# Supporting information for "Endemic-epidemic modelling for school closure to prevent spread of COVID-19 in Switzerland"

- <sup>1</sup> This document contains ancillary information which is relevant to the manuscript.
- <sup>2</sup> It consists of additional figures, an outline of the model selection procedure used,
- <sup>3</sup> and a sensitivity analysis of time-varying transmission weights used in the model-
- <sup>4</sup> ling approach.

5

### 1 Additional figures

Measures - Schools open



Figure S1: Illustration of scenarios. The state of emergency in Switzerland leading to "lockdown" was declared on 17<sup>th</sup> March 2020 (vertical line between March and April 2020). The projection windows are shown with coloured vertical lines



Figure S2: Policy information  $p_{s,t,a,a'}$  for the scenarios considered. A slight jitter has been applied to assist in the visualisation

#### 2 Model selection procedure

The reference model is

6

$$Y_{at} \mid Y_{a,t-1}, \dots, Y_{a,t-d_{\max}} \sim \mathsf{NegBin}(\lambda_{at}, \psi)$$

$$\lambda_{at} = \underbrace{v_{at}e_a}_{\mathsf{endemic}} + \underbrace{\phi_{at}\sum_{a'}\sum_{d=1}^{d_{\max}} u_d w_{a,a',t} Y_{a',t-d}}_{\mathsf{epidemic}} \tag{1}$$

$$\log(v_{at}) = \alpha_a^{(v)} + \beta_{\text{public holiday}}^{(v)} x_t$$
(2)

$$\log(\phi_{at}) = \alpha_a^{(\phi)} + \beta_{\text{public holiday}}^{(\phi)} x_t$$

$$u_d \propto \frac{\kappa^{d-1}}{(d-1)!} \cdot \exp(-\kappa), \quad \kappa > 0, \quad d = 1, \dots, d_{\max}$$
(3)

This is denoted model 0 in our statistical analysis plan (can be found in our study 7 protocol at https://osf.io/fgrdy). The reference model has fixed effects of age 8 group, public holiday score, and school holiday score in both components. The 9 model fit is shown in Figure S4. Overall, the predicted values (shaded area) seem 10 to fit the observed data (points) quite well. During the first wave (here we con-11 sider cases before 1<sup>st</sup> June 2020 to be the first oscillation in the absence of a true 12 definition of epidemic waves), the model overestimates the number of cases for 13 all age groups except the youngest age group. This is seen in the shaded area be-14 ing greater than the observed counts. We can also see that there might be some 15



Figure S3: Estimated lag distribution  $\hat{u_d}$  (below)

<sup>16</sup> uncaptured weekday effects as the observed cases seem to oscillate more within <sup>17</sup> a week than is captured by the model. According to the reference model, nearly <sup>18</sup> all cases can be captured by the epidemic component  $\phi$ .

The model parameter estimates for the reference model are given in Table S1. 19 Here we also experienced having a large standard error for the fixed effect of the 20 oldest age group in the endemic component  $\alpha_{80+}^{(\nu)}$ . Dropping this coefficient from 21 the model resolved the issue. This model has smaller values for  $\alpha^{(\nu)}$  than the final 22 model selected (estimates are shown in the main manuscript). The public holiday 23 estimates are greater in this model. This implies some of the effect they capture 24 here is explained by other effects when they are included in the model, such as 25 those capturing the weekly fluctuations in cases. Overdispersion  $\psi$  is also much 26 larger than in the final model and the decreasing pattern found for  $\alpha^{(\phi)}$  is not evid-27

#### Reference model



Figure S4: Reference model with age group specific effects as well as public holiday score in both components

<sup>28</sup> ent for the reference model.

29

When constructing models in addition to the effects considered in the reference model, we considered covariates for sine-cosine waves (non-linear trend), temperature, testing rate, time trend (linear trend), weekday, and weekend. As certain covariates capture similar effects we did not fit models for all possible predictor combinations. Mutually exclusive effects within the same model component are weekday and weekend as well as temperature and non-linear trend represented through sine-cosine waves. The remaining covariates do not have any

| End                          | emic – $\log(v_{d})$ | <sub>at</sub> ) | Epic                          | demic – log(¢ | $(b_{at})$ | Other parameters |          |            |  |
|------------------------------|----------------------|-----------------|-------------------------------|---------------|------------|------------------|----------|------------|--|
| Coefficient                  | Estimate             | Std. Error      | Coefficient                   | Estimate      | Std. Error | Coefficient      | Estimate | Std. Error |  |
| $\alpha_{0-14}^{(v)}$        | 2.002                | 0.178           | $\alpha_{(\phi)}$             | -3.607        | 0.045      | $\psi_{0-14}$    | 0.278    | 0.032      |  |
| $\alpha_{15-24}^{(v)}$       | 2.910                | 0.309           | $\alpha_{(\phi)}$             | -2.131        | 0.044      | $\psi_{15-24}$   | 0.318    | 0.028      |  |
| $\alpha_{25-44}^{(v)}$       | 1.907                | 0.522           | α(φ)<br>25-44                 | -1.983        | 0.040      | $\psi_{25-44}$   | 0.315    | 0.026      |  |
| $\alpha_{45-65}^{(\nu)}$     | 0.805                | 1.142           | $\alpha_{(\phi)}$ 45-65       | -2.066        | 0.043      | $\psi_{45-65}$   | 0.389    | 0.032      |  |
| $\alpha_{66-79}^{(\nu)}$     | 1.273                | 0.627           | $\alpha_{(\phi)}$ 66-79       | -1.802        | 0.043      | $\psi_{66-79}$   | 0.382    | 0.035      |  |
|                              |                      |                 | $lpha_{(\phi)}_{80+}$         | -0.896        | 0.048      | $\psi_{80+}$     | 0.583    | 0.056      |  |
| $eta_{publicholiday}^{( u)}$ | -1.944               | 1.396           | $eta_{(\phi)}$ public holiday | -0.407        | 0.110      |                  |          |            |  |
|                              |                      |                 |                               |               |            | log ĸ            | 0.961    |            |  |

Table S1: Reference model coefficients

<sup>37</sup> restrictions. Bayesian information criterion was used to determine goodness-of-

<sup>38</sup> fit of the models considered in this work. Table S2 shows the Bayesian informa-

<sup>39</sup> tion criterion values for the models considered. The selected model presented

in the main manuscript is the model with option 14 for  $\log(v_{at})$  and option 13 for

 $\log(\phi_{at})$  as described in our statistical analysis plan, which is available at https:

42 //osf.io/fgrdy..

|      |              |              |              | Endemic nu   |             |                  |              |              |            | Epidemic phi |             |                  |        |
|------|--------------|--------------|--------------|--------------|-------------|------------------|--------------|--------------|------------|--------------|-------------|------------------|--------|
| Rank | Weekday      | Weekend      | Time trend   | Testing rate | Temperature | Sine-cosine wave | Weekday      | Weekend      | Time trend | Testing rate | Temperature | Sine-cosine wave | BIC    |
| 1    |              | 1            |              |              |             | 1                | 1            |              |            |              |             | 1                | 17,224 |
| 2    | ~            |              |              |              |             | 1                | ~            |              |            |              |             | $\checkmark$     | 17,139 |
| 3    |              |              | 1            |              |             | 1                | 1            |              |            |              |             | $\checkmark$     | 17,123 |
| 4    |              |              |              |              |             | $\checkmark$     | 1            |              |            |              |             | $\checkmark$     | 16,513 |
| 5    |              |              | 1            | 1            |             |                  | ~            |              |            |              |             | $\checkmark$     | 17,126 |
| 6    |              |              | 1            |              |             | 1                | ~            |              |            |              | ~           |                  | 16,981 |
| 7    |              |              | 1            |              |             | $\checkmark$     | 1            |              |            |              |             |                  | 17,032 |
| 8    |              |              | 1            |              |             | 1                | ~            |              |            | 1            |             |                  | 16,402 |
| 9    |              |              | 1            |              |             |                  | ~            |              |            |              |             | $\checkmark$     | 17,109 |
| 10   |              | $\checkmark$ |              |              | 1           |                  | $\checkmark$ |              |            |              |             | $\checkmark$     | 16,946 |
| 11   |              |              | 1            |              | 1           |                  | ~            |              |            |              |             | $\checkmark$     | 17,007 |
| 12   |              |              |              |              | 1           |                  | ~            |              |            |              |             | $\checkmark$     | 16,499 |
| 13   |              | 1            |              |              |             |                  | ~            |              |            |              |             | $\checkmark$     | 16,437 |
| 14   | $\checkmark$ |              |              |              | 1           |                  | $\checkmark$ |              |            |              |             | $\checkmark$     | 16,551 |
| 15   |              |              |              |              |             |                  | ~            |              |            |              |             | $\checkmark$     | 16,418 |
| 16   | ~            |              |              |              |             | 1                |              | ~            |            |              |             | $\checkmark$     | 16,376 |
| 17   | $\checkmark$ |              |              |              |             |                  | $\checkmark$ |              |            |              |             | $\checkmark$     | 16,478 |
| 18   |              | $\checkmark$ |              | 1            |             |                  | $\checkmark$ |              |            |              |             | $\checkmark$     | 16,495 |
| 19   |              | 1            |              |              |             | 1                |              | ~            |            |              |             | $\checkmark$     | 16,464 |
| 20   |              |              | 1            |              |             | 1                |              | ~            |            |              |             | $\checkmark$     | 16,012 |
| 21   |              |              |              |              |             | 1                |              | ~            |            |              |             | $\checkmark$     | 16,458 |
| 22   |              |              | 1            |              | 1           |                  |              | ~            |            |              |             | $\checkmark$     | 16,493 |
| 23   |              | 1            |              |              |             | 1                | ~            |              |            |              | ~           |                  | 16,459 |
| 24   | ~            |              |              |              |             | 1                | ~            |              |            |              | ~           |                  | 15,924 |
| 25   |              | $\checkmark$ |              |              |             | 1                | $\checkmark$ |              |            | 1            |             |                  | 16,335 |
| 26   |              |              | $\checkmark$ |              |             | 1                |              | $\checkmark$ |            |              |             |                  | 16,374 |

|          |         |              |            | Endemic nu   |             |                  |              |              |            | Epidemic phi |              |                  |        |
|----------|---------|--------------|------------|--------------|-------------|------------------|--------------|--------------|------------|--------------|--------------|------------------|--------|
| Rank     | Weekday | Weekend      | Time trend | Testing rate | Temperature | Sine-cosine wave | Weekday      | Weekend      | Time trend | Testing rate | Temperature  | Sine-cosine wave | BIC    |
| 27       |         |              | 1          |              |             | 1                |              | 1            |            |              | 1            |                  | 16,341 |
| 28       |         |              | 1          |              |             | 1                |              | $\checkmark$ |            | $\checkmark$ |              |                  | 16,012 |
| 29       |         |              |            |              |             | 1                | 1            |              |            |              | $\checkmark$ |                  | 15,871 |
| 30       | ~       | /            |            |              |             | 5                | 1            |              |            | $\checkmark$ |              |                  | 15,852 |
| 32       |         | V            | 1          | /            |             | <i>v</i>         | 1            |              |            |              | 1            |                  | 15,621 |
| 33       | 1       |              | -          | -            |             | 1                | 1            |              |            |              |              |                  | 16,591 |
| 34       |         |              |            |              |             | 1                | 1            |              |            | 1            |              |                  | 16,599 |
| 35       |         |              |            |              |             | 1                | 1            |              |            |              |              |                  | 16,582 |
| 36       |         |              | 1          | 1            |             |                  | 1            |              |            | 1            |              |                  | 16,121 |
| 37       |         | ,            | 1          | 1            | ,           |                  | 1            | ,            |            |              |              | ,                | 16,561 |
| 38       |         | 1            |            |              | 5           |                  |              | 1            |            |              |              | J                | 16,577 |
| 40       |         | 1            |            |              | v           |                  |              | <i>s</i>     |            |              |              | ý<br>1           | 16.035 |
| 41       |         |              |            |              |             |                  |              | 1            |            |              |              | 1                | 16,451 |
| 42       |         |              | 1          |              |             |                  | 1            |              |            |              | 1            |                  | 16,465 |
| 43       |         | $\checkmark$ |            |              |             | 1                |              | $\checkmark$ |            | 1            |              |                  | 16,456 |
| 44       |         |              | 1          |              | 1           |                  | 1            |              |            |              | 1            |                  | 16,115 |
| 45       | 1       |              |            |              | 5           |                  |              | <i>✓</i>     |            |              |              | 1                | 16,010 |
| 46       | 1       |              |            |              |             | /                |              | 1            |            | /            |              | 1                | 16,008 |
| 47       | ~       |              | 1          | 1            |             | <i>v</i>         |              | <i>,</i>     |            | v            | 1            |                  | 15,988 |
| 49       |         | 1            | •          | ·            |             | 1                |              | 1            |            |              | •            |                  | 17.033 |
| 50       |         |              |            |              |             | 1                |              | 1            |            | 1            |              |                  | 17,062 |
| 51       | 1       |              |            |              |             | 1                |              | 1            |            |              |              |                  | 17,028 |
| 52       |         |              |            |              |             | 1                |              | $\checkmark$ |            |              |              |                  | 16,818 |
| 53       |         |              | 1          |              |             |                  | 1            |              |            |              |              |                  | 17,037 |
| 54       | ,       |              | 1          |              | 1           | ,                | 1            | ,            |            |              | ,            |                  | 16,715 |
| 55       | ~       | /            |            |              |             | 5                |              | 1            |            |              | 1            |                  | 16,022 |
| 57       |         | v            | 1          | /            |             | v                |              | ,<br>,       |            |              | v            |                  | 16,928 |
| 58       |         |              | ·          | ·            |             | 1                |              | 1            |            |              | 1            |                  | 16,875 |
| 59       |         |              | 1          |              |             |                  |              | 1            |            |              | 1            |                  | 16,897 |
| 60       |         |              | 1          |              | 1           |                  |              | $\checkmark$ |            |              |              |                  | 16,824 |
| 61       |         |              | 1          |              |             |                  |              | $\checkmark$ |            |              |              |                  | 16,496 |
| 62       |         | $\checkmark$ |            |              |             | 1                |              |              | 1          | 1            |              |                  | 16,336 |
| 63       | 1       |              |            |              |             | 1                |              |              | 1          |              |              | 1                | 16,503 |
| 65       | ×       |              |            |              |             | с<br>./          |              |              | 1          | 1            |              | v                | 17 222 |
| 66       | -       | 1            |            |              |             | 1                |              |              | 1          | -            |              | 1                | 17,116 |
| 67       | 1       |              |            |              |             | 1                |              |              | 1          |              | 1            |                  | 17,100 |
| 68       |         |              | 1          |              |             |                  | 1            |              |            | 1            |              |                  | 17,298 |
| 69       |         |              | 1          |              | 1           |                  | 1            |              |            | 1            |              |                  | 17,252 |
| 70       |         | ,            |            |              | 1           | ,                | 1            |              |            | 1            |              | ,                | 17,284 |
| 71       |         | 1            |            |              | /           | <i>√</i>         | /            |              |            | /            |              | V                | 16 251 |
| 73       |         | ¥            | 1          |              | *           | 1                | *            |              | 1          | *            |              | 1                | 17,099 |
| 74       |         |              | 1          |              | 1           |                  |              |              | 1          | 1            |              |                  |        |
| 75       | 1       |              |            |              | 1           |                  | 1            |              |            | 1            |              |                  | 17,066 |
| 76       |         |              | 1          |              | 1           |                  |              | 1            |            |              | $\checkmark$ |                  | 17,275 |
| 77       |         | 1            |            |              | 1           |                  | 1            |              |            |              | $\checkmark$ |                  | 16,441 |
| 78       | ,       |              |            |              | 1           | ,                | 1            |              | ,          |              |              |                  | 16,387 |
| 79<br>90 | ~       |              | /          |              |             | 5                |              |              | ~          | /            |              |                  | 16,359 |
| 81       |         | 1            | v          |              | 1           | v                | 1            |              |            | v            |              |                  | 16,446 |
| 82       |         |              |            |              | 1           |                  | 1            |              |            |              | 1            |                  | 16,470 |
| 83       |         | 1            |            | 1            |             |                  | 1            |              |            |              | ~            |                  | 16,439 |
| 84       |         |              |            | 1            |             |                  | 1            |              |            |              | $\checkmark$ |                  | 16,263 |
| 85       |         | $\checkmark$ |            |              |             |                  | $\checkmark$ |              |            |              | $\checkmark$ |                  | 16,388 |
| 86       |         |              | 1          | 1            |             |                  |              |              |            | 1            |              |                  | 16,419 |
| 87       |         | ,            |            |              |             | 1                |              |              | 1          | ,            |              | $\checkmark$     | 16,395 |
| 88<br>80 |         | <i>√</i>     | 1          |              |             | 4                |              |              | 1          | ~            |              | 1                | 16 282 |
| 90       |         |              | 1          |              |             | 5                |              |              | 1          | 1            |              | ÷                | 16,330 |
| 91       | 1       |              |            |              | 1           |                  | 1            |              |            |              | ~            |                  | 16,290 |
| 92       |         | 1            |            |              |             | 1                |              |              | 1          |              | ✓            |                  | 16,270 |

# Table S2: Models ranked by Bayesian information criterion (BIC) (continued)

|      |         |              |              | Endemic nu   |             |                  |              |              |            | Epidemic <i>phi</i> |              |                  |         |
|------|---------|--------------|--------------|--------------|-------------|------------------|--------------|--------------|------------|---------------------|--------------|------------------|---------|
| Rank | Weekday | Weekend      | Time trend   | Testing rate | Temperature | Sine-cosine wave | Weekday      | Weekend      | Time trend | Testing rate        | Temperature  | Sine-cosine wave | BIC     |
| 93   |         |              |              |              |             |                  | 1            |              |            |                     | 1            |                  | 15,858  |
| 94   | 1       |              |              |              | 1           |                  | $\checkmark$ |              |            |                     |              |                  | 15,818  |
| 95   |         |              | 1            |              |             | $\checkmark$     |              |              |            |                     |              |                  | 15,789  |
| 96   | 1       |              |              | 1            |             |                  | $\checkmark$ |              |            |                     | 1            |                  | 15,597  |
| 97   |         |              |              | ,            |             | 1                |              |              |            |                     | 1            |                  | 16,573  |
| 98   |         |              | 1            | 1            |             |                  |              |              | /          |                     | 1            |                  | 16,586  |
| 100  |         |              | 4            | v            |             | 1                |              |              | v          |                     | v            | ./               | 16 / 33 |
| 100  | 1       |              | v            |              |             | 1                |              |              |            | 1                   |              | ·                | 10,455  |
| 102  |         |              |              | 1            |             |                  | 1            |              |            | 1                   |              |                  | 16,592  |
| 103  |         |              | 1            | 1            |             |                  |              |              | 1          | 1                   |              |                  |         |
| 104  | 1       |              |              |              |             |                  | 1            |              |            |                     | 1            |                  | 16,802  |
| 105  |         | $\checkmark$ |              | 1            |             |                  | $\checkmark$ |              |            | 1                   |              |                  | 16,423  |
| 106  |         |              |              |              |             | 1                |              |              | 1          | 1                   |              |                  |         |
| 107  |         |              | 1            | $\checkmark$ |             |                  |              |              |            |                     |              |                  | 16,439  |
| 108  |         | $\checkmark$ |              |              |             | 1                |              |              |            |                     | 1            |                  | 16,919  |
| 109  |         |              | 1            |              |             |                  |              | $\checkmark$ |            |                     |              | 1                | 15,990  |
| 110  |         | 1            |              |              |             | 1                |              |              |            |                     |              |                  | 15,966  |
| 111  | ~       |              |              | ~            | /           |                  | <i>√</i>     | ,            |            | 1                   |              |                  | 15,948  |
| 112  |         |              | 1            | 1            | v           |                  |              | ./           |            | <i>v</i>            |              | ./               | 16 652  |
| 113  |         |              | 4            | v            |             |                  |              | ,<br>,       |            | 1                   |              | v                | 16 616  |
| 115  |         |              | ·            |              |             | 1                |              |              |            | ·                   | 1            |                  | 16.578  |
| 116  |         |              | 1            |              |             | 1                |              |              | 1          |                     | 1            |                  | 16,445  |
| 117  |         |              |              |              |             | 1                |              |              |            |                     |              |                  |         |
| 118  |         | 1            |              |              | 1           |                  |              | 1            |            | 1                   |              |                  | 16,797  |
| 119  |         | $\checkmark$ |              |              |             |                  | $\checkmark$ |              |            | 1                   |              |                  | 16,789  |
| 120  |         |              |              |              |             | 1                |              |              |            | 1                   |              |                  | 16,389  |
| 121  | 1       |              |              | 1            |             |                  |              |              | 1          |                     |              | 1                | 16,650  |
| 122  |         |              | $\checkmark$ |              |             |                  |              |              | 1          | 1                   |              |                  |         |
| 123  |         |              |              |              |             |                  | $\checkmark$ |              |            | 1                   |              |                  | 16,574  |
| 124  |         | ,            |              |              |             |                  |              | <i>,</i>     |            |                     |              |                  | 16,301  |
| 125  |         | ~            |              | /            | 1           |                  | ,            | 1            |            |                     |              |                  | 16,396  |
| 120  |         | /            |              | · ·          |             |                  | ·            |              |            |                     |              |                  | 16,150  |
| 127  |         | v            |              | <i>,</i>     |             |                  | v            | 1            |            |                     | 1            |                  | 16,364  |
| 129  |         | 1            |              | 1            |             |                  |              | 1            |            |                     | 1            |                  | 17,139  |
| 130  |         | 1            |              |              |             |                  | 1            |              |            |                     |              |                  | 16,996  |
| 131  | 1       |              |              |              | 1           |                  |              | 1            |            |                     |              |                  | 16,991  |
| 132  |         |              |              |              | 1           |                  |              | $\checkmark$ |            |                     | 1            |                  | 16,503  |
| 133  | 1       |              |              |              |             |                  | 1            |              |            | 1                   |              |                  | 17,222  |
| 134  | 1       |              |              | $\checkmark$ |             |                  |              | $\checkmark$ |            |                     | $\checkmark$ |                  | 16,955  |
| 135  |         | $\checkmark$ |              |              |             |                  |              | 1            |            |                     | 1            |                  | 17,220  |
| 136  | 1       |              |              |              | 1           |                  |              | 1            |            |                     | 1            |                  | 16,384  |
| 137  | ,       |              |              | ,            |             |                  | $\checkmark$ |              |            |                     |              | ,                | 17,127  |
| 138  | 1       |              |              | <i>.</i>     |             |                  |              |              | /          |                     | /            | <i>√</i>         | 16,944  |
| 140  | v       |              | 1            | v            | 1           |                  |              |              | 1          |                     | v            | ./               | 16,965  |
| 141  | 1       |              | ·            |              | ·           |                  |              | 1            | ·          |                     | 1            | ·                | 16,435  |
| 142  |         |              |              |              |             |                  |              | 1            |            |                     | 1            |                  | 16,551  |
| 143  | 1       |              |              | 1            |             |                  | 1            |              |            |                     |              |                  | 16,416  |
| 144  | 1       |              |              |              |             |                  | 1            |              |            |                     |              |                  | 16,384  |
| 145  |         |              | 1            |              | 1           |                  |              |              |            |                     | 1            |                  | 16,371  |
| 146  |         |              |              |              |             | 1                |              |              | 1          |                     |              |                  | 16,392  |
| 147  |         |              | 1            |              | 1           |                  |              |              |            |                     |              |                  | 16,349  |
| 148  |         | <i>√</i>     |              |              | 1           |                  |              |              | 1          |                     |              | 5                | 15,944  |
| 149  |         | 1            |              |              |             | 1                |              |              | 1          |                     |              |                  | 16,347  |
| 150  | ,       |              | 1            |              | /           |                  |              |              | ,          |                     | $\checkmark$ | 1                | 16,377  |
| 152  | 1       |              | ./           |              | 1           |                  |              |              | 1          |                     |              | 1                | 15,243  |
| 153  |         |              | ×<br>./      |              | v           |                  |              |              |            |                     |              | v                | 16,341  |
| 154  |         |              | *            | 1            |             |                  |              |              | 1          |                     |              | 1                | 16,365  |
| 155  |         |              | 1            | •            |             |                  |              |              |            |                     |              | 1                | 16,331  |
| 156  |         | 1            |              | 1            |             |                  |              |              | 1          |                     |              | 1                | 15,951  |
| 157  |         |              |              |              | 1           |                  |              |              | 1          |                     |              | 1                | 15,813  |
| 158  | 1       |              |              |              |             | 1                |              |              |            |                     | 1            |                  | 15,780  |

# Table S2: Models ranked by Bayesian information criterion (BIC) (continued)

|      |              |              |            | Endemic nu   |             |                  |         |              |            | Epidemic phi |              |                  |        |
|------|--------------|--------------|------------|--------------|-------------|------------------|---------|--------------|------------|--------------|--------------|------------------|--------|
| Rank | Weekday      | Weekend      | Time trend | Testing rate | Temperature | Sine-cosine wave | Weekday | Weekend      | Time trend | Testing rate | Temperature  | Sine-cosine wave | BIC    |
| 159  | 1            |              |            |              |             | 1                |         |              |            |              |              |                  | 15,750 |
| 160  |              |              |            | 1            |             |                  |         | 1            |            |              |              |                  | 15,586 |
| 161  |              | 1            |            | 1            |             |                  |         | <i>✓</i>     |            |              |              |                  | 16,488 |
| 162  |              | 1            |            |              |             |                  |         | 1            |            | <i>,</i>     |              |                  | 16,488 |
| 164  |              |              |            |              | 1           |                  |         | ~            | 1          | ./           |              |                  | 16,472 |
| 165  | ./           | v            |            | 1            | v           |                  |         | ./           | v          | v            |              |                  | 16,005 |
| 166  | v            | 1            |            | v            |             |                  |         | •            | 1          | 1            |              |                  | 16,472 |
| 167  |              | 1            |            |              |             |                  |         | 1            |            |              |              |                  | 16,460 |
| 168  |              | 1            |            |              |             |                  |         |              | 1          |              |              | 1                | 15,978 |
| 169  | 1            |              |            |              |             |                  |         | 1            |            | $\checkmark$ |              |                  | 16,470 |
| 170  |              |              |            |              |             |                  |         | $\checkmark$ |            |              |              |                  | 16,474 |
| 171  | 1            |              |            | 1            |             |                  |         | 1            |            | $\checkmark$ |              |                  | 16,909 |
| 172  | 1            |              |            |              |             |                  |         | 1            |            |              |              |                  | 16,330 |
| 173  | 1            | ,            |            | ,            |             |                  |         |              |            |              | ,            | 1                | 16,045 |
| 175  | /            | ~            |            | ~            |             |                  |         |              | 1          | /            | <i>v</i>     |                  | 16,015 |
| 176  | v            |              | 1          |              | 1           |                  |         |              | 1          | v            | 1            |                  | 15.805 |
| 177  |              |              |            |              | -           | 1                |         |              | -          |              |              | 1                | 16.834 |
| 178  |              |              |            |              |             |                  |         |              | 1          |              |              | 1                | 16,853 |
| 179  |              |              |            |              | 1           |                  |         |              | 1          | 1            |              |                  | 16,825 |
| 180  |              |              |            |              |             |                  |         |              | 1          | $\checkmark$ |              |                  | 16,793 |
| 181  |              | 1            |            | 1            |             |                  |         |              |            |              |              | 1                | 16,761 |
| 182  |              |              | 1          | 1            |             |                  |         |              | 1          |              |              | $\checkmark$     | 16,483 |
| 183  |              | 1            |            |              | 1           |                  |         |              |            |              |              | $\checkmark$     | 16,611 |
| 184  |              |              | 1          | 1            |             |                  |         |              |            |              |              | $\checkmark$     | 16,385 |
| 185  | ,            |              |            |              | ,           | 1                |         |              | 1          |              | 1            | ,                | 16,816 |
| 180  | v            |              |            |              | <i>v</i>    |                  |         |              |            |              |              | J                | 16,801 |
| 188  | 1            | v            |            |              |             |                  |         |              |            |              |              | ý<br>./          | 16.625 |
| 189  | 1            |              |            | 1            |             |                  |         |              | 1          |              |              |                  | 16.679 |
| 190  |              |              | 1          |              |             | 1                |         |              | 1          |              |              |                  | 16,237 |
| 191  |              | 1            |            |              | 1           |                  |         |              | 1          |              | 1            |                  | 16,365 |
| 192  |              |              |            | 1            |             |                  |         |              | 1          |              | 1            |                  | 16,437 |
| 193  |              | 1            |            | 1            |             |                  |         |              | 1          | $\checkmark$ |              |                  | 16,810 |
| 194  |              |              | 1          |              |             |                  |         |              | 1          |              | $\checkmark$ |                  | 16,703 |
| 195  | $\checkmark$ |              |            | 1            |             |                  |         |              | 1          | $\checkmark$ |              |                  | 16,701 |
| 196  |              |              |            |              |             |                  |         |              |            |              |              | 1                | 16,520 |
| 197  | ~            |              | /          | /            | 1           |                  |         | /            | 1          | /            | 1            |                  | 16,935 |
| 190  |              |              | V          | ~            |             |                  |         | ~            |            | v            |              | 1                | 16,462 |
| 200  |              |              |            |              | 1           |                  |         |              | 1          |              | 1            | v                | 16 677 |
| 201  |              |              | 1          |              | -           |                  |         |              | 1          |              |              |                  | 16,800 |
| 202  |              |              | 1          |              | 1           |                  |         |              | 1          |              |              |                  | 16,686 |
| 203  |              | 1            |            |              |             |                  |         |              | 1          |              | 1            |                  | 16,674 |
| 204  |              |              |            |              |             |                  |         |              | 1          |              | 1            |                  | 16,509 |
| 205  | 1            |              |            |              |             |                  |         |              | 1          |              | $\checkmark$ |                  | 16,642 |
| 206  | 1            |              |            |              | 1           |                  |         |              | 1          |              |              |                  | 16,160 |
| 207  |              | $\checkmark$ |            |              | 1           |                  |         |              | 1          |              |              |                  | 16,284 |
| 208  |              | 1            |            |              | 1           |                  |         | <i>√</i>     |            |              | 1            |                  | 16,386 |
| 209  |              |              | ~          |              | 1           |                  |         | 1            | ,          | 1            |              |                  | 15,658 |
| 210  |              |              | ./         | 1            | ~           |                  |         |              | 4          |              |              |                  | 15,679 |
| 212  |              |              | v          | 1            |             |                  |         |              | ·          |              |              | 1                | 15 615 |
| 213  | 1            |              |            |              | 1           |                  |         |              |            |              | 1            | -                | ,515   |
| 214  | 1            |              |            |              | 1           |                  |         |              |            |              |              |                  |        |
| 215  | 1            |              |            | 1            |             |                  |         |              |            |              | 1            |                  | 15,684 |
| 216  | $\checkmark$ |              |            | 1            |             |                  |         |              |            |              |              |                  | 15,530 |
| 217  |              | $\checkmark$ |            |              | 1           |                  |         |              |            |              | $\checkmark$ |                  | 15,637 |
| 218  |              | 1            |            |              |             |                  |         |              |            |              | 1            |                  | 15,649 |
| 219  | $\checkmark$ |              |            |              |             |                  |         |              |            |              | $\checkmark$ |                  | 15,618 |
| 220  |              | 1            |            |              | 1           |                  |         |              | ,          |              |              |                  | 15,622 |
| 221  |              | 1            |            | /            |             |                  |         |              | 1          |              |              |                  | 15,461 |
| 223  |              | v            |            | v            |             |                  |         |              | 1          |              |              |                  | 15,389 |
| 224  |              |              |            | 1            |             |                  |         |              | 1          |              |              |                  | 15,440 |
|      |              |              |            | · · · · · ·  |             |                  |         |              |            |              |              |                  |        |

# Table S2: Models ranked by Bayesian information criterion (BIC) (continued)

|      |              |         |            | Endemic nu   |             |                  |              |              |            | Epidemic phi |             |                  |        |
|------|--------------|---------|------------|--------------|-------------|------------------|--------------|--------------|------------|--------------|-------------|------------------|--------|
| Rank | Weekday      | Weekend | Time trend | Testing rate | Temperature | Sine-cosine wave | Weekday      | Weekend      | Time trend | Testing rate | Temperature | Sine-cosine wave | BIC    |
| 225  |              | 1       |            | 1            |             |                  |              |              | 1          |              |             |                  | 15,944 |
| 226  | 1            |         |            |              |             |                  |              |              | 1          |              |             |                  | 15,962 |
| 227  |              | 1       |            |              | 1           |                  |              |              |            | $\checkmark$ |             |                  | 15,938 |
| 228  |              |         |            |              | 1           |                  |              |              |            | 1            |             |                  | 16,418 |
| 229  |              | 1       |            |              |             |                  |              |              |            | 1            |             |                  |        |
| 230  |              |         |            |              | 1           |                  |              |              |            |              |             |                  |        |
| 231  | $\checkmark$ |         |            |              |             |                  |              |              |            | 1            |             |                  |        |
| 232  |              | 1       |            |              |             |                  |              |              |            |              |             |                  | 16,432 |
| 233  |              |         |            | 1            |             |                  |              |              |            |              |             |                  | 15,935 |
| 234  |              |         |            |              | 1           |                  |              |              |            |              | 1           |                  | 15,953 |
| 235  | 1            |         |            |              |             |                  |              |              |            |              |             |                  | 15,926 |
| 236  |              |         |            |              |             |                  |              |              |            |              | 1           |                  | 15,743 |
| 237  |              | 1       |            | 1            |             |                  |              |              |            |              | 1           |                  | 15,738 |
| 238  |              |         |            | 1            |             |                  |              |              |            |              | 1           |                  | 15,668 |
| 239  |              |         |            |              |             |                  |              |              |            | 1            |             |                  | 15,687 |
| 240  |              |         |            |              |             |                  |              |              |            |              |             |                  | 15,719 |
| 241  |              |         |            | 1            |             |                  |              |              |            | $\checkmark$ |             |                  | 16,642 |
| 242  |              | 1       |            | $\checkmark$ |             |                  |              |              |            | $\checkmark$ |             |                  | 16,607 |
| 243  |              |         | 1          |              | 1           |                  |              |              |            | 1            |             |                  | 16,582 |
| 244  | 1            |         |            | 1            |             |                  |              |              |            | $\checkmark$ |             |                  | 16,361 |
| 245  |              |         | 1          |              |             |                  |              |              |            | $\checkmark$ |             |                  | 16,518 |
| 246  | 1            |         |            |              | 1           |                  |              |              |            | $\checkmark$ |             |                  | 16,445 |
| 247  |              |         |            | 1            |             |                  |              | 1            |            | $\checkmark$ |             |                  | 16,523 |
| 248  |              | 1       |            | 1            |             |                  |              | 1            |            | $\checkmark$ |             |                  | 16,667 |
| 249  | 1            |         |            |              | 1           |                  |              | 1            |            | $\checkmark$ |             |                  | 16,533 |
| 250  |              |         |            | 1            |             |                  |              |              | 1          | $\checkmark$ |             |                  | 16,507 |
| 251  | 1            |         |            |              | 1           |                  |              |              | 1          | 1            |             |                  | 16,500 |
| 252  |              |         |            | 1            |             |                  | 1            |              |            |              |             | 1                | 16,486 |
| 253  | 1            |         |            | 1            |             |                  | $\checkmark$ |              |            |              |             | 1                | 16,354 |
| 254  |              |         |            | 1            |             |                  |              | ~            |            |              |             | 1                | 16,152 |
| 255  | ~            |         |            | 1            |             |                  |              | $\checkmark$ |            |              |             | 1                | 16,228 |
| 256  |              | 1       |            | 1            |             |                  |              | $\checkmark$ |            |              |             | 1                | 16,295 |

Table S2: Models ranked by Bayesian information criterion (BIC) (continued)

43

#### 44

#### 3 Sensitivity analysis of contact matrices - model fit

The modelling approach used is dependent on the transmission weights  $w_{a,a',t}$  used to inform the model. For this reason, we elect to do a sensitivity analysis. In particular, we consider it unrealistic that school contacts decrease and other contacts would be expected to remain the same so we conducted a sensitivity analysis of the situation where other contacts change to reflect this. We examine the robustness of the time-varying contact matrix  $w_{a,a',t}$  through various alternatives for its construction. The total average contacts at time *t* are given by the weighted sum

$$w_{a,a',t} = \sum_{s} \gamma_{s,t} \cdot c_{a,a',s} = \sum_{s} d_{s} \cdot p_{s,t} \cdot h_{s,t} \cdot c_{a,a',s}$$
(4)

where *s* denotes setting the contact occurred in,  $d_s$  are the disease-specific weights, *p*<sub>*s*,*t*</sub> is policy, and  $h_{s,t}$  is adjustments for school holidays. The setting-specific con-

tacts  $c_{a,a',s}$  are the same as the ones displayed in Figure 2 in the main manuscript. 54 The policy indicators  $p_{s,t}$  used in this sensitivity analysis are the ones shown in Fig-55 ure 3 of the main manuscript. We now consider the situation where  $d_s$  are allowed 56 to vary by time as well as setting:  $d_{s,t}$ . Previously we considered  $d_s$  to take the val-57 ues 11.41 for school setting, 8.07 for work setting, 4.11 for household, and 2.79 58 for other setting for all time points t. We conduct two sensitivity analyses to reflect 59 that reductions in school contacts are unlikely to exist in a vacuum and there is 60 likely to be some symbiosis with work contacts. Namely, when children are home 61 from school guardians are more likely to also be home to engage in childcare. The 62 two options for sensitivity analysis are: 63

- Option 1: The household weight  $d_s|_{\text{household}}$  reflects the school closure policy 64 and is given by  $d_s|_{\text{household}} = 2 - p_{s,t}|_{\text{school}}$ 65
- Option 2: The household weight  $d_s|_{\text{household}}$  is adjusted by any amount which 66 reduces contacts on school holidays (the adjustment is now through  $h_{s,t}$ )
- 68

67

#### 3.1 Option 1: Household contacts depend on school closures

The first option adjusts the household indicator such that it increases when the 69 school indicator decreases. The rationale behind this is that when schools are 70 closed, there are fewer school contacts but more household contacts so we con-71 sidered that households should "mirror" schools to reflect expected increases in 72 contacts due to school closures. The downside of this adjustment is that it does 73 not take into account the school holiday score  $h_{s,t}$  which means that if schools are 74 generally open but it is a holiday in most cantons, household contacts are not in-75 creased (this will be addressed in Option 2). The implications of this adjustment on 76 all involved components can be seen in Figure S5. 77



Figure S5: Time series of policy indicators  $p_{s,t}$ , disease weights  $d_s$ , and nonpandemic school holiday score  $h_{s,t}$ . The lower panel shows the product of all of the time series  $\gamma_{s,t}$  which will serve as a multiplication factor for the setting specific contact matrix  $c_{a,d',t}$ 

The fit and lag distribution of the model with contact matrices constructed under 78 Option 1 is shown in Figure S6 and the corresponding parameters can be found in 79 Table S3. Looking at the models fitted with the contact matrices constructed as 80 explained under Option 1, the best model according to Bayesian information cri-81 terion has model covariates age, public holidays, weekend, and sine-cosine wave 82 in the endemic component and age, public holidays, weekday, and sine-cosine 83 wave in the epidemic component. The fit and lag distribution are shown in Fig-84 ure S6. 85

Best fitting model (Option 1)



Figure S6: Model fit and lag distribution for the best model with weights as constructed under Option 1. The endemic component was fitted with effects for age, public holidays, weekend, and sine-cosine wave whereas the epidemic mean is fitted with effects for age, public holidays, weekday, and sine-cosine wave

When it comes to Option 1, we can see from the fit shown in Figure S6 that the 86 number of cases in the youngest age group is clearly overestimated in the first 87 wave (seen around April where the shaded area is above the points) and underes-88 timated in the second wave (where the shaded area is below the points). The plot 89 also shows that the contribution of the endemic mean  $\hat{v}_{at}$  contributes predomin-90 antly in the younger age groups whereas for the older age groups almost all of the 91 cases are attributed to the epidemic component  $\hat{\phi}_{at}$ . Furthermore, the estimated 92 lag distribution  $\hat{u}_d$  indicates that the maximum lag peaks at 1 which is not what we 93

| End                                   | lemic – log(v | <sub>ut</sub> ) | Epidemic                                         | $-\log(\phi_{at})$ |            | Other parameters |          |            |  |
|---------------------------------------|---------------|-----------------|--------------------------------------------------|--------------------|------------|------------------|----------|------------|--|
| Coefficient                           | Estimate      | Std. Error      | Coefficient                                      | Estimate           | Std. Error | Coefficient      | Estimate | Std. Error |  |
| $\alpha_{0-14}^{(\nu)}$               | 2.617         | 0.195           | $\alpha_{0-14}^{(\phi)}$                         | -3.995             | 0.054      | $\psi_{0-14}$    | 0.256    | 0.032      |  |
| $\alpha_{15-24}^{(\nu)}$              | 4.601         | 0.175           | $\alpha_{15-24}^{(\phi)}$                        | -2.673             | 0.038      | $\psi_{15-24}$   | 0.116    | 0.012      |  |
| $\alpha_{25-44}^{(\nu)}$              | 3.878         | 0.177           | $\alpha_{25-44}^{(\phi)}$                        | -2.371             | 0.026      | $\psi_{25-44}$   | 0.059    | 0.006      |  |
| $\alpha_{45-65}^{(\nu)}$              | 2.750         | 0.230           | $\alpha_{45-65}^{(\phi)}$                        | -2.392             | 0.023      | $\psi_{45-65}$   | 0.051    | 0.005      |  |
| $\alpha_{66-79}^{(\nu)}$              | 2.302         | 0.259           | $\alpha_{66-79}^{(\phi)}$                        | -2.134             | 0.028      | $\psi_{66-79}$   | 0.079    | 0.010      |  |
|                                       |               |                 | $\alpha_{80+}^{(\phi)}$                          | -1.195             | 0.019      | $\psi_{80+}$     | 0.049    | 0.008      |  |
|                                       |               |                 | $\beta_{day of the week Tuesday}^{(\phi)}$       | 0.313              | 0.021      |                  |          |            |  |
|                                       |               |                 | $\beta_{\rm day of the week Wednesday}^{(\phi)}$ | 0.067              | 0.022      |                  |          |            |  |
|                                       |               |                 | $\beta_{\rm day of the week Thursday}^{(\phi)}$  | -0.053             | 0.022      |                  |          |            |  |
|                                       |               |                 | $\beta_{\rm day of the week Friday}^{(\phi)}$    | -0.024             | 0.022      |                  |          |            |  |
|                                       |               |                 | $\beta_{day of the week Saturday}^{(\phi)}$      | -0.405             | 0.023      |                  |          |            |  |
|                                       |               |                 | $\beta_{day of the week Sunday}^{(\phi)}$        | -0.629             | 0.024      |                  |          |            |  |
| $\beta_{weekend}^{(v)}$               | -0.863        | 0.090           | duy of the week sunday                           |                    |            |                  |          |            |  |
| $\beta_{\text{public boliday}}^{(v)}$ | -0.748        | 0.411           | $\beta_{\text{public boliday}}^{(\phi)}$         | -0.208             | 0.062      |                  |          |            |  |
| $\gamma^{(v)}$                        | 1.927         | 0.185           | $\gamma^{(\phi)}$                                | 0.557              | 0.019      |                  |          |            |  |
| $\delta^{( u)}$                       | -2.233        | 0.027           | $\delta^{(\phi)}$                                | 1.849              | 0.011      |                  |          |            |  |
|                                       |               |                 |                                                  |                    |            | log ĸ            | -0.247   |            |  |

Table S3: Coefficients of the best model using BIC under Option 1 and Scenario A.

would expect. Compared with the original model in the main manuscript there is 94 now a greater effect of  $\beta_{\rm day \ of \ the \ week \ Friday}^{(\nu)}.$ 95

96

#### 3.2 Option 2: Weight shift from school to household during school 97 holidays 98

The second option adjusts the household weight based on the reduction of the 99 school weight through the holiday score. The reasoning behind this is that, con-100 trary to the approach in Option 1, the contribution of household contacts expected 101 to increase during school holidays. This means that the school weight decreases 102 with the holiday score (as can be seen in Equation (4)) and the difference from 103 the original school weight to the holiday score-adjusted is added to the household 104 weight. The corresponding equation is: 105

$$d_{s,t}|_{\text{household}} = d_{s,t}|_{\text{household}} + c \cdot (d_{s,t}|_{\text{school}} - d_{s,t}|_{\text{school}} \cdot h_{s,t})$$
(5)

where c denotes the fraction of reduced weight in the school setting that is ad-106

ded to the household setting. For this analysis we set c = 0.5 as we assume that the number of contacts is lower when individuals stay at home instead of going to school. The effect is shown in Figure S7.



Figure S7: Time series of policy indicators  $p_{s,t}$ , disease weights  $d_s$ , and nonpandemic school holiday score  $h_{s,t}$ . The lower panel shows the product of all of the time series  $\gamma_{s,t}$  which will serve as a multiplication factor for the setting specific contact matrix  $c_{a,d',t}$ 

The corresponding plot and table for Option 2 can be found in Figure S8 and Table S4.

#### Best fitting model (Option 2)



Figure S8: Model fit and lag distribution for the best model with transmission weights  $w_{a,a',t}$  as constructed under Option 1. The endemic mean is fitted with effects for age, public holidays, weekday, and sine-cosine wave whereas the epidemic mean is fitted with effects for age, public holidays, weekday, and sine-cosine wave

112

The model fit shown in Figure S8 is similar to that seen for Option 1. However, the reduction in cases in November and December is not captured as well. Once again, the peak of the estimated lag distribution is at 1. Now the model contains weekday effects in the endemic component (Table S4). Thursday seems a particularly important day for case reporting as it has opposite effects in the two components. The overdispersion parameter v takes low values but still shows some

| Endemic                                               | $-\log(v_{at})$ |            | Epidemic                                                | $-\log(\phi_{at})$ |            | Other parameters |          |            |  |
|-------------------------------------------------------|-----------------|------------|---------------------------------------------------------|--------------------|------------|------------------|----------|------------|--|
| Coefficient                                           | Estimate        | Std. Error | Coefficient                                             | Estimate           | Std. Error | Coefficient      | Estimate | Std. Error |  |
| $\alpha_{0-14}^{(\nu)}$                               | 2.520           | 0.197      | $\alpha^{(\phi)}_{0-14}$                                | -3.950             | 0.057      | $\psi_{0-14}$    | 0.231    | 0.031      |  |
| $\alpha_{15-24}^{(\nu)}$                              | 4.574           | 0.152      | $\alpha_{15-24}^{(\phi)}$                               | -2.619             | 0.036      | $\psi_{15-24}$   | 0.090    | 0.010      |  |
| $\alpha_{25-44}^{(\nu)}$                              | 3.797           | 0.156      | $\alpha_{25-44}^{(\phi)}$                               | -2.302             | 0.024      | $\psi_{25-44}$   | 0.054    | 0.006      |  |
| $\alpha_{45-65}^{(\nu)}$                              | 2.512           | 0.250      | $\alpha_{45-65}^{(\phi)}$                               | -2.315             | 0.023      | $\psi_{45-65}$   | 0.062    | 0.006      |  |
| $\alpha_{66-79}^{(\nu)}$                              | 2.017           | 0.301      | $\alpha^{(\phi)}_{66-79}$                               | -2.058             | 0.029      | $\psi_{66-79}$   | 0.099    | 0.012      |  |
|                                                       |                 |            | $\alpha_{80+}^{(\phi)}$                                 | -1.129             | 0.022      | $\psi_{80+}$     | 0.080    | 0.013      |  |
| $\beta_{day of the week Tuesday}^{(\nu)}$             | 0.128           | 0.099      | $\beta_{day of the week Tuesday}^{(\phi)}$              | 0.355              | 0.025      |                  |          |            |  |
| $\beta_{\rm day \ of \ the \ week \ Wednesday}^{(v)}$ | 0.362           | 0.087      | $\beta^{(\phi)}_{ m day \ of \ the \ week \ Wednesday}$ | 0.074              | 0.025      |                  |          |            |  |
| $\beta_{day of the week Thursday}^{(v)}$              | 0.410           | 0.084      | $\beta_{\rm day \ of \ the \ week \ Thursday}^{(\phi)}$ | -0.066             | 0.025      |                  |          |            |  |
| $\beta_{\rm day \ of \ the \ week \ Friday}^{(v)}$    | 0.255           | 0.094      | $\beta^{(\phi)}_{ m day \ of \ the \ week \ Friday}$    | 0.034              | 0.026      |                  |          |            |  |
| $\beta_{day of the week Saturday}^{(v)}$              | -0.322          | 0.103      | $\beta_{day of the week Saturday}^{(\phi)}$             | -0.454             | 0.026      |                  |          |            |  |
| $\beta_{\rm day \ of \ the \ week \ Sunday}^{(v)}$    | -0.791          | 0.111      | $\beta^{(\phi)}_{\text{day of the week Sunday}}$        | -0.665             | 0.026      |                  |          |            |  |
| $\beta_{\text{public holiday}}^{(v)}$                 | -0.167          | 0.316      | $\beta_{\text{public holiday}}^{(\phi)}$                | -0.706             | 0.071      |                  |          |            |  |
| $\gamma^{(\nu)}$                                      | 1.994           | 0.160      | $\gamma^{(\phi)}$                                       | 0.683              | 0.018      |                  |          |            |  |
| $\delta^{( u)}$                                       | -2.481          | 0.026      | $\delta^{(\phi)}$                                       | 1.515              | 0.013      |                  |          |            |  |
|                                                       |                 |            |                                                         |                    |            | log ĸ            | -0.124   |            |  |

Table S4: Coefficients of the best model using BIC under Option 2 and Scenario A

age-dependence. The fixed effects of age group  $\alpha^{(\phi)}$  are once again showing a decreasing pattern.

121

#### 3.3 Discussion

Our goodness-of-fit criterion for model selection–Bayesian information criterion
 (see previous section)– selects the same model as the main manuscript for Option
 1 but a different model is selected for Option 2. This implies our results are robust
 to the shift in household contacts reflecting policy but not for that reflecting school
 holiday. Weekly fluctuations remain an important effect to capture in our models
 for daily case counts.

128

## 4 Sensitivity analysis of contact matrices – final size estimates

<sup>129</sup> Considering the options outlined in the previous section, we examine the effect <sup>130</sup> these changes to  $\gamma_{s,t}$  has on our predicted case counts. The previous section con-<sup>131</sup> sidered only those results which are relevant for the model selection procedure, <sup>132</sup> i.e. the model fit under scenario A and goodness-of-fit. Now we evaluate the pre-<sup>133</sup> dictions under the two alternative scenarios B and C. Recall, the two options for <sup>134</sup> sensitivity analysis are:

Option 1: The household weight  $d_s|_{\text{household}}$  reflects the school closure policy and is given by  $d_s|_{\text{household}} = 2 - p_{s,t}|_{\text{school}}$  ("Household contacts depend on school closures")

Option 2: The household weight  $d_s|_{\text{household}}$  is adjusted by any amount which

reduces contacts on school holidays (the adjustment is now through  $h_{s,t}$ )

140 ("Weight shift from school to household during school holidays")

## 1414.1 Scenario B

<sup>142</sup> We now present the effect these changes have on the ratios of the predicted num-

<sup>143</sup> ber of counts between Scenario A and Scenario B (Figure S9). We also compare

the final size between scenarios A and B in order to simulate the number of cases

<sup>145</sup> when schools would have stayed open.



# Figure S9: Ratio of the age group-specific path trajectories (B divided by A) throughout time

Both options dampen the number of cases as would be expected since the dominance of contacts in school settings (represented through  $d_{s,t}$  is now lower. Option 1 has a lower number of expected cases than Option 2. Both have similar trickle effects to other age groups but the peak is lower for the school and working aged age groups (all ages up to 65) and later for the oldest age groups (ages 66 and above).

152

153

154

### Table S5: Comparison between scenarios A (true measures) and B (schools open) for the original method

| Age            |                 | B - A           |                 |                 | B / A           |                 |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                | P <sub>10</sub> | P <sub>50</sub> | P <sub>90</sub> | P <sub>10</sub> | P <sub>50</sub> | P <sub>90</sub> |
| 0-14           | 162.9           | 240.0           | 404             | 1.76            | 1.81            | 1.87            |
| 15-24          | 45.1            | 89.9            | 218             | 1.06            | 1.08            | 1.12            |
| 25-44          | 192.9           | 362.3           | 821             | 1.10            | 1.12            | 1.15            |
| 45-65          | 153.3           | 311.5           | 773             | 1.07            | 1.09            | 1.12            |
| 66-79          | 48.9            | 113.8           | 323             | 1.04            | 1.06            | 1.08            |
| 80+            | 37.3            | 90.5            | 271             | 1.04            | 1.05            | 1.07            |
| Total (summed) | 641.7           | 1,207.1         | 2,820           | 1.09            | 1.11            | 1.13            |

Table S6: Comparison between scenarios A (true measures) and B (schools open) for Option 1

| Age            |                 | B - A           |                 |                 | B / A           |                 |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                | P <sub>10</sub> | P <sub>50</sub> | P <sub>90</sub> | P <sub>10</sub> | P <sub>50</sub> | P <sub>90</sub> |
| 0-14           | 114.3           | 229             | 701             | 1.31            | 1.36            | 1.40            |
| 15-24          | 45.4            | 137             | 605             | 1.04            | 1.06            | 1.07            |
| 25-44          | 171.0           | 477             | 2,014           | 1.06            | 1.07            | 1.08            |
| 45-65          | 155.6           | 497             | 2,334           | 1.04            | 1.05            | 1.06            |
| 66-79          | 64.5            | 248             | 1,301           | 1.03            | 1.04            | 1.05            |
| 80+            | 53.9            | 224             | 1,236           | 1.02            | 1.03            | 1.05            |
| Total (summed) | 604.9           | 1,815           | 8,188           | 1.05            | 1.06            | 1.07            |

Table S7: Comparison between scenarios A (true measures) and B (schools open) for Option 2

| Age            |                 | B - A           |                 |                 | B / A           |                 |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                | P <sub>10</sub> | P <sub>50</sub> | P <sub>90</sub> | P <sub>10</sub> | P <sub>50</sub> | P <sub>90</sub> |
| 0-14           | 79.4            | 117.5           | 232             | 1.49            | 1.51            | 1.53            |
| 15-24          | 24.4            | 58.3            | 181             | 1.04            | 1.06            | 1.11            |
| 25-44          | 101.4           | 223.1           | 662             | 1.06            | 1.09            | 1.13            |
| 45-65          | 89.7            | 223.2           | 719             | 1.05            | 1.08            | 1.11            |
| 66-79          | 36.8            | 109.6           | 387             | 1.04            | 1.07            | 1.10            |
| 80+            | 29.0            | 90.6            | 328             | 1.04            | 1.07            | 1.10            |
| Total (summed) | 359.8           | 823.6           | 2,517           | 1.06            | 1.09            | 1.12            |



Figure S10: Visual comparison of the  $P_{50}$  values for the three options

No difference is found in the ratios for scenario B so the relative measures are
 the same in this instance. The case counts are greater for Option 2 and lower for
 Option 1 (Figure S12).

158

### 4.2 Scenario C

We also examine the predicted final of the epidemic when schools stay closed un-159 der the two alternative options for transmission weights. Now the difference in 160 path trajectories is not as obvious, which means the differences seen for scenario 161 B could also be an artefact of fewer cases early in the pandemic. The decrease in 162 cases for June and July seems larger for the unadjusted weights which again is due 163 to the dominance of contacts in school settings. Here the difference between Op-164 tion 1 and Option 2 is still apparent with Option 1 having a smaller decrease and 165 Option 2 showing a greater decrease. 166



Figure S11: Ratio of the age group-specific trajectories (C divided by A) throughout time



### Table S8: Comparison between scenarios A (true measures) and C (schools closed) for the original method

| Age            |                 | C - A           |                 |                 | C / A           |                 |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                | P <sub>10</sub> | P <sub>50</sub> | P <sub>90</sub> | P <sub>10</sub> | P <sub>50</sub> | P <sub>90</sub> |
| 0-14           | -27.5           | -20.85          | -16.98          | 0.915           | 0.922           | 0.928           |
| 15-24          | -16.6           | -9.38           | -5.98           | 0.990           | 0.994           | 0.995           |
| 25-44          | -64.4           | -36.03          | -23.15          | 0.985           | 0.989           | 0.991           |
| 45-65          | -55.2           | -30.08          | -18.96          | 0.983           | 0.988           | 0.990           |
| 66-79          | -13.5           | -6.92           | -4.05           | 0.984           | 0.988           | 0.991           |
| 80+            | -9.5            | -4.69           | -2.62           | 0.982           | 0.987           | 0.989           |
| Total (summed) | -186.0          | -107.83         | -71.69          | 0.983           | 0.987           | 0.990           |

# Table S9: Comparison between scenarios A (true measures) and C (schools closed) for Option 1

| Age            |                 | C - A           |                 |                 | C / A           |                 |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                | P <sub>10</sub> | P <sub>50</sub> | P <sub>90</sub> | P <sub>10</sub> | P <sub>50</sub> | P <sub>90</sub> |
| 0-14           | -14.29          | -11.81          | -10.19          | 0.957           | 0.959           | 0.961           |
| 15-24          | -8.81           | -5.16           | -3.48           | 0.995           | 0.996           | 0.997           |
| 25-44          | -35.16          | -20.76          | -14.12          | 0.992           | 0.994           | 0.995           |
| 45-65          | -31.28          | -17.76          | -11.73          | 0.991           | 0.993           | 0.994           |
| 66-79          | -9.24           | -4.83           | -2.93           | 0.991           | 0.994           | 0.995           |
| 80+            | -6.20           | -3.17           | -1.82           | 0.991           | 0.993           | 0.994           |
| Total (summed) | -104.77         | -63.34          | -44.47          | 0.991           | 0.993           | 0.994           |

# Table S10: Comparison between scenarios A (true measures) and C (schools closed) for Option 2

| Age            |                 | C - A           |                 |                 | C / A           |                 |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                | P <sub>10</sub> | P <sub>50</sub> | P <sub>90</sub> | P <sub>10</sub> | P <sub>50</sub> | P <sub>90</sub> |
| 0-14           | -8.889          | -8.124          | -7.522          | 0.963           | 0.965           | 0.966           |
| 15-24          | -1.589          | -1.244          | -1.009          | 0.999           | 0.999           | 0.999           |
| 25-44          | -6.902          | -5.590          | -4.700          | 0.997           | 0.998           | 0.998           |
| 45-65          | -5.499          | -4.409          | -3.678          | 0.997           | 0.997           | 0.997           |
| 66-79          | -1.036          | -0.758          | -0.580          | 0.998           | 0.998           | 0.998           |
| 80+            | -0.691          | -0.493          | -0.359          | 0.997           | 0.997           | 0.998           |
| Total (summed) | -24.524         | -20.604         | -17.903         | 0.996           | 0.997           | 0.997           |



Figure S12: Visual comparison of the  $P_{50}$  values for the three options

| 174 | cases to other ages groups is more evident early on when schools are open (scen-   |
|-----|------------------------------------------------------------------------------------|
| 175 | ario B) than the reduction in cases later on when schools are closed (scenario C). |

176

### References