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Abstract8

Background Since the outset of the COVID-19 pandemic, substantial public attention has focused on9

the role of seasonality in impacting transmission. Misconceptions have relied on seasonal mediation10

of respiratory diseases driven solely by environmental variables. However, seasonality is expected to be11

driven by host social behavior, particularly in highly susceptible populations. A key gap in understanding12

the role of social behavior in respiratory disease seasonality is our incomplete understanding of the13

seasonality of indoor human activity.14

Methods We leverage a novel data stream on human mobility to characterize activity in indoor versus15

outdoor environments in the United States. We use an observational mobile app-based location dataset16

encompassing over 5 million locations nationally. We classify locations as primarily indoor (e.g. stores,17

o�ces) or outdoor (e.g. playgrounds, farmers markets), disentangling location-specific visits into indoor18

and outdoor, to arrive at a fine-scale measure of indoor to outdoor human activity across time and space.19

Results We find the proportion of indoor to outdoor activity during a baseline year is seasonal, peaking20

in winter months. The measure displays a latitudinal gradient with stronger seasonality at northern21

latitudes and an additional summer peak in southern latitudes. We statistically fit this baseline indoor-22

outdoor activity measure to inform the incorporation of this complex empirical pattern into infectious23

disease dynamic models. However, we find that the disruption of the COVID-19 pandemic caused24

these patterns to shift significantly from baseline, and the empirical patterns are necessary to predict25

spatiotemporal heterogeneity in disease dynamics.26

Conclusions Our work empirically characterizes, for the first time, the seasonality of human social be-27

havior at a large scale with high spatiotemporal resolution, and provides a parsimonious parameterization28

of seasonal behavior that can be included in infectious disease dynamics models. We provide critical evi-29

dence and methods necessary to inform the public health of seasonal and pandemic respiratory pathogens30

and improve our understanding of the relationship between the physical environment and infection risk31

in the context of global change.32

Funding Research reported in this publication was supported by the National Institute of General33

Medical Sciences of the National Institutes of Health under award number R01GM123007.34

1 Introduction35

The seasonality of infectious diseases is a widespread and familiar phenomenon. Although a number of36

potential mechanisms driving seasonality in directly transmitted infectious diseases have been proposed, the37

causal process behind seasonality is still largely an open question [1, 2, 3]. In the case of the influenza38

virus, seasonal changes in humidity have been identified as a potential mechanism, with drier winter months39

enhancing transmission [4, 5, 6]; similar patterns have been observed for respiratory syncytial virus and hand40
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foot and mouth disease [7, 8]. However, humidity is but one of many mechanisms contributing to seasonality41

in infectious disease transmission. Seasonal changes in temperature, human mixing patterns, and the immune42

landscape, among other factors, are thought to contribute to transmission dynamics [9, 10, 11, 12, 2]. The43

relative importance of these disparate mechanisms varies across directly-transmitted pathogens and is still44

largely unexplained [1, 3]. The influence of seasonal host behavior on respiratory disease seasonality remains45

particularly understudied [13, 11] except for a few notable examples [14, 15, 16].46

For respiratory pathogens spread via the aerosol transmission route, in particular, seasonality may be medi-47

ated by multiple behaviorally-driven mechanisms. Aerosol transmission, a significant mode of transmission48

for a number of respiratory pathogens including tuberculosis, measles, and influenza [17], has become increas-49

ingly acknowledged during the COVID-19 pandemic [18, 19, 20, 21, 22]. The role of aerosols in respiratory50

disease transmission allows for transmission outside of the traditional 6 ft. radius and 5-minute duration for51

the droplet mode and implicates human mixing in indoor locations with poor ventilation as being a high52

risk for transmission, regardless of the intensity of the social contact. While more is known about the spa-53

tiotemporal variation in environmental factors such as temperature and humidity in the indoor environment54

(e.g. [23]) and about the impact these factors have on airborne pathogen transmission (e.g. [24, 25]), limited55

information is available on rates of human indoor activity and how this varies geographically and seasonally.56

In the US, most studies quantifying indoor and outdoor time are conducted in the context of air pollutants,57

su↵er from small study sizes, lack spatiotemporal resolution, and are outdated. The most cited estimates58

originate from the 1980s-90s and estimate that Americans spend upwards of 90% of their time indoors [26];59

and more recent data agree with these estimates [27, 28]. While it is well understood that seasonal di↵er-60

ences and latitude likely a↵ect time spent indoors, little is known of the spatiotemporal variation in indoor61

activity beyond this one monolithic estimate, vastly limiting our ability to comprehensively characterize the62

seasonality of airborne disease exposure risk.63

Because our understanding of the drivers of seasonality for respiratory diseases has been limited, the model-64

ing of seasonally-varying infectious disease dynamics has been traditionally done using environmental data-65

driven or phenomenological approaches. Environmental data-driven approaches incorporate seasonality into66

epidemiological models through environmental correlates of seasonality, such as solar exposure or outdoor67

temperature [12, 7, 29]. This approach to seasonal dynamics controls for inter-seasonal variation in trans-68

mission dynamics and measures the strength of correlations between proposed metrics and seasonal variation69

in force of infection – although the observed relationship is rarely causally relevant for respiratory disease70

transmission. In contrast, phenomenological models such as seasonal forcing approaches modulate trans-71

missibility over time without specifying a particular mechanism for this modulation [30, 2]. By applying72

well-understood functions (such as sine functions), seasonal forcing allows for flexible specification and quan-73

tification of dynamics, such as periodicity or oscillation damping, and indirectly captures seasonal variation74

in non-environmental factors such as school mixing. A significant remaining gap in seasonal infectious disease75

modeling is thus the ability to empirically incorporate spatiotemporal variation in behavioral mechanisms76

driving seasonality of disease exposure and transmission.77

Thus, despite the role of the indoor built environment in exposure to the airborne transmission route,78

seasonal variation in indoor human mixing has not yet been systemically characterized nor integrated into79

mathematical models of seasonal respiratory pathogens. To address this gap, we construct a novel metric80

quantifying the relative propensity for human mixing to be indoors at a fine spatiotemporal scale across81

the United States. We derive this metric using anonymized mobile GPS panel data of visits of over 4582

million mobile devices to approximately 5 million public locations across the United States. We find a83

systematic latitudinal gradient, with indoor activity patterns in the northern and southern United States84

following distinct temporal trends at baseline. However, we find that the COVID-19 pandemic disrupted this85

structure. Lastly, we fit simple parametric models to incorporate these seasonal activity dynamics into models86

of infectious disease transmission when indoor activity is expected to be at baseline. Our work provides the87

evidence and methods necessary to inform the epidemiology of seasonal and pandemic respiratory pathogens88

and improve our understanding of the relationship between the physical environment and infection risk in89

light of global change.90
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(A) (B)

Figure 1: (A) Case studies to highlight varying trends in indoor activity seasonality during 2018 and 2019:
King County and Su↵olk County (in the northern US) have high indoor activity in the winter months and a
trough in indoor activity in the summer months. Miami-Dade and Maricopa County (in the southern US)
see moderate indoor activity in the winter and may have an additional peak in indoor activity during the
summer. We apply a rolling window mean for visualization purposes. (B) A heatmap of the indoor activity
seasonality metric for all US counties by week for 2018 and 2019. Counties are ordered by latitude. We see
significant spatiotemporal heterogeneity with distinct trends in the summer versus winter seasons.
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Methods91

Data Source92

We use the SafeGraph Weekly Patterns data, which provides foot tra�c at public locations (“points of93

interest”, referred to as POIs from here on) across the US based on the usage of mobile apps with GPS94

[31]. The data are from 2018 to 2020, and 4.6 million POIs are sampled in all years of our study. The data95

is anonymized by applying noise, omitting data associated with a single mobile device, and is provided at96

the weekly temporal scale. Data are sampled from over 45 million smartphone devices (of approximately97

275-290 million smartphone devices in the US during 2018-2021 [32]), and does not include devices that are98

out of service, powered o↵, or ones that opt out of location services on their devices.99

This is secondary data analysis, so no informed consent or consent to publish was necessary. Ethical review100

for this study (STUDY00003041) was sought from the Institutional Review Board at Georgetown University101

and was approved on October 14, 2020.102

Defining indoor activity seasonality103

Safegraph Points of Interest (POIs) are locations where consumers can spend money and/or time and include104

schools, hospitals, parks, grocery stores, and restaurants, etc, but do not include home locations. (In Figure105

1—figure supplement 1, we show that time at home does not display significant seasonal variation). Each POI106

is assigned a six-digit North American Industry Classification System (NAICS) code in the SafeGraph Core107

Places dataset to classify each location into a business category. We classify each 6-digit NAICS codes (363108

unique codes in total) as primarily indoor (e.g. schools, hospitals, grocery stores), primarily outdoor (e.g.109

parks, cemeteries, zoos). We classify some locations as unclear if the location is a potentially mixed indoor110

and outdoor setting (e.g. gas stations with convenience stores, automobile dealerships). Approximately 90%111

of POIs were classified as indoors, 6.5% were classified as outdoors, and 3.5% were classified as unclear.112

In Figure 1—figure supplement 2, we illustrate the robustness of our metric to the classification of unclear113

locations.114

We define e�it, equation (1), as the propensity for visits to be to indoor locations relative to outdoor locations.115

We aggregated raw visit counts, defined when a device is present at a non-home POI for longer than one116

minute, to all indoor POIs and all outdoor POIs in a given week (t) at the U.S. county level (i). Visit counts117

are normalized by the maximum visit counts for indoor or outdoor locations in each county during the year118

2019. (In Figure 1—figure supplement 3, we show that the max visit count is comparable in 2018 and 2019).119

e�it =
N indoor

it /maxt{N indoor
it }

Noutdoor
it /maxt{Noutdoor

it }
(1)

This metric is then mean-centered to arrive at a relative measure of indoor activity seasonality, �it, which is120

comparable across all counties:121

�it =
e�it

µ�̃
(2)

We note that µ�̃ is not spatially structured (see Figure 2—figure supplement 1).122

As a data cleaning step, we use spatial imputation for any county-weeks where sample sizes are small. For123

location-weeks in which the total visit count is less than 100, we impute the indoor activity seasonality using124

an average of � in the neighboring locations (where neighbors are defined based on shared county borders).125

This a↵ects 0.6% of all county-weeks and a total of 79 (out of 3143) counties.126

Time series clustering analysis127

To characterize groups of US counties with similar indoor activity dynamics, we use a complex networks-128

based time series clustering approach. We first calculate the pairwise similarity between z-normalized indoor129

activity time series for each pair of counties, i and j using the Pearson correlation coe�cient (⇢ij). For pairs130
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of locations where ⇢ij is in the top 10% of all correlations, we represent the pairwise time series similarities131

as a weighted network where nodes are US counties and edges represent strong time series similarity. (In132

Figure 1—figure supplement 4, we show the robustness of our clustering results to this choice of correlation133

threshold.)134

We then cluster the time series similarity network using community structure detection. This method135

e↵ectively clusters nodes (counties) into groups of nodes that are more connected within than between. The136

resulting clustering thus represents a regionalization of the U.S. in which regions consist of counties that have137

more similar indoor activity dynamics to each other than to other regions. One benefit of the network-based138

community detection approach over other clustering methods is that community detection does not require139

user specification of the number of clusters (regions, in this case); instead the number of clusters emerge140

organically from the data connectivity [33]. For community detection, we use the Louvain method [34], a141

multiscale method in which modularity is first optimized using a greedy local algorithm, on the similarity142

network with edge weights (i.e. time series correlations) using a igraph implementation in Python [35].143

We performed a robustness assessment of the community structure using a set of 25 “bootstrap networks”, Bi.144

For each bootstrap network, the edge weight (i.e. the time series correlation) for each edge of the network was145

perturbed by ✏ N(0, 0.05). The community structure algorithm was performed on each bootstrap network. A146

consensus value was then calculated as the sum of the normalized mutual information between the community147

structure partition of bootstrap network Bi and all other bootstrap networks. The partition with the largest148

consensus value was defined as the robust community structure partition.149

Given some known limitations to the time series correlation network-based approach to clustering [36], we150

validated our network-based clustering results with another common clustering method. In particular, we151

used hierarchical clustering with Ward linkage and Euclidean distance on z-normalized indoor activity time152

series, implemented using scipy in Python. (We note that Euclidean distance is equivalent to Pearson’s153

correlation on normalized time series [37]). The results of this comparison are summarized in Figure 1—154

figure supplement 5.155

Disruptions to indoor activity due to pandemic response156

We investigate the COVID-19 pandemic’s impact on indoor activity seasonality by comparing pre-pandemic157

mobility patterns in 2018 and 2019 with mobility patterns during the COVID-19 pandemic in 2020. We158

compared the proportion of indoor visits at the county level, �it, across 2018, 2019, and 2020 to examine159

changes in indoor activity seasonality during the COVID-19 pandemic. We also examined total activity,160

aggregating visits to all indoor, outdoor, and unclear POIs by week and mean-centering them for each US161

county during the COVID-19 pandemic in 2020.162

Incorporating indoor activity into infectious disease models163

We seek to illustrate the impact of incorporating seasonality into an infectious disease model using a phe-164

nomenological model versus empirical data. To achieve this, we parameterize a simple compartmental disease165

model with a seasonality term, using either our empirically-derived indoor activity seasonality metric or an166

analytical phenomenological model of seasonality fit to this metric.167

Phenomenological model of seasonality168

We first fit our empirically-derived indoor activity seasonality metric using a time-varying non-linear model.169

We specify the time-varying e↵ect as a sinusoidal function as is commonly done to incorporate seasonality170

into infectious disease models phenomenologically. The indoor activity seasonality, �it for cluster i at week171

t is specified as: �it = 1+↵i sin(!it+�i), where ↵i is the sine wave amplitude, !i is the frequency and �i is172

the phase. We fit a model for locations in the northern cluster separately from those in the southern cluster,173

as identified above. We fit the parameters for this model using the nlme, a standard package in R for fitting174

Gaussian nonlinear models.175
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Disease model176

We model infectious disease dynamics through a simple SIR model of disease spread:

dS

dt
= ��0�(t)SI

dI

dt
= �0�(t)SI � �I

dR

dt
= �I

We incorporate alternative seasonality terms to consider the impact of heterogeneity in indoor seasonality177

on disease dynamics. For the northern and southern cluster separately, we define modeled seasonality as178

�(t) = 1+↵ sin(!t+�), with the fitted parameters for each cluster (Figure 4—figure supplement 1 and Figure179

4—figure supplement 2). We also consider two exemplar locations for empirical estimates of seasonality,180

where �(t) = �t after rolling window smoothing: Cook County for an example county from the northern181

cluster, and Maricopa County for an example location from the southern cluster. We also compare against182

a null expectation where �(t) = 1. (All seasonality functions are illustrated in Figure 4—figure supplement183

3). We assume that �0 = 0.0025 and � = 2 (on a weekly time scale).184
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Results185

Based on anonymized location data from mobile devices, we construct a novel metric that measures the186

relative propensity for human activity to be indoors at a fine geographic (US county) and temporal (weekly)187

scale. Activity is measured as number of visits to unique physical, public (non-residential) locations across188

the United States. Locations are classified as indoors if they are enclosed environments (i.e. buildings and189

transportation services). We characterize the systematic spatiotemporal structure in this metric of indoor190

activity seasonality with a time series clustering analysis. We also characterize the shift that occurred in191

the baseline patterns of indoor activity seasonality during the COVID-19 pandemic. We note that this192

seasonal variation in the propensity of human activity to be indoors di↵ers from the variation in overall rates193

of contact or mobility, which does not appear to be highly seasonal (Figure 1—figure supplement 1, [38]).194

Lastly, we fit non-linear models to the indoor activity metric at baseline, comparing the ability of a simple195

model to capture seasonal variation in transmission risk.196

Quantifying empirical dynamics in indoor activity197

The indoor activity seasonality metric, �, captures the relative frequency of visits to indoor versus outdoor198

locations within an area. The components of � capture the degree to which indoor and outdoor locations199

are occupied; when � = 1, a given county is at its county-specific average propensity (over time) for indoor200

activity relative to outdoor. When � < 1, activity within the county is more frequently outdoor and less201

frequently indoor than average, while � > 1 indicates that activity is more frequently indoor and less202

frequently outdoor than average. Thus, a � of 1.2 indicates that the county’s activity is 20% more indoor203

than average and a � of 0.80 indicates that the county’s activity is 20% less indoor than average (additional204

details in methods).205

Through this metric, we measure the relative propensity for human activity to be indoors for every community206

(i.e. US county) across time (at a weekly timescale), finding significant heterogeneity between counties207

(Figure 1A). The representative examples of Cook County, Illinois (home of the city of Chicago in the208

midwestern US) and Maricopa County, Arizona (home of the city of Phoenix in the southwestern US)209

highlight systematic spatial and temporal heterogeneity in indoor activity dynamics. In Cook County,210

indoor activity varies over time, at its peak in the winter, with the relative odds of an indoor visit well211

above average. During the summer, � in Cook County reaches its trough, with activity systematically more212

outdoors on average. On the other hand, the variation of � across time in Maricopa County is characterized213

by a smaller winter peak in indoor activity, and an additional peak in the summer (i.e. July and August); this214

peak occurs concurrently with the trough in Cook County. Unlike in Cook County, � in Maricopa County is215

lowest in the spring and fall. These representative counties illustrate the systematic within-county variation216

in indoor activity over time, as well as the between-county variation in temporal trends as represented in217

Figure 1B for all US communities.218

To identify systematic geographic structure, we cluster the heterogeneous time series of county-level, weekly219

indoor activity. We find three geographic clusters corresponding to groups of locations that experience220

similar indoor activity dynamics (Figure 2). These clusters primarily split the country into two clusters: a221

northern cluster and a southern cluster. Among the communities in the northern cluster, activity is more222

commonly outdoor over the summer months, trending toward indoor during fall, with a peak in the winter223

months, as observed in Cook County. Comparatively, the southern cluster has a larger winter peak (i.e.224

between December and February) and a smaller summer peak (i.e. between July and August); most summer225

peaks are less extreme than that of Maricopa County (shown). We hypothesize that these two clusters are226

consistent with climate zones. While there is a moderate association between indoor activity seasonality227

and environmental variables such as temperature and humidity (Figure 2—figure supplement 2), we expect228

that the northern and southern indoor activity clusters will be more consistent with climate zones defined229

for the construction of the indoor built environment and find that there is indeed substantial consistency230

between the two (Figure 2—figure supplement 3). The third cluster di↵ers substantially: it is geographically231

discontiguous and its two annual peaks occur during the spring (close to April) and fall (closer to November)232

seasons. Thus, the counties in this cluster have outdoor activity more frequently than average during both233
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Northern cluster

Southern cluster

Tourism cluster

Figure 2: Using a time series clustering approach on the indoor activity time series for each US county, we
identify groups of counties that experience similar trends in indoor activity. Locations in the northern cluster
(light blue) follow a single peak pattern with the highest indoor activity occurring every winter. Locations
in the southern cluster (dark blue) experience two peaks in indoor activity each year, one in the winter and a
second, smaller one in the summer. The third cluster also experiences two peaks not matching environmental
conditions, but potentially corresponding to winter or other tourism areas. We apply a rolling window mean
to the time series for visualization purposes.
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Figure 3: Indoor activity during the COVID-19 pandemic was shifted: We compare indoor activity trends
in the baseline years of 2018 and 2019 to the pandemic year 2020 in four case study locations. We find
that most locations saw a shift in their indoor activity patterns, while others (such as Maricopa County)
did not. We also find that while overall activity was diminished uniformly during the Spring of 2020, indoor
activity decreased in some locations (Travis County, Texas and Baltimore County, Maryland) and increased
in others (Charleston County, South Carolina). We apply a 3-week rolling window mean to the time series
for visualization purposes.

the winter and the summer. The counties in this cluster correspond to locations that are hubs for winter or234

other tourism, which we speculate is driving their unique dynamics (Figure 2—figure supplement 4).235

Characterizing pandemic disruption to baseline indoor activity seasonality236

In addition to the description of indoor activity seasonality at baseline, we examine the impact of a large-scale237

disruption – the COVID-19 pandemic – to these patterns. We compare indoor activity seasonality during the238

COVID-19 pandemic in 2020 to the baseline patterns of 2018 and 2019. We find that the temporal trends in239

indoor activity are less geographically structured in 2020 than those of previous years (see Figure 3–figure240

supplement 2 for a characterization of the time series patterns). We find that indoor activity deviated from241

pre-pandemic trends beyond interannual deviations (Figure 3—figure supplement 1). We focus on four case242

studies to highlight the varying impacts on indoor activity of the pandemic disruption (Figure 3). In all four243

communities, 2020 indoor activity trends shift from 2018 and 2019 patterns, with Maricopa County (home244

of the city of Phoenix, AZ) showing the least perturbation relative to prior years. We also find that in early245
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Figure 4: (A) Sine curves fit to the 2018 and 2019 time series data (analogous to seasonal forcing model
components) fit the northern cluster better than the southern cluster, with a markedly poorer fit for the
southern cluster’s second summer peak. (B) Regional seasonal forcing models display variation in patterns
of disease incidence omitted by a non-seasonal model, but even region-level seasonal forcing does not fully
capture within-cluster county-level variation.

2020, when there was substantial social distancing in the United States (e.g. school closures, remote work),246

activity was more likely to be outdoor than in prior years, independent of changes in overall activity levels.247

With our case studies, we highlight that social distancing policies can have di↵erent impacts on airborne248

exposure risk in di↵erent locations: while some locations, such as Travis County (home of Austin, Texas),249

shifted activities outdoors during this period, reducing their overall risk further, other locations, such as250

Charleston County, South Carolina (home of Charleston, South Carolina) increased indoor activity above251

the seasonal average during this period, potentially diminishing the e↵ect of reducing overall mobility. The252

trends in Charleston are representative of those in the southeastern United States during the spring of 2020253

(Figure 3—figure supplement 1). By the end of 2020 (and the first winter wave of SARS-CoV2), many parts254

of the country were shifting activity more outdoors than seasonally expected (Figure 3—figure supplement255

1).256

Implications for modeling seasonal disease dynamics257

We use this finely-grained spatiotemporal information on indoor activity to incorporate airborne exposure258

risk seasonality into compartmental models of disease dynamics using common, coarser seasonal forcing ap-259
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proaches. To investigate the impact of heterogeneity in � on the estimation of seasonal forcing for infectious260

disease models, we fit a sinusoidal model to the time series of indoor activity for each of the primary clusters261

(Figure 4—figure supplement 4A). We note that because � is defined as deviation from baseline indoor262

activity, the sinusoidal parameters (amplitude, frequency, phase) should be interpreted as a measure of sea-263

sonality in indoor activity, relative to each location’s baseline. We find that the parameters of seasonality264

vary across clusters: the amplitude is higher, and the phase is lower in the northern cluster compared to the265

southern cluster, indicating a di↵erence in the variability of indoor and outdoor activity seasonality in each266

cluster (Figure 4—figure supplement 1). While the fits are comparable for both clusters (Figure 4—figure267

supplement 2), the sinusoidal model does not capture the second peak of indoor activity during the summer268

months in the southern cluster. These di↵erences in best fit indicate that sinusoidal models may have an269

overly restrictive functional form, limiting the accuracy of the approximation, and may underestimate the270

impacts of seasonality on transmission, obscuring systemic di↵erences between regions. Furthermore, di↵er-271

ences in seasonal activity of the observed magnitude can have important implications for disease modeling;272

applying region-level and county-level forcing to a simple disease model alters incidence patterns (igure 4—273

figure supplement 4B). Although region-level seasonality changes incidence timing and peak size relative to274

a non-seasonal model, it does not fully capture the changes produced by county-level seasonality. These275

di↵erences indicate that while coarser geographic approximations of seasonality can be appropriate, these276

approximations can also oversimplify, reducing the accuracy of disease models. Additionally, while simple277

models of baseline indoor activity can capture seasonality in exposure risk, disruptions such as pandemics278

can alter this baseline structure and increase heterogeneity.279

Discussion280

The seasonality of influenza, SARS-CoV-2, and other respiratory pathogens depends not only on environ-281

mental variables but also on the social behavior of hosts. In settings with little prior immunity – such as a282

pandemic – host social behavior (generating contacts during which transmission may occur) primarily drives283

heterogeneity in disease dynamics, and seasonality is dwarfed by susceptibility [39]. In settings with higher284

rates of immunity, contact remains critically important, and seasonal changes in contacts (both direct and285

indirect) can contribute to the movement of Rt above and below 1 – providing noticeable changes in inci-286

dence. Although environmental variables play a role in the seasonality of respiratory pathogens, the role of287

host social behavior in pathogen seasonality is poorly understood, driven by a poor understanding of indoor288

versus outdoor social interactions and interactions between behavior and the environment. In this study, we289

propose a fine-grain measure of indoor activity seasonality across time and space. This metric is a relative290

quantity of behavior, comparable across locations, and thus intended to be a measure of seasonality beyond291

a baseline. We determine that indoor activity seasonality displays significant spatiotemporal heterogeneity292

and that this variability is highly geographically structured. We also find that while indoor activity season-293

ality may be highly predictable under baseline conditions, disruptions such as the COVID-19 pandemic can294

alter these patterns. Finally, we provide an illustration of how our findings can be incorporated into classical295

infectious disease models using parsimonious models of exposure seasonality.296

The indoor activity seasonality that we quantify may reflect heterogeneity in transmission risk via a number297

of mechanisms including those a↵ecting host contact, susceptibility, or transmissibility. Increased indoor298

activity may indicate longer-duration airborne contact (e.g., co-location without direct interaction) between299

susceptible and infected individuals, elevating respiratory transmission risk. Increased indoor density may300

also suggest increased droplet contact (e.g., a conversation in close proximity), under homogeneous mixing.301

Additionally, indoor activity may suggest increased susceptibility as poor ventilation, increased pollutants,302

reduced solar exposure, and low humidity of the indoor environment have been shown to weaken immune303

response [40]. Finally, increased indoor activity may indicate an increase in transmissibility due to higher304

exposure as low humidity caused by climate control (heating, ventilation, and cooling, HVAC) in indoor305

environments has been shown to increase viral survival and HVAC re-circulation has been shown to increase306

viral dispersion [41, 42]. While our new measure does not disentangle these component mechanisms, it307

represents an integrated seasonality in exposure risk due to all of these factors and can help lead us to a308

more complete understanding of the heterogeneity and seasonality in disease dynamics and outcomes.309
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We find that spatiotemporal heterogeneity in the indoor activity metric can be decomposed into two large310

geographically-contiguous groups in the northern and southern United States representing distinct temporal311

dynamics in indoor activity. These groups closely correspond to built environment climate zones, potentially312

explaining this systematic variability. We note, however, that while these clusters overlap with climate313

classifications, this correspondence does not suggest that environmental variables such as temperature and314

humidity should be used to represent behavioral heterogeneity. Climatic factors within these climate zones315

may be related to, but not necessarily correlated with, the seasonality of human mixing within these zones.316

Additionally, even in the case that environmental factor variability drives behavioral variability, it would be317

critical to capture the e↵ect of behavior on disease directly so as to not obscure any direct e↵ects of climatic318

factors on disease.319

We illustrate how to incorporate seasonality in exposure risk to future models of disease dynamics using a320

simple phenomenological model. We use this traditional model of infectious disease dynamics to evaluate321

the implications of the spatial coarseness of seasonal forcing. Our results suggest that the substantial322

local heterogeneity in the dynamics of indoor activity across time and space could be large enough to alter323

seasonality in infectious disease dynamics. While our work does not consider observed transmission patterns,324

we suggest that researchers carefully consider the spatial scale on which they model seasonality in theoretical325

models, commonly used for scenario analysis and model-based intervention design (e.g., [43]). We additionally326

highlight that the use of simple or complex functional forms of seasonality requires statistical fits to baseline327

data, and in the case of disruptions, these fitted models may no longer be appropriate. Although indoor328

activity is moderately anticorrelated with temperature and humidity (Figure 1. Consequently, weather-329

derived covariates may have some statistical power to reflect impacts of human movement, but is not able to330

completely reflect this phenomenon. As we show, patterns of human mobility changed substantially during331

the COVID-19 pandemic, potentially contributing to changes in infectious disease seasonality.332

Recent work during the COVID-19 pandemic demonstrates the impact of reduced occupancy in indoor lo-333

cations and increasing outdoor activity on the likelihood of disease transmission. In particular, behavioral334

interventions or nudges that reduce occupancy are more impactful than reducing overall mobility as they335

reduce visitor density and the likelihood of density-dependent airborne transmission [44]. Similarly, the336

availability of outdoor areas in urban settings, such as public parks, has been demonstrated to reduce case337

rates when population mobility becomes less restricted [45]. Our results suggest that such public health338

strategies should be implemented in a targeted manner, informed by real-time data and with clear commu-339

nication of the goals. We found notable changes occurred in indoor activity seasonality at the start of the340

COVID-19 pandemic, despite relatively consistent patterns during the spring season in prior years. Designing341

a behavioral strategy and measuring its e↵ectiveness without real-time data could thus be misleading. Our342

finding of two distinct geographic clusters of indoor activity suggests the need for geographical targeting of343

strategies to reduce indoor transmission risk. While northern latitudes might benefit from decreased indoor344

occupancy and increased outdoor activity in Northern Hemisphere winters, southern latitudes should be345

additionally targeted for such interventions in the summer months. Lastly, our findings highlight the need to346

communicate the goals of behavioral interventions clearly. While all communities universally reduced overall347

activity during the early days of the COVID-19 pandemic, some increased indoor activity during this time,348

potentially diminishing the positive e↵ects of the social distancing policies put into place. A public health349

education campaign to clarify the role of indoor interactions in transmission risk may have ameliorated this.350

Our study leverages a novel data stream made available to researchers due to the COVID-19 pandemic.351

Similar datasets are available globally, part of a $12 billion location intelligence industry [46]. Such novel352

data streams o↵er many opportunities to address long-unanswered questions in infectious disease and climate353

change behavior dynamics, but these data must be interpreted carefully. Safegraph’s mobile-app-based354

location data does not include data on individuals less than 16 years of age [47]. While we may expect that355

children under 12 may be accompanied by adults that may be represented in the dataset, our metric likely356

does not capture the activity dynamics of older children (children 12-15 make up 5% of the US population).357

For those included in the Safegraph database, representation is dependent on smartphone usage and a number358

of business processes not transparent to users of the data, thus we expect that there is geographic variation359

in the representativeness of the data. Smartphone ownership has increased in recent years, with 85% of US360

adults reporting smartphone ownership; however, smartphone usage does vary significantly by age, with only361

61% of adults over 65 reporting smartphone use [48]. Additionally, data shows that location sharing among362
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mobile users is not significantly biased by age, gender, race/ethnicity, income, or education (with 40-65%363

of all demographic groups participating in location sharing) [49]. Based on an analysis done by Safegraph,364

the panel is representative of race, educational attainment, and income [50]. On the other hand, a recent365

independent analysis shows that older and non-white individuals are less likely to be captured in the panel366

for POI-specific analyses [51]. It is important to note that both studies are associative in nature as the367

devices in the panel are fully anonymized, so no device-level demographic data exists. Continued work to368

understand the sampling biases of such datasets will be needed so that improved bias correction approaches369

can be developed [51]. Additionally, we limit our scope in this study to consider only the number of visits370

and do not incorporate information about visit duration. The dataset counts all visits of one minute or371

longer. For disease transmission, there may be a threshold duration required for an interaction between an372

infected and susceptible individual for infection to be propagated. These thresholds are not well-understood373

for all respiratory diseases, but evidence that SARS-CoV-2 transmission can occur with brief encounters has374

emerged [52]. While the Safegraph dataset does provide median dwell times for POIs, the likely significant375

heterogeneity in the distribution of dwell times remains unknown and is di�cult to capture in an aggregated376

manner.377

Our metric and analysis also focus on the US county scale to reflect the finest scale generally used for378

infectious disease modeling as well as public health decision-making. This choice is likely to ignore some379

within-county heterogeneity and means that our metric does not represent the experience of all groups,380

particularly by socioeconomic status. For example, low-income and racially marginalized communities have381

systematically less access to outdoor, natural spaces and spend more time indoors due to structural inequities382

including lack of paid leave [28, 53, 54]. Such socio-economic disparities have been further exacerbated during383

the pandemic, which potentially a↵ects our indoor activity estimates during 2021. Thus, our estimate of a384

county’s indoor transmission risk may represent an underestimate of the risk experienced by individuals in385

these communities. We commit to continued work to better characterize the transmission risk experienced386

by vulnerable populations. Lastly, we acknowledge that data modeling work that can influence public health387

policy decisions, particularly during an ongoing crisis, must be done with care to prevent misconceptions388

from having adverse e↵ects on risk perception and policies [55]. We thus strongly note that while our measure389

of indoor behavioral seasonality provides a potential driver of respiratory disease seasonality, it remains one390

among many complex factors which integrate to predict the transmission potential of an ongoing epidemic391

or pandemic [56]. Thus we cannot rely on behavioral seasonality to diminish transmission naturally, and392

pandemic intervention strategies should not be planned around behavioral seasonality while population393

susceptibility remains high in so many locations.394

Ongoing global change events highlight the importance of this work, as it informs how widespread disrup-395

tions may shift patterns of indoor activity, potentially altering traditional infectious disease seasonality.396

Climate change events will continue to cause significant disruption to normal behavior patterns; mechanistic397

understanding of infectious disease seasonality and real-time data collection will be crucial components of398

future disease control e↵orts. While other global change events may impact indoor activity in di↵erent ways399

than the COVID-19 pandemic, a rigorous understanding of the impact of host behavior on infectious disease400

allows policymakers and emergency preparedness experts to e↵ectively address future disruptions.401

Data Availability402

We make available on Github the data and code needed to reproduce all figures and analyses in this403

manuscript: https://github.com/bansallab/indoor_outdoor. This dataset is of the metric used in all404

our analyses and figures (“indoor activity”). This dataset can be regenerated using the Safegraph Patterns405

and Places datasets found at https://www.safegraph.com/covid-19-data-consortium and code in the406
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Supplementary Figures570

Figure 1—figure supplement 1: Left: Using the Safegraph Weekly Patterns dataset (https://docs.
safegraph.com/docs/weekly-patterns), we show total (all non-home locations) visitor counts for a ran-
dom sample of 310 counties (10% of all US counties). Overall mobility does not appear to be highly
seasonal. Right: Using the Safegraph Social Distancing Metrics dataset (https://docs.safegraph.com/
docs/social-distancing-metrics), we show time spent at home for a random sample of 310 counties
(10% of all US counties). While home locations are not included in our indoor activity metric, time spent
at home does not appear to be highly seasonal.

Figure 1—figure supplement 2: We demonstrate the e↵ect of the ”unclear” locations on the indoor activity
seasonality. In the left panel, we show the di↵erence in � if all ”unclear” locations were to be classified as
indoor. In the right panel, we show the di↵erence if � if all ”unclear” locations are classified as outdoor.
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Figure 1—figure supplement 3: We show that the maximum number of visits used in the definition of the �
metric are highly comparable in 2018 and 2019.
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(a) 50th percentile, ⇢ > 0.42, NMI = 0.60 (b) 75th percentile, ⇢ > 0.54, NMI = 0.74

(c) 90th percentile, ⇢ > 0.67 (d) 99th percentile, ⇢ > 0.82, NMI = 0.67

Figure 1—figure supplement 4: We illustrate the impact of the correlation threshold on the clustering results
(without post processing). For each panel, we list the percentile for time series correlations used as the
threshold, the corresponding correlation value (⇢), and the normalized mutual information between each
partition and the partition with the 90th percentile threshold (corresponding to the partition presented in
Figure 2).
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Figure 2—figure supplement 1: The mean proportion of indoor/outdoor activity (µ�̃) in 2018 displays no
latitudinal gradient and is relatively homogeneous across counties; outliers of mean � 2.5 are removed
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Figure 2—figure supplement 2: Using data on temperature and rainfall from NOAA’s North American
Regional Reanalysis [57], we find that indoor activity (sigma) is moderately anticorrelated with both tem-
perature and humidity. Temperature and humidity are strongly correlated in all three clusters (pearson’s
⇢ ⇡ 0.87). Across the three clusters, indoor activity is moderately associated with temperature (⇢ ⇡ �0.52).
Likewise, indoor activity is moderately anticorrelated with humidity (⇢ ⇡ �0.45).
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IECC Climate Zones

(A) (B)

Consistency between climate zone 
and indoor activity geography

Figure 2—figure supplement 3: (A) The IECC climate zones are based on temperature, humidity, and rainfall
in each county and govern the type building material and amount of ventilation required in a building [58].
(B) The consistency between the two primary clusters of indoor activity identified by our analysis and the
IECC climate zones. Treating the IECC climate zones as ”ground truth”, we quantify the ability of our
indoor activity clusters to predict the IECC climate zones We achieve this by collapsing the partitions into
two clusters each (the tourism cluster is grouped with the northern cluster in the indoor activity clustering;
and IECC climate zones 1/2/3 are grouped into one cluster and zones 4/5/6/7 into another cluster). Our
indoor activity clusters have a 0.72 F1-score, with a precision of 0.92 and a recall score of 0.59 with the
IECC zones.
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Figure 2—figure supplement 4: The third indoor activity cluster displays some correlation with areas of
increased tourism, including US ski areas in western and northeastern states, potentially contributing to
o↵-season activity increases. Most areas in the cluster are either in a ski area or neighbor a ski area, with
some parts of Hawaii and Florida being clear outliers of this pattern and suggests other types of tourism
lead to similar behavioral seasonality.
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Figure 2—figure supplement 5: We show the results of time series clustering based on a hierarchical clustering
method using Ward linkage and Euclidean distance, implemented using scipy.cluster in Python. This
partition has high similarity to the network-based clustering algorithm results we illustrate in Figure 2:
normalized mutual information = 0.56 with 89% of counties matching on cluster identity.
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(a) Interannual deviations

(b) Deviations during Spring 2020 (c) Deviations during Winter 2020

Figure 3—figure supplement 1: Top: Euclidean distance between indoor activity time series in corresponding
years for each county, averaged over all counties. The 2020 time series show a higher deviation from each of
the baseline years than the two baseline years do from each other. Bottom: We illustrate the mean di↵erence
in indoor activity at baseline (defined as the average of 2018 and 2019) and 2020 for two time periods: (a)
Week 10 to Week 20 in spring 2020 during the initial lockdown period for COVID-19. (b) Week 44 to Week
52 in winter 2020 during the first winter surge of COVID-19. Positive mean di↵erences suggest more outdoor
activity in 2020 than at baseline and negative mean di↵erences suggest more indoor activity in 2020 than at
baseline.
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(A) (B)

Figure 3—figure supplement 2: (A) Indoor seasonality during 2020 can be clustered into four groups, although
clusters are more geographically fragmented than previous years. (B) Time series for 2020 indoor seasonality
clusters display heterogeneous trends that were not apparent in previous years, with some clusters more
variable than others.
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Figure 4—figure supplement 1: Top: Inferred parameters for the sinusoidal model fits of the indoor activity
data for the northern and southern clusters show a similar frequency, but greater amplitude and shorter
phase in the southern cluster. Values displayed are mean parameter estimates. Standard errors for all
parameters are smaller than 5e-3 and thus are not displayed. Bottom: We show the estimated parameters
for the parameters of the sine curve fits to the Northern and Southern clusters as well as the di↵erence
between the parameter estimates. The period is in units of time (weeks). The amplitude matches the units
of �. The phase is in units of time (weeks).
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Figure 4—figure supplement 2: Model performance as measured by the root mean square error of the sine
curve fit to the cluster averaged over counties within the cluster. The summer period between March and
September is highlighted in light grey to emphasize the summer months.
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Figure 4—figure supplement 3: The seasonal forcing functions (�9t)) we used in the epidemiological model.
The non-seasonal model (grey) shows no variation in transmission risk over time. We model northern
seasonality via a sinusoidal model fit to the northern indoor activity data (light blue solid) and via the
empirically-measured indoor seasonality from a county in the northern cluster (Cook County, light blue
dotted). We model southern seasonality via a sinusoidal model fit to the southern indoor activity data
(dark blue solid) and via the empirically-measured indoor seasonality from a county in the northern cluster
(Maricopa County, dark blue dotted).
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