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Supplementary Note 1: Probability of detection 26 

Here, we derive the expression given in the main text for the probability, 𝑝𝑑(𝜏), 27 

of an infected individual, subject to regular antigen testing, having been detected by 28 

time since infection 𝜏 . We assume (as in most of our analyses) an exponentially 29 

distributed interval of mean 𝑇  between successive tests (i.e., a constant rate of 30 

testing). 31 

First, since we assume that symptomatic hosts are always detected, we have 32 

𝑝𝑑(𝜏) = 1 for 𝜏 ≥ 𝜏inc, where 𝜏inc is the individual’s incubation period (which can be 33 

taken to be infinite to represent an entirely asymptomatic infection). Now, for 𝜏 < 𝜏inc, 34 

we consider a short time interval [𝜏, 𝜏 + d𝜏]. The probability that the individual returns 35 

a positive antigen test in this interval is given (up to terms of order d𝜏2 ) by 36 

(1/𝑇)d𝜏 × 𝑝+(𝑉(𝜏)), where (1/𝑇)d𝜏 represents the probability of taking a test, and 37 

𝑝+(𝑉(𝜏)) the probability that the result of a test is positive (which depends on the 38 

instantaneous viral load, 𝑉(𝜏)). Conditioning on whether or not a positive test is 39 

returned in the interval [𝜏, 𝜏 + d𝜏] then gives 40 

𝑝𝑑(𝜏 + d𝜏) = 1 ×
𝑝+(𝑉(𝜏))d𝜏

𝑇
+ 𝑝𝑑(𝜏) × (1 −

𝑝+(𝑉(𝜏))d𝜏

𝑇
) , 44 

where the probability of detection by time (𝜏 + d𝜏) conditional on a positive test in 41 

[𝜏, 𝜏 + d𝜏] is 1, and the probability conditional on no positive test in that interval is 42 

𝑝𝑑(𝜏). 43 

Rearranging the above equation and taking the limit d𝜏 → 0  gives the 45 

differential equation, 46 

d𝑝𝑑

d𝜏
=

𝑝+(𝑉(𝜏))

𝑇
(1 − 𝑝𝑑(𝜏)), 48 

which can be solved alongside the initial condition 𝑝𝑑(0) = 0 to obtain 47 

𝑝𝑑(𝜏) = 1 − exp (−
1

𝑇
∫ 𝑝+(𝑉(𝑥))d𝑥

𝜏

0

) , 50 

for 𝜏 < 𝜏inc. 49 

  51 
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Supplementary Note 2: Derivation of outbreak risk 52 

Below, we derive an analytical expression for the outbreak risk in a 53 

heterogeneous population divided into 𝑛  subgroups (the special case of a 54 

homogeneous population is obtained when 𝑛 = 1), between which the infectiousness 55 

profile of infected hosts (as well as other factors such as susceptibility) may vary. 56 

Specifically, we consider a branching process model in which susceptible depletion is 57 

neglected and infection lineages are assumed to be independent. The outbreak risk is 58 

then taken to be the probability that epidemic extinction does not occur within this 59 

branching process framework, following the introduction of a single newly infected host 60 

into the population, i.e., the probability that the number of currently infected individuals 61 

never reaches zero but instead tends to infinity (note that in reality, the assumptions 62 

underlying the branching process model will no longer be valid when the number of 63 

infected individuals becomes large). 64 

We suppose that each infected host in group 𝑗  transmits the pathogen to 65 

individuals in group 𝑖 at total rate 𝛽𝑖,𝑗(𝜏) at time since infection 𝜏 (a specific form of 66 

𝛽𝑖,𝑗(𝜏) is considered later). The expected total number of infections generated in group 67 

𝑖 by each infected host in group 𝑗 (over the course of infection) is then 68 

𝑅𝑖,𝑗 = ∫ 𝛽𝑖,𝑗(𝜏)d𝜏
∞

0

, 72 

where the basic reproduction number (accounting for regular antigen testing if in 69 

place), 𝑅0,eff , is the largest eigenvalue of the matrix with entries 𝑅𝑖,𝑗  (the next-70 

generation matrix) (1). 71 

Now, we suppose that a single infected individual in group 𝑗 is introduced into 73 

the population at time since infection 𝜏, with the remainder of the population assumed 74 

to be uninfected at the time of introduction (and assuming no further external pathogen 75 

introductions into the population). Then an expression for the probability of extinction 76 

(i.e., the probability that a major outbreak does not occur), denoted 𝑞𝑗(𝜏), can be 77 

derived by conditioning on whether or not the initial infected individual transmits the 78 

pathogen (to an individual in any population group) between times since infection 𝜏 79 

and (𝜏 + d𝜏), to obtain (neglecting the possibility that multiple transmissions occur, 80 

which has probability of order d𝜏2) 81 

𝑞𝑗(𝜏) = (∑ 𝑞𝑗(𝜏 + d𝜏)𝑞𝑖(0) × 𝛽𝑖,𝑗(𝜏)d𝜏

𝑛

𝑖=1

) + 𝑞𝑗(𝜏 + d𝜏) × (1 − ∑ 𝛽𝑖,𝑗(𝜏)d𝜏

𝑛

𝑖=1

) . 82 
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Here, 𝛽𝑖,𝑗(𝜏)d𝜏  gives the probability of a transmission to an individual in group 𝑖 83 

occurring in this time interval, 𝑞𝑗(𝜏 + d𝜏)𝑞𝑖(0) the extinction probability conditional on 84 

such a transmission occurring (since infection lineages are assumed to be 85 

independent), and 𝑞𝑗(𝜏 + d𝜏)  the extinction probability conditional on no 86 

transmissions occurring. 87 

Rearranging the above equation and taking the limit d𝜏 → 0  gives the 88 

differential equation, 89 

d𝑞𝑗

d𝜏
= 𝑞𝑗(𝜏) ∑(1 − 𝑞𝑖(0))𝛽𝑖,𝑗(𝜏)

𝑛

𝑖=1

, 91 

which can be solved alongside the boundary condition 𝑞𝑗(∞) = 1 to obtain 90 

𝑞𝑗(𝜏) = exp (− ∑(1 − 𝑞𝑖(0)) ∫ 𝛽𝑖,𝑗(𝑥)d𝑥
∞

𝜏

𝑛

𝑖=1

) . 93 

In particular, we have 92 

𝑞𝑗(0) = exp (− ∑(1 − 𝑞𝑖(0))𝑅𝑖,𝑗

𝑛

𝑖=1

). 94 

Now, a relatively general parameterisation is to take 𝛽𝑖,𝑗(𝜏) = 𝜀𝑖𝜂𝑖𝐶𝑖,𝑗𝛽𝑗(𝜏), so 95 

that 𝑅𝑖,𝑗 = 𝜀𝑖𝜂𝑖𝐶𝑖,𝑗𝐵𝑗. Here, 𝛽𝑗(𝜏) is the infectiousness profile of an infected individual 96 

in group 𝑗, 𝐵𝑗  is the total integral of 𝛽𝑗(𝜏) over all times since infection, 𝜀𝑖  is the 97 

proportion of the population who are in group 𝑖, 𝜂𝑖 is the relative susceptibility in group 98 

𝑖, and 𝐶𝑖,𝑗 represents the rate of contacts between individuals in groups 𝑖 and 𝑗. The 99 

above equation can be used to calculate the outbreak risk for general 𝛽𝑖,𝑗(𝜏) . 100 

However, further analytic progress is possible under the assumption of homogeneous 101 

mixing (i.e., when 𝐶𝑖,𝑗  is independent of 𝑖 and 𝑗). Absorbing the value of 𝐶𝑖,𝑗  into 102 

𝛽𝑖,𝑗(𝜏) (i.e., setting 𝐶𝑖,𝑗 = 1), we then have 103 

𝑞𝑗(0) = exp (−𝐵𝑗 ∑(1 − 𝑞𝑖(0))𝜀𝑖𝜂𝑖

𝑛

𝑖=1

) . (S1) 104 

In this case, the overall extinction probability following the introduction of a 105 

single newly infected individual is 106 

𝑞(0) =
1

𝜂̅
∑ 𝜀𝑗𝜂𝑗𝑞𝑗(0)

𝑛

𝑗=1

= ∑ 𝑎𝑗𝑞𝑗(0)

𝑛

𝑗=1

, (S2) 107 
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where 𝜂̅ = ∑ 𝜀𝑗𝜂𝑗
𝑛
𝑗=1  gives the mean population susceptibility, and 𝑎𝑗 = 𝜀𝑗𝜂𝑗/𝜂̅ gives 108 

the proportion of new infections that are in group 𝑗. Now, Eq. (S1) above can be written 109 

as 110 

𝑞𝑗(0) = exp(−(1 − 𝑞(0))𝜂̅𝐵𝑗), 112 

and substituting this expression into Eq. (S2) then gives 111 

𝑞(0) =
1

𝜂̅
∑ 𝜀𝑗𝜂𝑗exp(−(1 − 𝑞(0))𝜂̅𝐵𝑗)

𝑛

𝑗=1

= ∑ 𝑎𝑗exp(−(1 − 𝑞(0))𝑅𝑗),

𝑛

𝑗=1

(S3) 115 

where 𝑅𝑗 = 𝜂̅𝐵𝑗 gives the expected number of transmissions generated by an infected 113 

host in group 𝑗 (over the course of infection). 114 

Finally, the outbreak risk (following the introduction of a single newly infected 116 

individual into an otherwise susceptible population), 𝑝outbreak = 1 − 𝑞(0) , then 117 

satisfies 118 

𝑝outbreak = 1 − ∑ 𝑎𝑗 × exp(−𝑅𝑗 × 𝑝outbreak)

𝑛

𝑗=1

,   126 

which is Eq. (2) in the main text. While this equation may have multiple solutions (in 119 

particular, 𝑝outbreak = 0  is always a solution), by standard theory of hitting 120 

probabilities on Markov chains (2), the relevant solution is the largest solution between 121 

0 and 1 (since the relevant solution to Eq. (S3) is the minimal non-negative one). While 122 

we focussed on the outbreak risk starting with a single, newly infected, primary case, 123 

it would be straightforward to consider an infected individual introduced into the 124 

population later in infection, and/or multiple pathogen introductions, in our approach. 125 

We note that the basic reproduction number in this scenario (accounting for 127 

regular antigen testing, if carried out) is 128 

𝑅0,eff = ∑ 𝜀𝑖𝜂𝑖𝐵𝑖

𝑛

𝑖=1

= ∑ 𝑎𝑖𝑅𝑖

𝑛

𝑖=1

, 132 

where the first equality follows since the next-generation matrix is of separable form 129 

𝑅𝑖,𝑗 = 𝑐𝑖𝑑𝑗 (where here 𝑐𝑖 = 𝜀𝑖𝜂𝑖 and 𝑑𝑗 = 𝐵𝑗) and therefore has largest eigenvalue 130 

𝑅0,eff = ∑ 𝑐𝑖𝑑𝑖
𝑛
𝑖=1  (1). This can also be written as 131 

𝑅0,eff = ∫ 𝛽̅(𝜏)d𝜏
∞

0

, 135 

where 𝛽̅(𝜏) = 𝜂̅ ∑ 𝑎𝑖𝛽𝑖(𝜏)𝑛
𝑖=1  gives the expected infectiousness profile, accounting for 133 

the relative susceptibility of the population. We also note that while the derivation 134 



 

 6 

here includes the possibility of heterogeneous susceptibility between different 136 

population sub-groups, we did not consider heterogeneous susceptibility in our 137 

numerical analyses. 138 

 In the special case of a homogeneous population (𝑛 = 1), we have 139 

𝑝outbreak = 1 − exp(−𝑅0,eff × 𝑝outbreak), 142 

i.e. we recover Eq. (1) in the main text. 140 

  141 
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Supplementary Note 3: Wider applicability of outbreak risk equation accounting 143 

for heterogeneity 144 

The result in Eq. (2), while derived in the context of a time-since-infection model 145 

in a heterogeneous population, is in fact widely applicable to a range of (branching 146 

process) models. Specifically, taking the limit of a continuous distribution of population 147 

subgroups in Eq. (2) gives the equation 148 

𝑝outbreak = 1 − ∫ 𝑎(𝜃)
 

Θ

× exp(−𝑅(𝜃) × 𝑝outbreak)d𝜃. (S4) 157 

Here 𝜃 ∈ Θ  is a continuous variable (which may be either real-valued or higher-149 

dimensional) indexing population sub-groups and/or possible “types” of infection, 𝑎(𝜃) 150 

is the probability density that a new infection is of type 𝜃, and 𝑅(𝜃) gives the expected 151 

total number of transmissions generated by an infected host with infection type 𝜃. We 152 

briefly note that the continuous formulation in Eq. (S4) is applicable to the scenario of 153 

heterogeneous within-host dynamics that we considered, but in practice it was easier 154 

to calculate the outbreak risk by sampling the within-host dynamics of a large number 155 

of hosts and using Eq. (2). 156 

As an example to demonstrate the applicability of Eq. (S4), we consider a 158 

branching process approximation of the stochastic SIR compartmental epidemic 159 

model. In this case, the possible “types” of infection are indexed by the infectious 160 

period, 𝜃 = 𝑡𝐼 ∈ [0, ∞) , with 𝑎(𝜃) = 𝜇 exp(−𝜇𝑡𝐼)  (i.e., an exponentially distributed 161 

infectious period is assumed) and 𝑅(𝜃) = 𝑅0𝜇𝑡𝐼  (i.e., the expected number of 162 

transmissions by an infected host is proportional to their infectious period). Substituting 163 

into Eq. (S4) then gives 164 

𝑝outbreak = 1 − ∫ 𝜇 exp(−(1 + 𝑅0𝑝outbreak)𝜇𝑡𝐼)
∞

0

d𝑡𝐼 . 167 

Integrating and taking the largest solution between 0 and 1 of the resulting quadratic 165 

equation then reproduces the well-known formula, 166 

𝑝outbreak = max {1 −
1

𝑅0
, 0}. 168 

Similarly, the outbreak risk under branching process approximations of a wide range 169 

of more complex compartmental models, for example models with non-exponentially 170 

distributed infectious periods and/or age structure, can also be represented using Eq. 171 

(S4).  172 
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Supplementary Note 4: Outbreak risk under delayed and/or time-limited regular 173 

antigen testing 174 

Here, we generalise our results to obtain an expression for the outbreak risk in 175 

scenarios where regular antigen testing is introduced reactively after an infection 176 

occurs and/or is only in place for a limited period of time. For simplicity, we consider 177 

homogeneous within-host dynamics (although the derivation presented here readily 178 

generalises to a heterogeneous population), supposing that each host infected at 179 

calendar time 𝑡 transmits the pathogen at rate 𝛽(𝜏, 𝑡) at time since infection 𝜏 (i.e., 180 

at calendar time (𝑡 + 𝜏)). Below, we first derive the outbreak risk for general 𝛽(𝜏, 𝑡), 181 

before deriving a specific form of 𝛽(𝜏, 𝑡) under delayed and/or time-limited regular 182 

antigen testing. 183 

We suppose that an infected individual, who was infected at calendar time 𝑡, is 184 

introduced into an otherwise uninfected population at time since infection 𝜏  (at 185 

calendar time (𝑡 + 𝜏)). Then, conditioning on whether or not the initial infected host 186 

transmits the pathogen between times since infection 𝜏 and (𝜏 + d𝜏) (and assuming 187 

no more external infections), we find that the extinction probability, 𝑞(𝜏, 𝑡), satisfies 188 

(up to terms of order d𝜏2) 189 

𝑞(𝜏, 𝑡) = 𝑞(𝜏 + d𝜏, 𝑡)𝑞(0, 𝑡 + 𝜏 + d𝜏) × 𝛽(𝜏, 𝑡)d𝜏 + 𝑞(𝜏 + d𝜏, 𝑡) × (1 − 𝛽(𝜏, 𝑡)d𝜏). 191 

Rearranging and taking the limit d𝜏 → 0 gives the differential equation, 190 

∂𝑞

∂𝜏
= 𝑞(𝜏, 𝑡)(1 − 𝑞(0, 𝑡 + 𝜏))𝛽(𝜏, 𝑡), 193 

which can be solved alongside the boundary condition 𝑞(∞, 𝑡) = 1 to obtain 192 

𝑞(𝜏, 𝑡) = exp (− ∫ (1 − 𝑞(0, 𝑡 + 𝜏̃))𝛽(𝜏̃, 𝑡)d𝜏̃
∞

𝜏

) . 195 

In particular, we have 194 

𝑞(0, 𝑡) = exp (− ∫ (1 − 𝑞(0, 𝑡 + 𝜏))𝛽(𝜏, 𝑡)d𝜏
∞

0

) , 199 

(where we have relabelled 𝜏̃ from the previous equation as 𝜏) and the outbreak risk, 196 

𝑝outbreak(𝑡) = 1 − 𝑞(0, 𝑡), following the introduction of a single newly infected host at 197 

time 𝑡, is therefore the largest solution between 0 and 1 of the equation 198 

𝑝outbreak(𝑡) = 1 − exp (− ∫ 𝑝outbreak(𝑡 + 𝜏)𝛽(𝜏, 𝑡)d𝜏
∞

0

) . (S5) 200 
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We now derive the form of 𝛽(𝜏, 𝑡) under delayed and/or time-limited regular 201 

antigen testing. Specifically, we suppose that testing only takes place between 202 

calendar times 𝑡start and 𝑡end, and that within that time period, the interval between 203 

tests (for a specified individual) is exponentially distributed with mean 𝑇. A similar 204 

argument to that in Supplementary Note 1 can be used to show that the probability, 205 

𝑝𝑑(𝜏, 𝑡), of an individual infected at calendar time 𝑡 having been detected by time 206 

since infection 𝜏 < 𝜏inc (where 𝜏inc is the incubation period, with 𝑝𝑑(𝜏, 𝑡) = 1 for 𝜏 ≥207 

𝜏inc), is 208 

𝑝𝑑(𝜏, 𝑡) = 1 − exp (−
1

𝑇
∫ 𝑝+(𝑉(𝑥))d𝑥

max{0, min{𝜏, 𝑡end−𝑡}}

max{0, min{𝜏, 𝑡start−𝑡}}

) , 214 

where 𝑝+(𝑉(𝑥)) gives the probability that the result of a test taken at time since 209 

infection 𝑥 is positive, and the limits of the integral give the times since infection up to 210 

𝜏  over which the regular antigen testing policy is in place. The (calendar time-211 

dependent) expected infectiousness profile, accounting for different possible detection 212 

times, is then 213 

𝛽(𝜏, 𝑡) = [𝛼𝑑𝑝𝑑(𝜏, 𝑡) + (1 − 𝑝𝑑(𝜏, 𝑡))] × 𝛽𝑢(𝜏), 217 

where 𝛽𝑢(𝜏) is the infectiousness profile of an undetected individual at time since 215 

infection 𝜏, and 𝛼𝑑 is the relative infectiousness of a detected host. 216 

Finally, we consider a scenario in which regular antigen testing is introduced 218 

after a delay of 𝑥del from the time of the first infection (where we may expect 𝑥del to 219 

be at least the length of the incubation period), and is carried out over a finite duration 220 

of time, 𝑥dur. This scenario can be represented by taking 𝑡start = 0 and 𝑡end = 𝑥dur 221 

in the above, and then using Eq. (S5) to calculate 𝑝outbreak(−𝑥del) numerically. In this 222 

scenario, for 𝑡 ≥ 𝑡end , 𝑝outbreak(𝑡)  is simply the outbreak risk in the absence of 223 

antigen testing (which is independent of 𝑡 and can be calculated using Eq. (1) in the 224 

main text). Eq. (S5) can therefore be solved iteratively on a grid of 𝑡 ∈ [−𝑥del, 𝑡end] by 225 

considering successively lower 𝑡 values and each time discretising the integral in Eq. 226 

(S5) to calculate 𝑝outbreak(𝑡), since Eq. (S5) allows 𝑝outbreak(𝑡) to be calculated once 227 

𝑝outbreak(𝑥) is known for 𝑥 > 𝑡. 228 

We note that the above numerical scheme in fact gives the outbreak risk for a 229 

grid of delays from 0 up to and including 𝑥del (for a fixed duration, 𝑥dur). If there is no 230 

delay, then it is convenient to instead take 𝑡start = −∞ and 𝑡end = 0, and to calculate 231 

𝑝outbreak(𝑡) on a grid of negative 𝑡 in order to obtain the outbreak risk for different 232 
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durations of regular antigen testing (although we note that this scenario is unlikely to 233 

be of real-world relevance, unless an infection occurs shortly before the scheduled 234 

end of an ongoing regular antigen testing program). 235 

  236 
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Supplementary Note 5: Details of discrete-time stochastic outbreak simulation 237 

algorithm 238 

We verified our analytically derived estimates of the outbreak risk by comparing 239 

these estimates with corresponding estimates obtained through repeated simulation 240 

of a discrete-time, individual-based stochastic epidemic model (Figure 2F and 241 

Supplementary Figure 2). In this section, we describe the simulation model and how 242 

it was used to estimate the outbreak risk. 243 

Prior to running each outbreak simulation, we first determined and discretised 244 

the within-host dynamics that each individual, 𝑖, in the population would follow if ever 245 

infected, according to the following steps: 246 

1. Determine the individual’s (continuous-time) viral load profile, 𝑉(𝑖)(𝜏), where 𝜏 is 247 

the time since infection, and their incubation period, 𝜏inc
(𝑖)

 (in Figure 2F and 248 

Supplementary Figure 2, we assumed homogeneous within-host dynamics, but 249 

in principle heterogeneity could be included). 250 

2. Calculate the individual undetected infectiousness profile, 𝛽𝑢
(𝑖)

(𝜏), and probability 251 

of a test taken at time since infection 𝜏  giving a positive result, 𝑝+
(𝑖)

(𝜏) , as 252 

described in the main text (note that 𝑝+
(𝑖)

 is here defined as a function of time since 253 

infection rather than viral load). 254 

3. Sample the (potential) time, 𝑟(𝑖), from the start of the day of infection to the exact 255 

(potential) infection time, uniformly between zero and one day. 256 

4. For each day since infection, 𝜏discr ≥ 1 (where the day of infection is denoted day 257 

0), calculate the discretised infectiousness, 𝛽𝑢,discr
(𝑖)

(𝜏discr), as the average value 258 

of 𝛽𝑢
(𝑖)

(𝜏) between times since infection (𝜏discr − 𝑟𝑖) and (𝜏discr − 𝑟𝑖 + 1). Note 259 

that implicit in our simulation algorithm is the assumption that hosts cannot 260 

transmit the pathogen on the day of infection (i.e. 𝛽𝑢,𝑑𝑖𝑠𝑐𝑟
(𝑖) (0) = 0). 261 

5. Calculate the probability, 𝑝+,discr
(𝑖) (𝜏discr) = 𝑝+

(𝑖)
(𝜏discr − 𝑟𝑖), of a test taken at the 262 

start of day of infection 𝜏discr ≥ 1 giving a positive result. 263 

6. Calculate the discretised incubation period, 𝜏inc,discr
(𝑖)

= ⌊(𝑟(𝑖) + 𝜏inc
(𝑖)

)⌋. Note that we 264 

only considered a single continuous incubation period, which exceeded 1, but if a 265 

non-trivial distribution is used, then it should be truncated to take values of at least 266 

1 in order to avoid symptom onset occurring on the day of infection. 267 
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7. Calculate the relative infectiousness on the day of symptom onset (assuming the 268 

host is not detected before developing symptoms), 𝛼𝑜
(𝑖)

, chosen to ensure that the 269 

continuous- and discrete-time infectiousness profiles give the same expected 270 

number of transmissions during this day (under the assumption of isolation 271 

immediately following the exact symptom onset time). 272 

8. Calculate the total duration of infection (up to loss of infectiousness), 𝜏rec,discr
(𝑖)

, as 273 

the earliest day of infection for which 𝛽𝑢
(𝑖)(𝜏discr) = 0  for all 𝜏discr ≥ 𝜏rec,discr

(𝑖)
. 274 

An example discretised infectiousness profile (without regular antigen testing) is 275 

shown in Supplementary Figure 2A. 276 

In the simulation algorithm, individuals are classified as being in one of the 277 

following states on each day: susceptible (𝑆), infected but undetected (𝑈), infected 278 

with symptom onset on the current day (and not detected prior to onset; 𝑂), infected 279 

and detected (𝐷), or recovered (specifically, no longer infectious following an infection; 280 

𝑅). The 𝑂 stage is included to allow for symptom onset (and therefore detection) 281 

occurring at any time of day, whereas for simplicity we assumed that regular antigen 282 

testing takes place only at the start of each day. The status of individual 𝑖 (at a given 283 

step in the simulation) is denoted by 𝑌(𝑖) ∈ {𝑆, 𝑈, 𝑂, 𝐷, 𝑅} . We write, for example,  284 

𝟏𝑆(𝑌(𝑖)), to denote the indicator function that takes the value 1 if 𝑌(𝑖) = 𝑆, and 0 285 

otherwise. However, we emphasise that the simulation model is not a compartmental 286 

model, since different individuals of the same status are not treated identically. 287 

Now, the simulation algorithm has the following inputs: 288 

• The population size, 𝑁. 289 

• The relative infectiousness of detected hosts, 𝛼𝑑. 290 

• The relative susceptibility, 𝜂(𝑖) , of each individual, 𝑖  (note that we assumed 291 

homogeneous susceptibility in our analyses, i.e., 𝜂(𝑖) = 1 for each 𝑖). 292 

• The quantities 𝛽u,discr
(𝑖)

(𝜏discr) , 𝑝+,discr
(𝑖) (𝜏discr) , 𝜏inc,discr

(𝑖)
, 𝛼𝑜

(𝑖)
 and 𝜏rec,discr

(𝑖)
, which 293 

characterise discretised individual within-host dynamics (as described above). 294 

• The number of antigen tests, 𝑍(𝑖)(𝑡), conducted by individual 𝑖 at the start of day 295 

𝑡  of the simulation (for each positive integer value of 𝑡 ). We considered two 296 

possibilities: 297 

i. In Figure 2F, we sampled 𝑍(𝑖)(𝑡) from a Poisson distribution with mean 1/𝑇 298 

(independently for each individual and each day, where a range of 𝑇 values 299 
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were considered). This is consistent with our analytic outbreak risk derivation 300 

(since an exponentially distributed duration between tests, with mean 𝑇 301 

(measured in days), leads to a Poisson-distributed number of tests being taken 302 

each day, with mean 1/𝑇, although note that tests may be taken at any time of 303 

day in the analytic approach), but leads to the possibility of more than one daily 304 

test. 305 

ii. In Supplementary Figure 3B, we instead considered a fixed (constant) gap of 306 

length 𝑇 between days on which a test is taken. For each individual, we sampled 307 

the first day of the simulation on which a test is conducted uniformly between 1 308 

and 𝑇 (independently for each individual). 309 

 310 

The outbreak simulation algorithm consists of the following steps: 311 

1. Initialise the time at 𝑡 = 0 days and the status of each host at 𝑌(𝑖) = 𝑆. 312 

2. Sample a single initial infected host, 𝑖, according to the relative susceptibilities, 𝜂𝑗 313 

(i.e., host 𝑗 is selected with probability 𝜂𝑗/ ∑ 𝜂𝑘
𝑁
𝑘=1 ). Set 𝑌(𝑖) = 𝑈 and the infection 314 

time, 𝑡inf
(𝑖)

= 0. 315 

3. While ∑ 𝟏{𝑈,𝑂,𝐷}(𝑌(𝑖)) > 0𝑛
𝑖=1  (i.e., while the number of active infections is greater 316 

than zero), repeat the following steps: 317 

a. Increase the simulation time, 𝑡, by 1 day (i.e., set 𝑡 = (𝑡 + 1)). 318 

b. For each 𝑖 such that both 𝑌(𝑖) ∈ {𝑈, 𝑂, 𝐷} and (𝑡inf
(𝑖)

+ 𝜏rec,discr
(𝑖)

) = 𝑡, set 𝑌(𝑖) = 𝑅 319 

(recovery/loss of infectiousness). 320 

c. For each 𝑖 such that 𝑌(𝑖) = 𝑂, set 𝑌(𝑖) = 𝐷 (day after symptom onset). 321 

d. For each 𝑖 such that 𝑌(𝑖) = 𝑈, carry out the following steps (testing process): 322 

i. Generate a random number, 𝑟, uniformly distributed between 0 and 1. 323 

ii. If 𝑟 < 1 − (1 −  𝑝+,discr
(𝑖)

(𝑡 − 𝑡𝑖𝑛𝑓
(𝑖)

))
𝑍(𝑖)(𝑡)

, set 𝑌(𝑖) = 𝐷. 324 

e. For each 𝑖  such that both 𝑌(𝑖) = 𝑈  and (𝑡inf
(𝑖)

+ 𝜏inc,discr
(𝑖)

) = 𝑡 , set 𝑌(𝑖) = 𝑂 325 

(symptom onset). 326 

f. Calculate the total infectious pressure exerted on each susceptible individual 327 

over the current simulation day, 328 

𝜆(𝑡) =
1

𝑁
(∑ (𝟏𝑈(𝑌(𝑗)) + 𝛼𝑜

(𝑗)
𝟏𝑂(𝑌(𝑗)) + 𝛼𝑑𝟏𝐷(𝑌(𝑗))) 𝛽u,discr

(𝑗)
(𝑡 − 𝑡𝑖𝑛𝑓

(𝑗)
)

𝑁

𝑗=1

). 329 
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g. For each 𝑖  such that 𝑌(𝑖) = 𝑆 , carry out the following steps (transmission 330 

process): 331 

i. Generate a random number, 𝑟, uniformly distributed between 0 and 1. 332 

ii. If 𝑟 < 1 − exp(−𝜂(𝑖)𝜆(𝑡)), set 𝑌(𝑖) = 𝑈 and 𝑡𝑖𝑛𝑓
(𝑖)

= 𝑡. 333 

For each testing scenario considered, we carried out 100,000 model 334 

simulations in a population of 𝑁 = 1,000 individuals. The outbreak risk was estimated 335 

as the proportion of model simulations in which the total number of individuals ever 336 

infected exceeded 10% of the total population (see Supplementary Figure 2). 337 

 338 



 

 15 

Supplementary Table 1 339 

Parameters Symbol Unit Value How obtained 

Rate constant for virus infection 𝑏 (copies/ml) −1 day−1 1.43 × 10−7 Fitted to viral load data 

Maximum rate constant for viral replication 𝛾 day−1 5.64 Fitted to viral load data 

Death rate of infected cells 𝛿 day−1 1.21 Fitted to viral load data 

Incubation period 𝜏inc days 4.60 Fitted to viral load data 

Initial quantity of free virus 𝑉(0) copies/ml 0.01 Assumed (3) 

Standard deviation of error in log viral load measurements σ log10 (copies/ml) 0.87 Fitted to viral load data 

Limit of infectiousness and detection limit of antigen test 𝑉∗ log10 (copies/ml) 3.30 Minimum viral load for culturable virus for the 
omicron variant from (4) 

Relative infectiousness of detected hosts 𝛼d --- 0.26 Estimated value for the delta variant from (5) 
(other values considered in Figure 3) 

Reproduction number at time of introduction in absence of 
regular antigen testing 

𝑅0 --- 1.5 Assumed (other values considered in Figure 
3 and elsewhere) 

Mean interval between antigen tests when regular testing 
conducted 

𝑇 days 2 Assumed (Figure 2BC only; a range of 
values considered elsewhere) 

Supplementary Table 1. Baseline parameter values used in our analyses. These parameter values were used in our analyses except where explicitly stated 340 

otherwise. Note that the values of the within-host model parameters 𝑏, 𝛾, 𝛿 and 𝜏𝑖𝑛𝑐 here are population median estimates (fixed effects); estimates of random 341 

effects are given in Supplementary Table 2 (the random effects were used to account for heterogeneous within-host dynamics in Figure 4). 342 

  343 
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Supplementary Table 2 344 

Parameters Symbol Value 

Random effect for rate constant for virus infection 𝜔𝑏 1.33 

Random effect for maximum rate constant for viral replication 𝜔𝛾 0.15 

Random effect for death rate of infected cells 𝜔𝛿 0.54 

Random effect for incubation period 𝜔𝜏inc
 0.29 

Supplementary Table 2. Estimated random effects for within-host model parameters. The estimated quantities correspond to the standard deviation of 345 

the natural logarithm of the parameters 𝑏, 𝛾, 𝛿 and 𝜏𝑖𝑛𝑐  between different individuals (see the section “Within-host model and parameter estimation” of 346 

Methods in the main text for details; population parameter values (fixed effects) and units are given in Supplementary Table 1). 347 

 348 



 

 17 

Supplementary Figure 1 349 

 350 

Supplementary Figure 1. Reconstructed viral dynamics for individual hosts. Individual-level 351 

model fits to longitudinal SARS-CoV-2 viral load data using a target cell-limited within-host model are 352 

shown (see the section “Within-host model and parameter estimation” of Methods in the main text). 353 

Overall, we used data from 521 individuals with omicron variant infections (6) to characterise SARS-354 

CoV-2 viral dynamics; here, individual model fits are shown for 100 randomly chosen individuals. In 355 

each panel (corresponding to a single individual), the dots indicate the measured viral load data, and 356 

the solid curves the estimated viral load at different times relative to symptom onset.  357 
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Supplementary Figure 2 358 

 359 

Supplementary Figure 2. Alternative estimation of the outbreak risk using a discrete-time, 360 

individual-based, stochastic outbreak simulation model. A. Example discretised infectiousness 361 

profile of a single infected host when regular antigen testing does not take place. B. The output of two 362 

realisations of the stochastic outbreak simulation model. C. Histogram of total outbreak sizes (i.e., the 363 

total proportion of the population ever infected during the outbreak) over 100,000 model simulations. 364 

The vertical black dashed line indicates the assumed threshold for a major outbreak of 10% of the 365 

population being infected. Here (without regular antigen testing), the estimated outbreak risk (i.e., the 366 

proportion of model simulations classified as major outbreaks) is 0.58. Details of the stochastic 367 

simulation model are given in Supplementary Note 5.  368 
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Supplementary Figure 3 369 

 370 

Supplementary Figure 3. Effect of details of implementation of antigen testing in our modelling 371 

approach on the outbreak risk under regular antigen testing. A. The outbreak risk for different 372 

values of the (mean) interval between antigen tests, comparing our default analytic approach using an 373 

expected infectiousness profile that averages over the individual infectiousness profiles of hosts with 374 

different detection times (blue), and a more complex approach in which variations in detection times 375 

are accounted for directly by sampling the detection times of a large number of individuals and using 376 

Eq. (2) to calculate the outbreak risk (red dashed). B. The outbreak risk for different values of the (mean) 377 

interval between tests, comparing our default analytic approach assuming an exponentially distributed 378 

interval between tests (black dashed), and both the analytic (blue) and simulation-based approaches 379 

(red crosses) under the alternative assumption of a fixed (constant) interval between tests. Note that in 380 

the analytic approach with a fixed interval, we used sampled detection times since the expected 381 

infectiousness profile was not readily available in this case. 382 

  383 
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Supplementary Figure 4 384 

 385 

Supplementary Figure 4. Effect of delayed and/or time-limited antigen testing. A. The outbreak 386 

risk for different delays from the time of the first infection to the introduction of regular antigen testing, 387 

assuming an infinite duration of testing, and either 1 (blue), 2 (red) or 3 days (orange) between tests 388 

(on average). B. The outbreak risk for different durations of antigen testing, assuming a delay of one 389 

incubation period (4.6 days) from the first infection to the start of testing (i.e., testing starts following the 390 

detection of a symptomatic case), and either 1 (blue), 2 (red) or 3 days (orange) between tests (on 391 

average). C. The outbreak risk for different values of the (mean) interval between tests with a fixed total 392 

of 5 (blue), 10 (red), 20 (orange) or 40 (purple) tests available to each individual (on average), assuming 393 

a delay of one incubation period from the first infection to the start of testing.  394 
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