, has directly investigated whether learning is causally implicated in the development of chronic411

pain. Our paper comes with open tools, which can be adapted in future studies on statistical learning in chronic412

pain. Online tasks can be easily used at scale. The key advantage of taking an hypothesis-driven, computational-413

neuroscience approach to quantify learning is that it allows to go beyond symptoms-mapping, identifying the414

quantifiable computational principles that mediate the link between symptoms and neural function.415

3.3 Conclusions416

Statistical expectations and confidence scale the judgement of pain in sequences of noxious inputs, as predicted417

by hierarchical Bayesian inference theory. More generally, the statistical learning of noisy and volatile sequences418

of fluctuating values is slower in adults with chronic back pain, possibly because they perceive the environment419

as being more stochastic than what it truly is. This work makes clear predictions to test in future pre-clinical420

studies, namely that impaired statistical learning is associated with maladaptive endogenous pain regulation.421

Therefore, this study opens a new avenue of research on the role of learning in chronic pain.422

4 METHODS423

4.1 Participants424

In Experiment 1, 33 (18 female) healthy adult participants were recruited for the experiment. The mean age of425

participants was 22.4 ± 2.7 years old (range: 18-35). Participants had no chronic condition and no infectious426

illnesses, as well as no skin conditions (e.g. eczema) at the site of stimulus delivery. Moreover, we only recruited427

participants that had not taken any anti-anxiety, anti-depressive medication, nor any illicit substances, alcohol and428

pain medication (including NSAIDs such as ibuprofen and paracetamol) in the 24 hours prior to the experiment.429

In Experiment 2, 724 participants were recruited online using Prolific [62]. All participants gave written430

informed consent in accordance with procedures approved by the Department of Engineering, University of431

Cambridge ethics committee, before beginning the screening process. Participants completed a preliminary432

screening survey consisting of a general health questionnaire, the Keele STarT Back Screening Tool, and433

psychological questionnaires (the State-Trait Anxiety Inventory (STAI), the Pain Anxiety Symptoms Scale434

(PASS-20), the Depression Patient Health Questionnaire-9 (PHQ-9), and the Pain Catastrophizing Scale (PCS)).435

63 chronic pain participants and 70 controls met the eligibility criteria for the respective participant groups436

and were invited to take part in the study. 55 healthy control participants (34 female; mean age 34.5 years old;437

age range 20-75 years) and 56 participants with chronic back pain (38 female; mean age 32.7 years old; age438

range 22-63 years) completed the estimation task and their data was used in the analysis. Exclusion criteria439

included neurological and psychiatric illness and failure to pass the attention check. Selected chronic back pain440

participants reported experiencing persistent pain in their back for a duration of over 6 months and were classified441

as high-risk for chronic back pain by the STarT tool (STarT score > 4) [63]. Selected healthy controls reported442

no persisting pain in the general health questionnaire and were classified at low risk for back pain by the STarT443

tool (scoring 3 or below [63]). Control participants were also selected to have no clinical symptoms of anxiety444

(STAI score < 41) [64] or depression (PHQ-9 score < 10) [65]), to simplify the comparison between the control445

and chronic pain groups and reduce confounding factors.446

All participants gave informed written consent to take part in the study, which was approved by the local447

ethics committee.448

4.2 Protocol of Experiment 1449

The experimental room’s temperature was maintained between 20◦C to 23◦C. Upon entry, an infrared thermometer450

was used to ensure participants temperature was above 36◦C at the forehead and forearm of the non-dominant451

hand, to account for the known effects of temperature on pain perception [66]. A series of slideshows were452

presented, which explained the premise of the experiment and demonstrated what the participant would be asked453

to carry out. Throughout this presentation, questions were asked to ensure participants understood the task.454

Participants were given multiple opportunities to ask questions throughout the presentation.455

We used the Medoc Advanced Thermosensory Stimulator 2 (TSA2) [67] to deliver thermal stimuli using the456

CHEPS thermode. The CHEPS thermode allowed for rapid cooling (40◦C / sec) and heating (70◦C / sec) so457
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transitions between the baseline and stimuli temperatures were minimal. The TSA2 was controlled externally,458

via Matlab (Mathworks).459

We then established the pain threshold, using the method of limits [68], in order to centre the range of460

temperature intensities used in the experiment. Each participant was provided with stimuli of increasing461

temperature, starting from 40◦C going up in 0.5◦C increments, using an inter-stimulus interval (ISI) of 2.5 sec462

and and a 2 sec duration. The participant was asked to indicate when the stimuli went from warm to painful - this463

temperature was noted and the stimuli ended. The procedure was repeated three times, and the average was used464

as an estimate of the pain threshold.465

During the experiment, four sequences of thermal stimuli were delivered. Due to the phenomenon of offset466

analgesia (OA), where decreases in tonic pain result in a proportionally larger decrease in perceived pain [69], we467

chose phasic stimuli, with a duration of 2 sec and an inter-stimulus-interval (ISI) 2.5 seconds. In order to account468

for individual differences, the temperatures which the levels refer to are based upon the participants threshold.469

The median intensity level was defined as threshold, giving a max temperature of 3◦C above threshold, which470

was found to be acceptable by participants. Before the start of the experiment each participant was provided with471

the highest temperature stimuli that could be presented, given their measured threshold, to ensure they where472

comfortable with this. Two participants found the stimulus too painful - the temperature range was lowered by473

1◦C and this was found to be acceptable.474

After every trial of each sequence, the participant was asked for either their perception of the previous475

stimulus, or their prediction for the next stimulus through a 2D VAS (Fig. 1b), presented using PsychToolBox-3476

[70]. The y-axis encodes the intensity of the stimulus either perceived or predicted, ranging from 0 (no heat477

detected/predicted) to 100 (worst pain imaginable perceived/predicted); on this scale, 50 represents pain threshold.478

This was done as a given sequence was centred around the threshold. The x-axis encodes confidence in either479

perception or prediction, ranging from 0 - completely uncertain (’unsure’) - to 1 - complete confidence in the480

rating (’sure’). Differing background colours were chosen to ensure participants were aware of what was being481

asked, and throughout the experiment participants were reminded to take care in answering the right question.482

The mouse movement was limited to be inside of the coloured box, which defined the area of participants’ input.483

At the beginning of each input screen, the mouse location was uniformly randomised within the input box.484

The sequence of response types was randomised so as to retain 40 prediction and 40 perception ratings for485

each of the four sequence conditions. For an 80-trial long sequence, this gave 80 participant responses. Each486

sequence condition was separated by a 5 minute break, during which the thermode’s probe was slightly moved487

around the area of skin on the forearm to reduce sensitisation (i.e. a gradual increase in perceived intensity with488

repetitive noxious stimuli) [71]. In the middle of each sequence, there was a 3 minute break. During the ISI,489

the temperature returned to a base-line of 38◦C. One participant was unable to complete the sequence as their490

threshold was too low, and data from four participants was lost due to Medoc software issues (the remote control491

failed and the data of 2 out 4 sessions were not saved). We excluded one participant’s whose ratings/predictions492

were inversely proportional to the noxious input. Thus, we analysed data from 27 participants.493

4.2.1 Generative process of the painful sequences494

We manipulated two sources of uncertainty in the sequence: the stochasticity (s) of the observation and the495

volatility (v) of the underlying sequence. Sequences were defined by two levels (high or low) of stochasticity and496

volatility, resulting in four different sequences conditions - creating a 2x2 factorial design. Each sequence was497

defined as a series of chunks, where the intensity for trial t, it was sampled from N (I,σ2), where σ2 indicates498

the level of stochasticity (σ2 = 1.75 for high level of stochasticity, σ2 = 0.25 for low level of stochasticity). The499

mean of the chunk, I, was drawn from U (3.5,10.5). To ensure a noticeable difference in chunk intensity to the500

participant, concurrent chunk means were constrained to be at least 2 intensity levels different. Volatility was501

implemented by defining the length, or number of trials, of a chunk (l) drawn from U (L−a,L+a), where L is502

the mean o the chunk length (L = 15 for high volatility level, L = 25 for low volatility level). A jitter, a, was503

added around the mean to ensure the transition from one chunk to the next was not consistent or predictable. For504

both high and low volatility conditions we set a = 3. Sampled values were then discretised, where any intensities505

outside the valid intensity range [1,13] were discarded and re-sampled resulting in an 80-trial long sequence for506

each condition. The mean of each sequence was centred around intensity level 7, i.e. the participants threshold.507

So defined, six sets of four sequences were sampled. Each participant received one set, with a randomised508
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sequence order. See an example sequence (after subject-specific linear transformation) and one participant’s509

responses (including confidence ratings) in Fig. 1c-d.510

4.3 Protocol of Experiment 2511

After the preliminary screening, selected participants were invited through the Prolific platform to play an512

online game. Before being directed to the task, participants were asked to rate the intensity of pain they were513

experiencing in their back and their current level of fatigue out of 10. The instructions preceding the game514

explained that participants were to play the role of a stockbroker predicting how a company’s share price fluctuate515

over time. Participants were informed the initial value of their shares was $100 and this value would change516

over a number of days – where each trial represents a day. At the start of each trial, the participant was asked to517

predict the value of their shares on that day and rate their confidence in their prediction. After submitting their518

response, the actual outcome was revealed, alongside an accuracy score. The participant was then asked to make519

a prediction for the next day. The entire task was 200 trials in length, and participants had fixed 10 sec breaks520

every 25 trials.521

For each participant, the sequence of time-varying share prices used in the task was randomly drawn from522

a set of 20 sequences. The sequences were designed to display variable stochasticity and volatility within a523

single sequence to test how participants’ learning strategy adapted to changing conditions. The sequences were524

generated using the following generative model.525

4.3.1 Generative Process of Online Task Sequences526

For each trial t, the volatility v′t and stochasticity s′t evolve according to a random walk.527

v′t = v′t−1 +α
v(µv − vt−1)+η

v
t η

v
t ∼ L (υv,λ v)

s′t = s′t−1 +α
s(µs − st−1)+η

s
t η

s
t ∼ L (υs,λ s)

L (υ ,λ ) represents a Laplace distribution with location, υ , and scale, λ The fixed parameters ηv
n , ηs

n528

determine the corresponding variances of the step size. The terms with decay rates αv,αs and process means µv,529

µs add stationarity.530

xt = xt−1 +α
x(µx − xt−1)+η

x
t η

x
t ∼ N (0,vt)

yt = xt +η
y
t η

y
t ∼ N (0,st)

The underlying mean xt evolves similarly, with decay rate αx, process mean µx, and step size ηx
t with531

variance equal to the constrained volatility vt = exp(v′t). The sequence outcome (share price) was generated from532

the underlying mean with added Gaussian noise with variance equal to the constrained stochasticity st = exp(s′t).533

The free parameters µv
t , µs

t , λ v, λ s, αv, and αs were adjusted to produce sequences that demonstrated534

noticeable variation in levels of stochasticity and volatility (µv
t , µs

t = 2.708, λ v, λ s = 0.0245, and αv,αs = 0.075).535

Additionally, they were checked for significant variation in autocorrelation – reflecting sufficient change in536

volatility.537

4.4 Data pre-processing538

4.4.1 Experiment 1539

Since the intensity values of the noxious input were discretised between 1 and 13, while the participant’s540

responses (perception and prediction) were given on a 0-100 scale, we applied a linear transformation of the541

input to map its values onto a common 0-100 range. For each participant, for a set of inputs at perception542

trials from the concatenated sequence (separate sequence conditions in the order as presented), we fit a lin-543

ear least-squares regression using Python’s scipy.stats.linregress function. On the rare occasions,544

when the transformed input was negative, we refit the line using Python’s non-linear least squares function545
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scipy.optimize.curve_fit, constraining the intercept above 0 [72]. See the transformations in Supple-546

mentary Fig. 1. We then extracted each participant’s optimised slope and intercept and applied the transformation547

both to the concatenated and condition-specific sequence of inputs. So transformed, the sequences where then548

used in all the analyses.549

To capture participant’s model-naive performance in the task, both for the concatenated and condition-specific550

sequence, we calculated Root Mean Square Error (RMSE) of each participant’s perception (Eq. 1) and pre-551

diction (Eq. 2) responses as compared to the input. The lower the RMSE, the higher the response accuracy.552

RMSEP =

√
∑

TP
t=1(yt − P̂t)

TP
(Eq. 1) RMSEE =

√
∑

TE
t=1(yt+1 − Êt+1)

TE
(Eq. 2)

553

where TP is the number of perception trials, P̂t is participant’s perception response to the stimulus yt at trial t,554

TE is the number of prediction trials and Êt+1 is participant’s prediction of the next stimulus intensity yt+1 at at555

trial t +1.556

4.4.2 Experiment 2557

For the online task, participant predictions were visually inspected to ensure the game was played properly. Five558

participants were excluded at this stage. One participant was excluded because the predictions were negatively559

correlated with the sequence outcomes, and four participants were excluded because they repeatedly entered the560

same response for large chunks of the game (≥ 30 trials) which indicated they did not properly engage with the561

game. Participants’ predictions were processed to remove typing errors (0.009% of trials). Mistakes in typing562

that resulted in predictions far outside the range of the sequence outcomes (predictions > 250) were replaced563

with the average of the previous trial and following trial. Additionally, confidence ratings were re-scaled from a564

0-5 scale to a 0-1 scale.565

4.5 Models566

4.5.1 Reinforcement Learning567

RL568

In reinforcement learning models, learning is driven by discrepancies between the estimate of the expected value569

and observed values. Before any learning begins, at trial t = 1, participants have an initial expectation, E1 = E0,570

which is a free parameter that we estimate.571

In experiment 1, on each trial, participants receive a thermal input Nt . We then calculate the prediction error
δt , defined as the difference between the expectation Et and the input Nt (Eq. 3).

δt = Nt −Et (Eq. 3)

Participant is then assumed to update their expectation of the stimulus on the next trial as in Eq. 4

Et+1 = Et +αδt (Eq. 4)

where α is the learning rate (free parameter), which governs how fast participants assimilate new information to572

update their belief.573

On trials when participants rate their perceived intensity, we assume no effects on their perception other
than confidence rating ct and response noise, so participants perception response P̂t is drawn from a Gaussian
distribution, with the mean Pt = Nt and a confidence-scaled response noise ξ (free parameter), as in Eq. 5

P̂t ∼ N

(
Pt ,ξ

2 exp
{

C−1(1− ct)
}2
)

(Eq. 5)

where C is the confidence scaling factor (free parameter), which defines the extent to which confidence affects574

response uncertainty. Please, see Fig. 2 for an intuition behind confidence scaling.575

On trials when participants are asked to predict the intensity of the next thermal stimulus, we use the updated
expectation Et+1 to model participants prediction response Êt+1. This is similarly affected by confidence rating
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and response noise and is defined as in Eq. 6.

Êt+1 ∼ N

(
Et+1,ξ

2 exp
{

C−1(1− ct)
}2
)

(Eq. 6)

Analogously, in Experiment 2, whereby participants guess the value of the stock market, their response Êt is
given based on their expectation Et and confidence rating, and is drawn from a Gaussian distribution with the
mean Et and a confidence-scaled response noise, as in Eq. 7.

Êt ∼ N

(
Et ,ξ

2 exp
{

C−1(1− ct)
}2
)

(Eq. 7)

After the true value of the stock market Ot is revealed on each trial, we calculate the prediction error δt ,
defined as the difference between the expectation Et and the subsequently observed outcome Ot (Eq. 8).

δt = Ot −Et (Eq. 8)

The prediction error is then used to update the expectation of the stock market value for the next trial, as in Eq. 4.576

To recap, the RL model has 4 free parameters: the learning rate α , response noise ξ , the initial expectation577

E0, and the confidence scaling factor C.578

eRL
Additionally, in Experiment 1, where we investigate the effects of expectation on the perception of pain [26], we
included an element that allows us express the perception as a weighted sum of the input and expectation (Eq. 9)

Pt = (1− γ)Nt + γEt (Eq. 9)

where γ ∈ [0,1] (free parameter) captures how much participants rely on the normative thermal input vs. their579

expectation. When γ = 0, the expectation plays no role and the model simplifies to that of the standard RL above.580

All the other equations are the same, and in total eRL has 5 free parameters.581

4.5.2 Kalman Filter582

KF
To capture sequential learning in a Bayesian manner, we used the Kalman filter model [26, 27, 29]. KF assumes
a generative model of the environment where the latent state on trial t, xt (the mean of the sequences in our
experiments), evolves according to a Gaussian random walk with a fixed drift rate, v (volatility), as in Eq. 10.

xt ∼ N (xt−1,v2) (Eq. 10)

The observation on trial t, Nt (for experiment 1) or Ot (for experiment 2), is then drawn from a Gaussian (Eq. 11)
with a fixed variance, which represents the observation uncertainty s (stochasticity).

Ot ∼ N (xt ,s2) (Eq. 11)

As such the KF assumes stable dynamics since the generative process has fixed volatility and stochasticity.583

For ease of explanation, we refer to the thermal input and observed stock market value at each trial as Ot ,584

we also use the O1:t notation, which refers to a sequence of observations up to and including trial t. The model585

allows to obtain posterior beliefs about the latent state xt given the observations. This is done by tracking an586

internal estimate of the mean mt and the uncertainty, wt , of the latent state xt .587

First, following standard KF results, on each trial, the participant is assumed to hold a prior belief (indicated
with (−) superscript) about the latent state, xt (Eq. 12).

xt |O1:t−1 ∼ N
(

m(−)
t ,w2

t
(−)
)

(Eq. 12)

On the first trial, before any observations, we set m(−)
1 = E0,w(−)

1 = w0 (free parameters). In light of the new588

observation, Ot on trial t, the tracked mean and uncertainty of the latent state are reweighed based on the new589

evidence Ot and its associated observation uncertainty s as in Eq. 13.590
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xt |O1:t ∼ N

(
s2m(−)

t +w2
t
(−)Ot

s2 +w2
t
(−)

,
s2w2

t
(−)

s2 +w2
t
(−)

)
(Eq. 13)

We can then define the learning rate αt (Eq. 14),

αt =
w2

t
(−)

s2 +w2
t
(−)

(Eq. 14)

to get the update rule for the new posterior beliefs (indicated with (+) superscript) about the mean (Eq. 15) and591

uncertainty (Eq. 16) of xt .592

m(+)
t = m(−)

t (1−αt)+Otαt (Eq. 15) w2
t
(+) = w2

t
(−)(1−αt) (Eq. 16)

593

594

Following this new belief, and the assumption about the environmental dynamics (volatility), the participant
forms a new prior belief about the latent state xt+1 for the next trial t +1 as in Eq. 17.

xt+1|O1:t ∼ N
(

m(−)
t+1,w

2
t+1

(−)
)

(Eq. 17)

where595

m(−)
t+1 = m(+)

t (Eq. 18) w2
t+1

(−) = w2
t
(+)+ v2 (Eq. 19)

596

597

We can simplify the notation to make it comparable to the RL models. We let, mt+1 = m(+)
t = m(−)

t+1, and598

w2
t+1 = w2

t+1
(−) = w2

t
(+)+ v2. Following a new observation at trial t, we calculate the prediction error (Eq. 20)599

and learning rate (Eq. 21).600

δt = yt −mt (Eq. 20) αt =
w2

t

w2
t + s2 (Eq. 21)601

we then update the belief about the mean (Eq. 22) and uncertainty (Eq. 23) of the latent state for the next trial.602

mt+1 = mt(1−αt)+Otαt

= mt +αt(Ot −mt) (Eq. 22)
w2

t+1 = w2
t (1−αt)+ v2 (Eq. 23)

Now, mapping this onto the experiments, the mean of the latent state is participants expectation Et = mt , and so
for Experiment 1 we have participant perception rating modelled as in Eq. 24.

P̂t ∼ N

(
Pt ,ξ

2 exp
{

C−1(1− ct)
}2
)

(Eq. 24)

and the prediction rating for the next trial as in Eq. 25.

Êt+1 ∼ N

(
Et+1,ξ

2 exp
{

C−1(1− ct)
}2
)

(Eq. 25)

Analogously, in Experiment 2, participants’ guess is defined as in Eq. 26.

Êt ∼ N

(
Et ,ξ

2 exp
{

C−1(1− ct)
}2
)

(Eq. 26)

In total the model has 6 free parameters: s (environmental stochasticity), v (environmental volatility), ξ603

(response noise), E0 (initial belief about the mean), w0 (initial belief about the uncertainty) and C (confidence604

scaling factor).605
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eKF - expectation weighted Kalman Filter
Lastly, for Experiment 1, we can introduce the effect of expectation on the pain perception, by assuming that
participants treat the thermal input as an imperfect indicator of the true level of pain [26]. In this case, the input,
Nt , is modelled as in Eq. 27

Nt ∼ N
(
πt ,ε

2) (Eq. 27)

which forms an expression for the likelihood of the observation and adds an additional level to the inference,
slightly modifying the Kalman filter assumptions such that:

πt ∼ N
(

m(−)
t ,s2

)
(Eq. 28)

However, we can apply the standard KF results and Bayes’ rule to arrive at simple update rules for the participants’
belief about the mean and uncertainty of the latent state xt . From this, we get a prior on the πt defined in Eq. 29

πt |N1:t−1 ∼ N
(

m(−)
t ,w2

t
(−)+ s2

)
(Eq. 29)

which, following a new input Nt , gives us the posterior belief about πt as in Eq. 30.

πt |N1:t ∼ N

(
ε2m(−)

t +(s2 +w2
t
(−))Nt

ε2 + s2 +w2
t
(−)

,
ε2(s2 +w2

t
(−))

ε2 + s2 +w2
t
(−)

)
(Eq. 30)

Now, if we define γt as in Eq. 31

γt =
ε2

ε2 + s2 +w2
t
(−)

(Eq. 31)

we have that the posterior belief about the mean level of pain πt is calculated as:

P(+)
t = γtm

(−)
t +(1− γt)Nt (Eq. 32)

which is a weighted sum of the input Nt and participant expectation about the latent state xt , governed by the
perceptual weight γt , analogously to the eRL model. Finally, the posterior belief about xt is obtained in Eq.

xt |O1:t ∼ N

(
(ε2 + s2)m(−)

t +w2
t
(−)Nt

ε2 + s2 +w2
t
(−)

,
(ε2 + s2)w2

t
(−)

ε2 + s2 +w2
t
(−)

)
(Eq. 33)

Now, setting the learning rate as in Eq. 34

αt =
w2

t

ε2 +w2
t + s2 (Eq. 34)

we get:606

m(+)
t = m(−)

t (1−αt)+Otαt (Eq. 35)
607

w2
t
(+) = w2

t
(−)(1−αt) (Eq. 36)

608

609

Next, following the same notation simplification as before, we get the update rules for the prior belief about610

the mean (Eq. 37) and uncertainty (Eq. 38) of the latent state xt+1 for the next trial.611

mt+1 = mt(1−αt)+Otαt

= mt +αt(Ot −mt) (Eq. 37)
w2

t+1 = w2
t (1−αt)+ v2 (Eq. 38)

as well as the expression for subjective perception, Pt , at trial t (Eq. 39).

Pt = γtmt +(1− γt)Nt (Eq. 39)
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The perception and prediction responses are modelled analogously as the KF model. In total, the model has 7612

free parameters: ε (subjective noise), s (environmental stochasticity), v (environmental volatility), ξ (response613

noise), E0 (initial belief about the mean), w0 (initial belief about the uncertainty) and C (confidence scaling614

factor).615

4.5.3 Random model616

As a baseline, we also included a model that performs a random guess. For both experiment the percep-
tual/prediction rating as well as the guess was modelled as in Eq. 40.

P̂t ∼ N

(
R,ξ 2 exp

{
C−1(1− ct)

}2
)

(Eq. 40)

The model has 3 free parameters: R, ξ , and C, where R is a constant value that participants respond with.617

4.6 Model fitting618

Model parameters were estimated using hierarchical Bayesian methods, performed with RStan package (v.619

2.21.0) [73] in R (v. 4.0.2) based on Markov Chain Monte Carlo techniques (No-U-Turn Hamiltonian Monte620

Carlo). For the individual level-parameters we used non-centred parametrisation [74]. For the group-level621

parameters we used N (0,1) priors for the mean, and the gamma-mixture representation of the Student-t(3,0,1)622

for the scale [75]. Parameters in the (0,1) range were constrained using Phi_approx - a logistic approximation623

to the cumulative Normal distribution [76].624

In Experiment 1, for each condition and each of the four chains, we ran 6000 samples (after discarding 6000625

warm-up ones). For each condition, we examined R-hat values for each individual- (including the N (0,1) error626

term from the non-centred parametrisation) and group-level parameters from each model to verify whether the627

Markov chains have converged. At the group-level and individual-level, all R-hat values had a value < 1.1,628

indicating convergence. In the random response model, 0.01%−0.16% iterations saturated the maximum tree629

depth of 11.630

In Experiment 2, we fit the pain and control group data sets separately. For each of the four chains, we631

ran 3000 samples (after discarding 3000 warm-up ones). For each group, we examined R-hat values for each632

individual- and group-level parameters from each model to verify whether the Markov chains have converged. At633

the group-level and individual-level, all R-hat values had a value < 1.1, indicating convergence. In the random634

response model, 3.38%−7.33% iterations saturated the maximum tree depth of 11.635

4.6.1 Model comparison636

For model comparison, we used R package loo, which provides efficient approximate leave-one-out cross-637

validation. The package allows to estimate the difference in models’ expected predictive accuracy through the638

difference in expected log point-wise predictive density (ELPD) [77]. By looking at the ratio between the ELPD639

difference and the standard error (SE) of the difference, we get the sigma effect - a heuristic for significance of640

such model differences. The closeness of fit can be also captured with LOO information criterion (LOOIC),641

where the lower LOOIC values indicate better fit.642

4.6.2 Parameter comparison643

For the comparison of group-level parameters between conditions (Experiment 1) or groups (Experiment 2), we644

extracted 95% High Density Intervals (HDI) of the permuted and merged (across chains) posterior samples of645

each group-level parameter [78]. To assess significant differences between groups/conditions, we calculated a646

difference between such defined intervals. In the Bayesian scenario, a significant difference is indicated by the647

interval not containing the value 0 [79, 80].648

For experiment 2, Bayesian independent samples T-tests were performed, using JASP [81], on the two sets649

of individual-level parameters to determine whether there were significant differences between back pain and650

control groups. The Bayes Factor BF10 is a measure of the evidence for the alternative hypothesis relative to651

the null hypothesis, such that a greater BF10 indicates stronger support for the alternative hypothesis – that a652

significant difference between groups does exist. A Bayes factor BF10 ≥ 10 was interpreted as strong evidence653

for the alternative hypothesis [82].654
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4.6.3 Parameter and model recovery655

To asses the reliability of our modelling analysis [83], for each model we performed parameter recovery analysis,656

where we simulated participants’ responses using newly drawn individual-level parameters from the group-level657

distributions.658

For Experiment 1, we repurposed existing sequences of noxious inputs in the [1,13] range (pre-transformation).659

When then applied a linear transformation to the input sequences using sampled slope and intercept coeffi-660

cients from a Gaussian distribution of these coefficients that we estimated based on our dataset using R’s661

fitdistrplus package. Furthermore, we simulated the confidence ratings based on lag-1 auto-correlation662

across a moving window of the transformed input sequence.663

For Experiment 2, we used the same sequences of share values that were used in the task. We simulated664

confidence ratings based on the lag-1 auto-correlation across a moving window of the share value sequence.665

We then fit the same model to the simulated data and calculated Pearson correlation coefficients r between the666

generated and estimated individual-level parameters. The higher the coefficient r, the more reliable the estimates667

are, which can be categorised as: poor (if r <0.5); fair (if 0.5< r <0.75); good (0.75< r <0.9); excellent (if r >0.9)668

[84].669

We also performed model recovery analysis [83], where we first simulated responses using each model and670

then fit each model-specific dataset with each model. We then counted the number of times a model fit the671

simulated data best (according to the LOOIC rule), effectively creating an M×M confusion matrix, where M is672

the number of models. In the case where we have a diagonal matrix of ones, the models are perfectly recoverable673

and hence as reliable as possible.674
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