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Supplementary Note 1: Probability of detection

Here, we derive the expression given in the main text for the probability, p,(7),
of an infected individual, subject to regular antigen testing, having been detected by
time since infection . We assume (as in most of our analyses) an exponentially
distributed interval of mean T between successive tests (i.e., a constant rate of
testing).

First, since we assume that symptomatic hosts are always detected, we have
pqa(r) =1 for t = 1y,., Where 1, is the individual’s incubation period (which can be
taken to be infinite to represent an entirely asymptomatic infection). Now, for t < 7y,
we consider a short time interval [t,7 + dt]. The probability that the individual returns
a positive antigen test in this interval is given (up to terms of order dr?) by
(1/T)dt x p.(V (7)), where (1/T)dt represents the probability of taking a test, and
p+ V(1)) the probability that the result of a test is positive (which depends on the
instantaneous viral load, V(z)). Conditioning on whether or not a positive test is

returned in the interval [z, 7 + dz] then gives

p.(V(1))dr
T

pa(r +dr) =1x _M)

+ pqa(T) X <1 -
where the probability of detection by time (t + dr) conditional on a positive test in
[z,7+dz] is 1, and the probability conditional on no positive test in that interval is
pa(7).

Rearranging the above equation and taking the limit dr - 0 gives the

differential equation,

d V(@
a2 0O 1)

which can be solved alongside the initial condition p;(0) = 0 to obtain

Pa(r) = 1—exp (—% | p+(V<x>)dx),
0

for T < Tjpe.
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Supplementary Note 2: Derivation of outbreak risk

Below, we derive an analytical expression for the outbreak risk in a
heterogeneous population divided into n subgroups (the special case of a
homogeneous population is obtained when n = 1), between which the infectiousness
profile of infected hosts (as well as other factors such as susceptibility) may vary.
Specifically, we consider a branching process model in which susceptible depletion is
neglected and infection lineages are assumed to be independent. The outbreak risk is
then taken to be the probability that epidemic extinction does not occur within this
branching process framework, following the introduction of a single newly infected host
into the population, i.e., the probability that the number of currently infected individuals
never reaches zero but instead tends to infinity (note that in reality, the assumptions
underlying the branching process model will no longer be valid when the number of
infected individuals becomes large).

We suppose that each infected host in group j transmits the pathogen to

individuals in group i at total rate g;;(t) at time since infection = (a specific form of
Bi,j(t) is considered later). The expected total number of infections generated in group

i by each infected host in group j (over the course of infection) is then

Ri,j = f ﬁi,j(T)dT,
0

where the basic reproduction number (accounting for regular antigen testing if in
place), Ry, is the largest eigenvalue of the matrix with entries R;; (the next-
generation matrix) (1).

Now, we suppose that a single infected individual in group j is introduced into
the population at time since infection t, with the remainder of the population assumed
to be uninfected at the time of introduction (and assuming no further external pathogen
introductions into the population). Then an expression for the probability of extinction
(i.e., the probability that a major outbreak does not occur), denoted gq;(r), can be
derived by conditioning on whether or not the initial infected individual transmits the
pathogen (to an individual in any population group) between times since infection t
and (t + dr), to obtain (neglecting the possibility that multiple transmissions occur,

which has probability of order dr?)

qj(t) = (Z q;(t + dr)q;(0) X ﬁi,j(r)dr> +q;(t +dr) X <1 — Zﬁi,j(r)dr).

=1
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Here, B;;(r)dr gives the probability of a transmission to an individual in group i
occurring in this time interval, q;(tr + dr)q;(0) the extinction probability conditional on

such a transmission occurring (since infection lineages are assumed to be
independent), and gq;(r+dr) the extinction probability conditional on no
transmissions occurring.

Rearranging the above equation and taking the Ilimit dr — 0 gives the

differential equation,
n
dg;
2 =4, ) (1~ 6B,
i=1

which can be solved alongside the boundary condition g;(«) = 1 to obtain

4;(0) = exp (—Z(l -a©) | ﬁi,,(x)dx).
i=1 T

In particular, we have

q;(0) = exp (—2(1 - Qi(O))Ri,j>-

Now, a relatively general parameterisation is to take g; ;(7) = &n;C; ;B;(t), so
that R, ; = &n,C; ;B;. Here, B;(7) is the infectiousness profile of an infected individual
in group j, B; is the total integral of g;(r) over all times since infection, &; is the
proportion of the population who are in group i, n; is the relative susceptibility in group
i,and C;; represents the rate of contacts between individuals in groups i and j. The
above equation can be used to calculate the outbreak risk for general g;;(7).
However, further analytic progress is possible under the assumption of homogeneous
mixing (i.e., when C;; is independent of i and j). Absorbing the value of C;; into

B: (D) (i.e., setting C;; = 1), we then have

q;(0) = exp <_Bj Z(l - %(@)&m)- (S1)

In this case, the overall extinction probability following the introduction of a

single newly infected individual is

n n

1
a©) == ) &m,0,0) = )" 0,3, (0), (52)
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where 77 =3Y"_, &n; gives the mean population susceptibility, and a; = &n,/7 gives
the proportion of new infections that are in group j. Now, Eq. (S1) above can be written
as

q;(0) = exp(—(1 - q(0)75;),
and substituting this expression into Eq. (S2) then gives

n n

1
q(0) = ﬁz ginjexp(—(1—q(0))7B;) = jzlajexp(—(l —q(0)R)), (S3)

j=1
where R; = 7B; gives the expected number of transmissions generated by an infected
host in group j (over the course of infection).

Finally, the outbreak risk (following the introduction of a single newly infected
individual into an otherwise susceptible population), poutbreaxk = 1 — q(0) , then

satisfies

n
Poutbreak = 1 — Z aj X eXp(_Rj X poutbreak) ’
Jj=1

which is Eqg. (2) in the main text. While this equation may have multiple solutions (in
particular, pyumreak = 0 IS always a solution), by standard theory of hitting
probabilities on Markov chains (2), the relevant solution is the largest solution between
0 and 1 (since the relevant solution to Eg. (S3) is the minimal non-negative one). While
we focussed on the outbreak risk starting with a single, newly infected, primary case,
it would be straightforward to consider an infected individual introduced into the
population later in infection, and/or multiple pathogen introductions, in our approach.

We note that the basic reproduction number in this scenario (accounting for
regular antigen testing, if carried out) is

n n

Ry et = Z &nB; = z a;R;,

i=1 i=1
where the first equality follows since the next-generation matrix is of separable form

R;; = c;d; (where here ¢; = gmn; and d; = B;) and therefore has largest eigenvalue

Roeff = Xi=q c;d; (1). This can also be written as

Roeri = | B0,
0
where (1) = 7Y, a;f;(t) gives the expected infectiousness profile, accounting for

the relative susceptibility of the population. We also note that while the derivation
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here includes the possibility of heterogeneous susceptibility between different
population sub-groups, we did not consider heterogeneous susceptibility in our
numerical analyses.

In the special case of a homogeneous population (n = 1), we have

Poutbreak = 1 — exp(_RO,eff X poutbreak)'

i.e. we recover Eg. (1) in the main text.
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Supplementary Note 3: Wider applicability of outbreak risk equation accounting
for heterogeneity

The resultin Eg. (2), while derived in the context of a time-since-infection model
in a heterogeneous population, is in fact widely applicable to a range of (branching
process) models. Specifically, taking the limit of a continuous distribution of population
subgroups in Eq. (2) gives the equation

Poutbreak = 1- f a(9) X exp(—R(G) X poutbreak)de- (54)
2]

Here 6 € ® is a continuous variable (which may be either real-valued or higher-
dimensional) indexing population sub-groups and/or possible “types” of infection, a(0)
is the probability density that a new infection is of type 6, and R(6) gives the expected
total number of transmissions generated by an infected host with infection type 8. We
briefly note that the continuous formulation in Eq. (S4) is applicable to the scenario of
heterogeneous within-host dynamics that we considered, but in practice it was easier
to calculate the outbreak risk by sampling the within-host dynamics of a large number
of hosts and using Eg. (2).

As an example to demonstrate the applicability of Eq. (S4), we consider a
branching process approximation of the stochastic SIR compartmental epidemic
model. In this case, the possible “types” of infection are indexed by the infectious
period, 6 =t; € [0,00), with a(0) = pexp(—ut;) (i.e., an exponentially distributed
infectious period is assumed) and R(8) = Ryut; (i.e., the expected number of
transmissions by an infected host is proportional to their infectious period). Substituting

into Eq. (S4) then gives

Poutbreak = 1 — f u exp(_(l + Ropoutbreak).utl) dt;.
0

Integrating and taking the largest solution between 0 and 1 of the resulting quadratic

equation then reproduces the well-known formula,

1
Poutbreak = Max {1 - R—, 0}.
0

Similarly, the outbreak risk under branching process approximations of a wide range
of more complex compartmental models, for example models with non-exponentially
distributed infectious periods and/or age structure, can also be represented using Eq.
(S4).
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Supplementary Note 4: Outbreak risk under delayed and/or time-limited regular
antigen testing

Here, we generalise our results to obtain an expression for the outbreak risk in
scenarios where regular antigen testing is introduced reactively after an infection
occurs and/or is only in place for a limited period of time. For simplicity, we consider
homogeneous within-host dynamics (although the derivation presented here readily
generalises to a heterogeneous population), supposing that each host infected at
calendar time t transmits the pathogen at rate B(z,t) at time since infection t (i.e.,
at calendar time (t + 7)). Below, we first derive the outbreak risk for general £(z,t),
before deriving a specific form of g(tr,t) under delayed and/or time-limited regular
antigen testing.

We suppose that an infected individual, who was infected at calendar time t, is
introduced into an otherwise uninfected population at time since infection 7 (at
calendar time (t + 7)). Then, conditioning on whether or not the initial infected host
transmits the pathogen between times since infection t and (z + dr) (and assuming
no more external infections), we find that the extinction probability, g(z,t), satisfies
(up to terms of order dr?)

q(t,t) = q(t +dt,t)q(0,t + T + dr) X B(7,t)dt + q(t + d7,t) X (1 — B(7, t)d71).
Rearranging and taking the limit dtr — 0 gives the differential equation,

d
a_z = q(z,t)(1 = q(0,t + 0)B(x, ),

which can be solved alongside the boundary condition g(oo,t) = 1 to obtain

q(t,t) =exp (— jm(l —q(0,t+ f))ﬁ(f, t)df).

In particular, we have

q(0,t) = exp <— foo(l —q(0,t+ T)),B(T, t)dT),
0

(where we have relabelled T from the previous equation as 1) and the outbreak risk,
Poutbreak(t) = 1 — q(0, t), following the introduction of a single newly infected host at

time t, is therefore the largest solution between 0 and 1 of the equation

o)

Poutbreak(t) = 1 — exp <_ f Doutbreak (t + T)B(T, t)dT> . (S5)
0
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We now derive the form of B(z,t) under delayed and/or time-limited regular
antigen testing. Specifically, we suppose that testing only takes place between
calendar times tg .« and te.,q, and that within that time period, the interval between
tests (for a specified individual) is exponentially distributed with mean T. A similar
argument to that in Supplementary Note 1 can be used to show that the probability,
pqa(7,t), of an individual infected at calendar time t having been detected by time
since infection 7 < 13, (Where 1, is the incubation period, with p,;(t,t) =1 for T >

Tinc)1 is

1 jmax{o, min{z, tenq—t}}

pa(t,t) =1 —exp <—7 P+ (V(x))dx),

max{0, min{z, tsgart—t}}
where p,(V(x)) gives the probability that the result of a test taken at time since
infection x is positive, and the limits of the integral give the times since infection up to
T over which the regular antigen testing policy is in place. The (calendar time-
dependent) expected infectiousness profile, accounting for different possible detection
times, is then
B t) = [agpa(,t) + (1 = pa(r, )] X Bu (D),

where B,(t) is the infectiousness profile of an undetected individual at time since
infection 7, and a, is the relative infectiousness of a detected host.

Finally, we consider a scenario in which regular antigen testing is introduced
after a delay of x4, from the time of the first infection (where we may expect x4 to
be at least the length of the incubation period), and is carried out over a finite duration
of time, xq,r. This scenario can be represented by taking tg,.« = 0 and teng = Xqur
in the above, and then using Eq. (S5) to calculate pyutpreak(—xger) NUMerically. In this
scenario, for t = teng, Poutbreak(t) iS simply the outbreak risk in the absence of
antigen testing (which is independent of ¢t and can be calculated using Eg. (1) in the
main text). Eq. (S5) can therefore be solved iteratively on a grid of t € [—x4el, tena] BY
considering successively lower t values and each time discretising the integral in Eq.
(S5) to calculate pyumreak(t), since Eq. (S5) allows p,umreak(t) to be calculated once
Poutbreak (X) 1S known for x > t.

We note that the above numerical scheme in fact gives the outbreak risk for a
grid of delays from 0 up to and including x4, (for a fixed duration, xg4,.). If there is no
delay, then it is convenient to instead take tg.,,+ = — and t.,q = 0, and to calculate

Poutbreak(t) ON a grid of negative t in order to obtain the outbreak risk for different

9
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durations of regular antigen testing (although we note that this scenario is unlikely to

be of real-world relevance, unless an infection occurs shortly before the scheduled

end of an ongoing regular antigen testing program).
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Supplementary Note 5: Details of discrete-time stochastic outbreak simulation

algorithm

We verified our analytically derived estimates of the outbreak risk by comparing

these estimates with corresponding estimates obtained through repeated simulation

of a discrete-time, individual-based stochastic epidemic model (Figure 2F and

Supplementary Figure 2). In this section, we describe the simulation model and how

it was used to estimate the outbreak risk.

Prior to running each outbreak simulation, we first determined and discretised

the within-host dynamics that each individual, i, in the population would follow if ever

infected, according to the following steps:

1.

Determine the individual’s (continuous-time) viral load profile, V® (1), where 7 is
the time since infection, and their incubation period, rl(r?c (in Figure 2F and
Supplementary Figure 2, we assumed homogeneous within-host dynamics, but
in principle heterogeneity could be included).

Calculate the individual undetected infectiousness profile, ﬁl(f) (1), and probability

of a test taken at time since infection t giving a positive result, pf)(r), as

described in the main text (note that pf) is here defined as a function of time since
infection rather than viral load).

Sample the (potential) time, r®, from the start of the day of infection to the exact
(potential) infection time, uniformly between zero and one day.

For each day since infection, tg4;scr = 1 (Where the day of infection is denoted day

0), calculate the discretised infectiousness, ﬁ(i)

wdiser (Tdiser), @s the average value
of ﬁff)(r) between times since infection (tgiser —17;) and (tgiser —1; + 1). Note
that implicit in our simulation algorithm is the assumption that hosts cannot

transmit the pathogen on the day of infection (i.e. ﬁ(” (0) = 0).

u,discr

)

+ diser (Tdiser) = pff) (Taiscr — 13), Of a test taken at the

Calculate the probability, p

start of day of infection tg4iscr = 1 giving a positive result.

Calculate the discretised incubation period, Ti(l?c,discr = Kr(i) + rl(l?c)J Note that we

only considered a single continuous incubation period, which exceeded 1, but if a
non-trivial distribution is used, then it should be truncated to take values of at least

1 in order to avoid symptom onset occurring on the day of infection.

11
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7. Calculate the relative infectiousness on the day of symptom onset (assuming the

host is not detected before developing symptoms), aff), chosen to ensure that the
continuous- and discrete-time infectiousness profiles give the same expected
number of transmissions during this day (under the assumption of isolation

immediately following the exact symptom onset time).

®
rec,discr’
®

rec,discr’

8. Calculate the total duration of infection (up to loss of infectiousness), t as

the earliest day of infection for which Bff) (Tgiser) = 0 forall tgiger =7

An example discretised infectiousness profile (without regular antigen testing) is

shown in Supplementary Figure 2A.

In the simulation algorithm, individuals are classified as being in one of the
following states on each day: susceptible (S), infected but undetected (U), infected
with symptom onset on the current day (and not detected prior to onset; 0), infected
and detected (D), or recovered (specifically, no longer infectious following an infection;
R). The 0 stage is included to allow for symptom onset (and therefore detection)
occurring at any time of day, whereas for simplicity we assumed that regular antigen
testing takes place only at the start of each day. The status of individual i (at a given
step in the simulation) is denoted by Y® € {S,U,0,D,R}. We write, for example,
15,(Y®), to denote the indicator function that takes the value 1 if Y& =, and 0
otherwise. However, we emphasise that the simulation model is nhot a compartmental
model, since different individuals of the same status are not treated identically.

Now, the simulation algorithm has the following inputs:

e The population size, N.

e The relative infectiousness of detected hosts, a .

e The relative susceptibility, nY, of each individual, i (note that we assumed
homogeneous susceptibility in our analyses, i.e., n® =1 for each ).

e The quantities ﬁﬁ%iscr(rdiscr), pg}iiscr(l—discr)’ ri(r?c,discr, a” and Tr(?c,discr’ which
characterise discretised individual within-host dynamics (as described above).

e The number of antigen tests, Z®(t), conducted by individual i at the start of day
t of the simulation (for each positive integer value of t). We considered two
possibilities:

i. In Figure 2F, we sampled Z®W(t) from a Poisson distribution with mean 1/T

(independently for each individual and each day, where a range of T values

12
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were considered). This is consistent with our analytic outbreak risk derivation
(since an exponentially distributed duration between tests, with mean T
(measured in days), leads to a Poisson-distributed number of tests being taken
each day, with mean 1/T, although note that tests may be taken at any time of
day in the analytic approach), but leads to the possibility of more than one daily
test.

In Supplementary Figure 3B, we instead considered a fixed (constant) gap of
length T between days on which a test is taken. For each individual, we sampled
the first day of the simulation on which a test is conducted uniformly between 1

and T (independently for each individual).

The outbreak simulation algorithm consists of the following steps:

Initialise the time at t = 0 days and the status of each hostat Y® = §.

Sample a single initial infected host, i, according to the relative susceptibilities, 7;

(i.e., host j is selected with probability n;/ ¥x-; nx)- Set Y = U and the infection

time, tO = .

inf

While Y1 1,00;(Y®) > 0 (i.e., while the number of active infections is greater

than zero), repeat the following steps:

a.

e.

f.

Increase the simulation time, t, by 1 day (i.e., set t = (t + 1)).

@ 4 O

inf rec,discr

For each i such that both Y® € {U,0,D} and (t ) =t,set YO =R
(recoveryl/loss of infectiousness).

For each i suchthat Y® = 0, set Y® = D (day after symptom onset).

For each i such that Y® = U, carry out the following steps (testing process):

i. Generate a random number, r, uniformly distributed between 0 and 1.

AOIOS) '
)) ,set YO =D,

® 4 O

inf inc,discr

i. fr<i1- (1 - pf}iiscr(t _+®

For each i such that both Y® =y and (t )= t, set YO =0

(symptom onset).
Calculate the total infectious pressure exerted on each susceptible individual
over the current simulation day,
1~ . . . N .
2© =+ D (106D + aP1,(r D) + a1y (v D)) e e = 1) )
j=1

13
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g. For each i such that Y® =5, carry out the following steps (transmission
process):

I. Generate a random number, r, uniformly distributed between 0 and 1.

i. If r<1—exp(-nWA)), set YO =U and tl(;l)f =t.
For each testing scenario considered, we carried out 100,000 model
simulations in a population of N = 1,000 individuals. The outbreak risk was estimated
as the proportion of model simulations in which the total number of individuals ever

infected exceeded 10% of the total population (see Supplementary Figure 2).

14



339

340
341
342
343

Supplementary Table 1

Parameters Symbol  Unit Value How obtained

Rate constant for virus infection b (copies/ml) tday! 1.43 x 10”7 Fitted to viral load data

Maximum rate constant for viral replication y day™? 5.64 Fitted to viral load data

Death rate of infected cells 1) day! 1.21 Fitted to viral load data

Incubation period Tinc days 4.60 Fitted to viral load data

Initial quantity of free virus V(0) copies/ml 0.01 Assumed (3)

Standard deviation of error in log viral load measurements ¢ log1o (copies/ml) 0.87 Fitted to viral load data

Limit of infectiousness and detection limit of antigen test 4 logio (copies/ml) 3.30 Minimum viral load for culturable virus for the
omicron variant from (4)

Relative infectiousness of detected hosts ag 0.26 Estimated value for the delta variant from (5)
(other values considered in Figure 3)

Reproduction number at time of introduction in absence of R, 1.5 Assumed (other values considered in Figure

regular antigen testing 3 and elsewhere)

Mean interval between antigen tests when regular testing T days 2 Assumed (Figure 2BC only; a range of

conducted

values considered elsewhere)

Supplementary Table 1. Baseline parameter values used in our analyses. These parameter values were used in our analyses except where explicitly stated
otherwise. Note that the values of the within-host model parameters b, y, § and t;,. here are population median estimates (fixed effects); estimates of random
effects are given in Supplementary Table 2 (the random effects were used to account for heterogeneous within-host dynamics in Figure 4).

15



344  Supplementary Table 2

Parameters Symbol Value
Random effect for rate constant for virus infection Wy 1.33
Random effect for maximum rate constant for viral replication  w, 0.15
Random effect for death rate of infected cells Ws 0.54

Random effect for incubation period 0.29

Wy,
Ting

345 Supplementary Table 2. Estimated random effects for within-host model parameters. The estimated quantities correspond to the standard deviation of
346 the natural logarithm of the parameters b, y, § and 7;,. between different individuals (see the section “Within-host model and parameter estimation” of
347  Methods in the main text for details; population parameter values (fixed effects) and units are given in Supplementary Table 1).

348

16
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Supplementary Figure 1
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Supplementary Figure 1. Reconstructed viral dynamics for individual hosts. Individual-level

model fits to longitudinal SARS-CoV-2 viral load data using a target cell-limited within-host model are

shown (see the section “Within-host model and parameter estimation” of Methods in the main text).

Overall, we used data from 521 individuals with omicron variant infections (6) to characterise SARS-

CoV-2 viral dynamics; here, individual model fits are shown for 100 randomly chosen individuals. In

each panel (corresponding to a single individual), the dots indicate the measured viral load data, and

the solid curves the estimated viral load at different times relative to symptom onset.
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Supplementary Figure 2. Alternative estimation of the outbreak risk using a discrete-time,
individual-based, stochastic outbreak simulation model. A. Example discretised infectiousness
profile of a single infected host when regular antigen testing does not take place. B. The output of two
realisations of the stochastic outbreak simulation model. C. Histogram of total outbreak sizes (i.e., the
total proportion of the population ever infected during the outbreak) over 100,000 model simulations.
The vertical black dashed line indicates the assumed threshold for a major outbreak of 10% of the
population being infected. Here (without regular antigen testing), the estimated outbreak risk (i.e., the
proportion of model simulations classified as major outbreaks) is 0.58. Details of the stochastic

simulation model are given in Supplementary Note 5.
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Supplementary Figure 3
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Supplementary Figure 3. Effect of details of implementation of antigen testing in our modelling
approach on the outbreak risk under regular antigen testing. A. The outbreak risk for different
values of the (mean) interval between antigen tests, comparing our default analytic approach using an
expected infectiousness profile that averages over the individual infectiousness profiles of hosts with
different detection times (blue), and a more complex approach in which variations in detection times
are accounted for directly by sampling the detection times of a large number of individuals and using
Eq. (2) to calculate the outbreak risk (red dashed). B. The outbreak risk for different values of the (mean)
interval between tests, comparing our default analytic approach assuming an exponentially distributed
interval between tests (black dashed), and both the analytic (blue) and simulation-based approaches
(red crosses) under the alternative assumption of a fixed (constant) interval between tests. Note that in
the analytic approach with a fixed interval, we used sampled detection times since the expected

infectiousness profile was not readily available in this case.
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386 Supplementary Figure 4. Effect of delayed and/or time-limited antigen testing. A. The outbreak
387  risk for different delays from the time of the first infection to the introduction of regular antigen testing,
388 assuming an infinite duration of testing, and either 1 (blue), 2 (red) or 3 days (orange) between tests
389 (on average). B. The outbreak risk for different durations of antigen testing, assuming a delay of one
390 incubation period (4.6 days) from the first infection to the start of testing (i.e., testing starts following the
391 detection of a symptomatic case), and either 1 (blue), 2 (red) or 3 days (orange) between tests (on
392 average). C. The outbreak risk for different values of the (mean) interval between tests with a fixed total
393 of 5 (blue), 10 (red), 20 (orange) or 40 (purple) tests available to each individual (on average), assuming

394  adelay of one incubation period from the first infection to the start of testing.
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