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1 Occupancy and Ventilation Estimation
A key input to the transmission-rate model is the (time-varying) occupancy in each space, which is then
used to estimate the number of susceptible,𝑁𝑠 , and infectious,𝑁𝑖 , occupants. There are various occupant-
counting technologies available, some of which utilize data such a video, images, and sound, and others
which utilize environmental data such as CO2 concentration, temperature, and humidity [1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14]. Depending on the data that the method uses, the required equipment may be
expensive and complicated to install, somany spaceswill not have occupancy counts directly available. In
addition, many of these technologies may compromise the privacy of occupants by using video or images
of occupants. Finally, machine learning methods which utilize multiple streams of environmental data
often require individual training data for each room, which is infeasible to apply to a large number of
rooms. One alternative would be to simply assume a fixed occupancy count and time-varying schedule
(e.g., as provided by [15]) for each space, but this approach would likely introduce unacceptably high
error, especially when occupancy is highly variable. Given these challenges, we thus propose a data-
driven approach to estimate occupancy from room CO2 concentration measurements that is based on
previous methods to estimate occupancy from full dynamic models of CO2 concentration.

An additional input to the transmission-rate model (as well as an important variable to estimate oc-
cupancy) is the outdoor-air flow𝑄𝑎 (or the corresponding air-change rate 𝜆𝑎 = 𝑄𝑎/𝑉 ). In HVAC systems
with a modern BMS, this value is often directly measured. Unfortunately, in many spaces with older
HVAC systems (or no HVAC system at all), such measurements are not available. Thus, to proceed in
these cases, it is necessary to estimate the ventilation rate. (Note that throughout this section, we use
“ventilation” to refer specifically to outdoor-air ventilation and not any recirculated airflow within the
building.) In the general case, estimating fully time-varying occupancy and ventilation profiles simul-
taneously can be essentially impossible because both phenomena have a similar effect on CO2 concen-
tration. However, in the case that the ventilation rate is constant (or at least roughly so), we can extend
our occupancy-estimation strategy to also estimate ventilation. This assumption will clearly not hold
for systems with modern HVAC systems that modulate outdoor-air flow throughout the day (e.g., due to
economizer or demand-controlled ventilation logic), and thus we would not recommend this procedure
for such spaces. However, for rooms that are naturally ventilated or served by a simple unit ventilator
or other constant-volume HVAC system, such an assumption will generally be quite accurate.

Our proposed approach to estimate occupancy and ventilation rates proceeds via parameter estima-
tion applied to the following ODE model:

𝑑𝐶CO2

𝑑𝑡
=
𝑄𝑏

𝑉
𝐶CO2,𝑏𝑁𝑡 (𝑡) − 𝑘𝑎 (𝑡) (𝐶CO2 −𝐶CO2,OA) (1)
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The state variable is the CO2 concentration 𝐶CO2 , while 𝑉 is the space volume, 𝑄𝑏 ≈ 0.6 m3/h is the
occupant breathing rate,𝐶CO2,𝑏 ≈ 38,000 ppm is the exhaled-breath excess CO2 concentration,𝐶CO2,OA ≈
400 ppm is the outdoor-air CO2 concentration, and 𝑘𝑎 (𝑡) B 𝑄𝑎 (𝑡)/𝑉 is the (possibly time-varying)
ventilation rate. The values to be inferred are the time-varying occupancy 𝑁𝑡 (𝑡) and also the ventilation
rate 𝑘𝑎 if it is not measured. A key benefit of the proposed approach is that it requires no prior training
or actual occupancy counts, and the room volume is the only parameter that has to be specified. In the
following subsections, we start with the assumption that 𝑘𝑎 (𝑡) is measured and discuss how its value can
be directly estimated if it is not measured.

1.1 Known Ventilation Rate
When the ventilation rate 𝑘𝑎 (𝑡) is known (e.g., due to direct measurement), we can estimate occupancy
𝑁𝑡 (𝑡) by choosing a set of basis functions and finding the linear combination of those basis functions
such that the predicted time series of 𝐶CO2 under (1) matches the actual measured values as closely as
possible. This step is performed by embedding a discretized version of this model inside an optimization
problem and solving for the basis-function coefficients via optimization techniques. Mathematically, we
denote the basis functions𝜙𝑖 [𝑡] for𝑁𝑡 . To embed the model, we choose a fixed sample rate Δ = 1 min and
define a new function 𝑓 (𝐶CO2, 𝑁𝑡 , 𝑘𝑎) to give the explicit Runge-Kutta 4 discretization of the ODE model
(1). (Gradient-based methods which utilize the sensitivity of the ODE model could also be used [16].)
The resulting optimization problem is thus

min
𝛼1,...,𝛼𝐼

𝐸 B
∑︁
𝑡

|𝐶𝑚
CO2

[𝑡] −𝐶CO2 [𝑡] |2

s.t. 𝐶CO2 [𝑡 + 1] = 𝑓 (𝐶CO2 [𝑡], 𝑁𝑡 [𝑡], 𝑘𝑎 [𝑡])

𝑁𝑡 [𝑡] =
𝐼∑︁

𝑖=1
𝛼𝑖𝜙𝑖 [𝑡]

𝑁min
𝑡 ≤ 𝑁𝑡 [𝑡] ≤ 𝑁max

𝑡

(2)

given CO2 concentration measurements 𝐶𝑚
CO2

[𝑡] and pre-defined occupancy bounds 𝑁min
𝑡 and 𝑁max

𝑡

(which we set respectively to zero and 1.5 times each room’s design occupancy). Note that we use square
brackets to emphasize that these quantities are defined in discrete time. Because the function 𝑓 ( · , · , · )
is linear in its first and second variables, the resulting optimization problem is thus a convex quadratic
programming problem that can be solved using standard techniques.

The choice of the specific basis functions 𝜙𝑖 [𝑡] depends on the expected occupancy profiles. Be-
cause we are primarily monitoring classroom and lecture spaces, we expect occupancy to generally be
piecewise-constant, changing values fairly abruptly during class changes. We assume that these values
stay constant for 30 minutes during nominal occupied hours (8am to 10pm each day) and for 60 minutes
otherwise. Thus, the values of the basis functions are given by

𝜙𝑖 [𝑡] B
{
1 if 𝜏𝑖 ≤ 𝑡 ≤ 𝜏𝑖+1

0 else

with 𝜏𝑖 the sequence of change times, with separation of 30 or 60 minutes between successive points at
the top of each hour or half hour. The underlying data 𝐶𝑚

CO2
[𝑡] is sampled every minute, so there are

essentially 30 to 60 samples of data for each unknown scalar parameter 𝛼𝑖 in the optimization problem
(2).
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1.2 Unknown Ventilation Rate
In cases where the ventilation rate 𝑘𝑎 (𝑡) is not measured or otherwise known, the proposed strategy re-
quires somemodification. One possible method to estimate its value would be to add corresponding basis
functions for 𝑘𝑎 [𝑡] and embed them in the optimization problem with new decision variables analogous
to the treatment of 𝑁𝑡 . For spaces with sufficiently low ventilation rates (and sufficiently high sample
rate for CO2 concentration measurements), this modification can be sufficient, with the resulting ventila-
tion and occupancy estimates being the ones that most closely match the measured CO2 data. However,
this change would render the resulting optimization problem nonconvex, and selection of appropriate
basis functions could be challenging. In addition, if there are few changes in occupancy throughout the
day, the chosen objective function is dominated by pseudo-steady periods with 𝑑𝐶CO2/𝑑𝑡 ≈ 0, which
thus implies the degenerate relationship 𝑘𝑎 ∝ 𝑁𝑡 and creates additional problems as discussed below.
Therefore, we instead opt for a slightly different approach.

Assuming the ventilation rate 𝑘𝑎 (𝑡) is constant 𝑘𝑎 , over the time horizon, we let 𝐸 (𝑘𝑎) denote the
optimal value of the optimization problem (2) assuming 𝑘𝑎 [𝑡] ≡ 𝑘𝑎 , and we let 𝑁𝑡 [𝑡] (𝑘𝑎) denote the
corresponding value of the occupancy profile. To estimate 𝑘𝑎 , we can thus solve the one-dimensional
optimization problem

min
𝑘𝑎

𝐸 (𝑘𝑎) s.t. 𝑘min
𝑎 ≤ 𝑘𝑎 ≤ 𝑘max

𝑎 (3)

By using the volume-normalized 𝑘𝑎 as the decision variable, as we know its value should almost always
be between 1 and 10 h-1 independent of the specific room. Thus, despite its nonconvexity the problem
can be solved by simple bounded scalar optimization techniques, or even via an exhaustive grid search
with a chosen granularity. To estimate uncertainty in the estimate we take a level set of the objective
function, with the threshold set to 50% higher than the optimal value 𝐸 (𝑘∗𝑎).

If there are a sufficient number of large occupancy changes, this procedure can produce a tight range
for the estimated ventilation, primarily by matching the exponential decay predicted by the model dur-
ing such events to the measured data. However, if occupancy is relatively constant, the data will be
dominated by the pseudo-steady relationship

𝐶CO2 −𝐶CO2,OA =
𝑄𝑏𝐶CO2,𝑏𝑁𝑡

𝑘𝑎𝑉

which is unfortunately linearly degenerate. In such cases, the resulting uncertainty region will be ex-
tremely large, as almost any value of 𝑘𝑎 can be made to give a low value of the objective function by
simply re-scaling the corresponding 𝑁𝑡 . For example, a ventilation estimate of 1 h-1 with an average
occupancy of 10 people will give almost the same objective value as a ventilation estimate of 10 h-1 with
an average occupancy of 100 people. Thus, further modification is needed.

To break this degeneracy, we note that while we certainly do not know the full time-varying occu-
pancy profile, we often have a good idea of peak occupancy �̂�𝑡 over the given time period. LettingN𝑝 (𝑘𝑎)
denote the 𝑝th percentile of the occupancy estimates 𝑁𝑡 [𝑡] (𝑘𝑎), we thus desire that N95%(𝑘𝑎) ≈ �̂�𝑡 . (We
use the 95th percentile to add some degree of robustness to small periods of abnormal data, e.g., when
the HVAC system is shut down for maintenance.) Adding this relationship to the cost function, we thus
arrive at our final modified optimization problem

min
𝑘𝑎

𝐸 (𝑘𝑎) + 𝜇 (𝑘𝑎) |N95%(𝑘𝑎) − �̂�𝑡 | s.t. 𝑘min
𝑎 ≤ 𝑘𝑎 ≤ 𝑘max

𝑎 (4)

in which 𝜇 ( · ) is a scaling factor to weight the two terms. We use

𝜇 (𝑘𝑎) B 0.05
𝑄𝑏𝐶CO2,𝑏

𝑘𝑎𝑉
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Figure 1: Fit occupancy profiles for rooms with (partial) occupancy data. Occupancy is assumed to be
constant over each 30-minute interval in the optimization formulation. Despite simplicity of the well-
mixed models, estimated occupancy profiles closely match the available occupancy data.

so that this penalty accounts for (5% of) the error that would be induced in the pseudo-steady model due
to the difference in occupancy. In practical applications, this scale factor would be adjusted up or down
depending on confidence in the assumed peak occupancy �̂�𝑡 . For each room, the assumed value of �̂�𝑡 is
as shown in Table 1, generally set equal to 50%, 70%, or 100% of design occupancy consistent with typical
usage during the monitoring period.

1.3 Validation
To validate the proposed approach for occupancy estimation, we manually collected a limited amount of
occupancy data in two rooms. In Classroom 1, attendance was taken at each class, which was assumed
to be constant throughout the 90-minute lecture period. In Office, a sign-in/sign-out sheet was used
over a three day period to estimate time-varying occupancy. Fig. 1 shows the estimated time-varying
occupancy in both rooms throughout the monitoring period, as determined by the solution to (2). Dur-
ing nominal occupied hours, we see that the estimates are in good agreement with measured occupancy
where available. In addition, we note the strong time-varying character of these curves, which empha-
sizes the need to use realistic occupancy profiles (rather than simple fixed schedules) to accurately assess
transmission risk for these spaces.

To illustrate the proposed approach for simultaneous occupancy and ventilation estimation, Fig. 2
shows the objective functions, model fits, and estimated occupancy profiles for a 1-day period in Class-
room 1. Note that the grey “CO2 Fit” objective corresponds to the formulation in (3), while the black
“+Occupancy Penalty” is the modified formulation in (4). As mentioned before, uncertainty regions are
calculated as ±50% of the optimal objective value. Including only the penalty on CO2 concentration fit,
we see that the estimated ventilation rate is quite low, with a large relative uncertainty. Although the
CO2 error rules out the extremely low and high ventilation rates, it cannot adequately distinguish be-
tween the intermediate values. However, after adding the additional term for deviation from the peak
occupancy target (set to 65% of the room’s design occupancy), the estimated value is now much closer

5



2 4 6 8 10
Ventilation Rate (ACH)

6

8

10

12

14

16

18

20
CO

 Fi
t R

M
SE

 (p
pm

)
CO  Fit +Occupancy Penalty

400

600

800

CO
 C

on
c.

(p
pm

)

Actual k = 1.0 ACH k = 3.0 ACH k = 6.2 ACH
(Measured) k = 9.0 ACH

100

0

100

CO
 Fi

t
Er

ro
r (

pp
m

)

8 10 12 14 16 18 20 22 24
Time (h)

0

20

40

Oc
cu

pa
nc

y
(#

)
Figure 2: Simultaneous estimation of ventilation rate and time-varying occupancy. Left: objective func-
tion with (black) and without (gray) the peak-occupancy penalty along with uncertainty regions. The
optimization procedure chooses the ventilation rate with the lowest value of these objective functions.
Right: simulated CO2 concentrations, fit errors, and estimated occupancy for selected ventilation rates.
These values correspond to the dashed colored lines on the left. Note that the measured ventilation rate
for this room was 6.2 ACH, which corresponds to the green curves.

to the actual measured value, with lower relative uncertainty.

2 Room Details
The rooms monitored in this study contain a dedicated-outdoor air HVAC configuration. In a dedicated-
outdoor air setup, a dedicated stream of pure outdoor air is delivered to each room for ventilation pur-
poses, with a corresponding amount of room air exhausted to maintain pressure. Room temperature
is maintained by in-room fan-coil units (FCUs) that use a fan to recirculate room air across heating or
cooling coils. This recirculated air stream is not filtered.

In contrast to this dedicated outdoor-air setup is a “mixed-air, single-duct” configuration, which is
also common in many schools and commercial buildings. With this design, the outdoor air required
for ventilation is centrally mixed with (some fraction of) the return air from served spaces, after which
the mixture is heated or cooled to a desired supply temperature before being split and delivered to each
space in accordance with its thermal needs. For the purposes of airborne transmission, the primary
difference is that the mixed-air stream is passed through a filter, and thus the recirculating fraction of
the air is partially cleaned, serving as a supplemental source of EOA. Indeed, if this filter is rated MERV-
13 or higher, upwards of 95% of the potentially infectious aerosols are removed from the recirculated air.
Thus, for a space receiving 2 ACH of outdoor air but 5 ACH of total supply air in a mixed-air single-duct
configuration, the resulting EOA delivery is almost 5 ACH. By contrast, a room in a dedicated-outdoor-air
configuration would receive only the 2 ACH of ventilation as EOA.

Parameters for each monitored room are summarized in Table 1. The subsections that follow present
timeseries data and energy versus transmission rate tradeoffs for each room.
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Table 1: Parameters for each monitored room. ASHRAE Minimum Ventilation is calculated in CFM per
standard 62.1-2019 [17] and converted to ACH via the space volume. Assumed Maximum Ventilation is
calculated based on assumed design flows for each space and is used only when simulating the hypo-
thetical ventilation scenarios.

Name Area
(ft2)

Ceiling
Height
(ft)

Design
Occupancy

(#)

Assumed
Peak

Occupancy
(#)

Mean
Ventilation
(ACH)

ASHRAE
Minimum
Ventilation
(ACH)

Assumed
Maximum
Ventilation
(ACH)

In-Zone
Filtration
(ACH)

Classroom 1 734 10.7 47 33 6.2 4.3 9.7 0.0
Classroom 2 437 10.7 23 16 5.8 3.6 8.1 0.0
Classroom 3 860 9.8 38 27 1.0 3.4 7.5 4.5
Classroom 3* 860 9.8 38 27 1.0 3.4 7.5 0.0
Classroom 4 901 10.7 53 37 3.7 4.0 8.9 0.0

Conference Room 437 10.7 16 11 3.9 2.7 7.3 0.0
Lecture Hall 1 1818 10.0 120 60 4.3 3.3 9.7 0.0
Lecture Hall 2 1861 13.1 128 64 6.9 2.6 7.7 0.0

Office 910 10.7 15 8 3.1 1.6 6.0 0.0
Small Office 1 215 10.7 4 2 5.2 1.7 6.6 0.0
Small Office 2 215 10.7 4 4 5.2 1.7 6.6 0.0

Classroom 1
Classroom 1 is a modestly-sized classroom used for small lectures or recitations. The room is served by a
dedicated outdoor-air system with supplemental heating and cooling provided by in-room radiators and
fan-coil units. Seating is free-standing chairs with attached writing boards, arranged in a grid and facing
a chalkboard in the front of the room. The room has one exterior-facing wall with sealed windows.

Timeseries data is plotted in Figure 3, while daily energy and transmission-rate metrics are shown in
4.

Classroom 2
Classroom 2 is a small-sized classroom used for small lectures or recitations. The room is served by a
dedicated outdoor-air system with supplemental heating and cooling provided by in-room radiators and
fan-coil units. Seating is free-standing chairs with attached writing boards, arranged in a grid and facing
a chalkboard in the front of the room. The room has one exterior-facing wall with sealed windows.

Timeseries data is plotted in Figure 5, while daily energy and transmission-rate metrics are shown in
6.

Classroom 3
Classroom 3 is a modestly sized classroom used for small lectures or recitations. The room is naturally
ventilated (i.e., does not have a mechanically-provided source of outdoor air) with supplemental heating
and cooling provided by in-room radiators and fan-coil units. In the back of the room, a free-standing
HEPA air filter is installed, which can provided 4.5 ACH of airflow (as calculated from the nominal
capacity of the unit and the room volume). For the results listed under “Classroom 3”, we assume that
this filter is active during nominally occupied hours (8am to 10pm each day). Seating is in free-standing
chairs and tables arranged in rows facing a chalkboard in the front of the room. The room has one
exterior-facing wall with operable windows.
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Figure 4: Energy versus transmission rate tradeoffs for hypothetical ventilation scenarios in Classroom
1. Small points show individual daily values, while large points with error bars show mean ± standard
deviation. Right plot is relative to “Baseline” for each day.

Timeseries data is plotted in Figure 7, while daily energy and transmission-rate metrics are shown in
8.

Classroom 3*
Classroom 3* is the same room as “Classroom 3”, except that we assume that the in-room HEPA air filter
is never active. During the monitoring period, it is likely that the filter was active some but not all of the
time, and thus the true transmission risk lies somewhere between the “Classroom 3” and “Classroom 3*”
extremes.

Timeseries data is plotted in Figure 9, while daily energy and transmission-rate metrics are shown in
10.

Classroom 4
Classroom 4 is a large-sized classroom used for small lectures or recitations. The room is served by a
dedicated outdoor-air system with supplemental heating and cooling provided by in-room radiators and
fan-coil units. Seating is free-standing chairs with attached writing boards, arranged in a grid and facing
a chalkboard in the front of the room. The room has one long exterior-facing wall with sealed windows.

Timeseries data is plotted in Figure 11, while daily energy and transmission-rate metrics are shown
in 12.

Conference Room
Conference Room is a small-sized classroom that has been set up to facilitate conferences or other small
meetings. The room is served by a dedicated outdoor-air system with supplemental heating and cooling
provided by in-room radiators and fan-coil units. Seating is in free-standing chairs arranged around a
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Figure 5: Timeseries data for Classroom 2 over the study period.

10



0.00 0.02 0.04 0.06 0.08 0.10 0.12
Transmission Rate (1/infector hr)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

En
er

gy
 C

os
t (

$/
da

y)

100 0 100 200 300 400 500
Relative Transmission Rate (%)

90

80

70

60

50

40

30

Re
la

tiv
e 

En
er

gy
 C

os
t (

%
)

Ventilation
Strategy

Baseline
Curtailed
In-Zone Filtration
(2 ACH)
In-Zone Far UV
(5 ACH)
ASHRAE
Minimum
DCV
(800 ppm)
TCV
(0.05 1/infector hr)
TCV
(0.05 1/infector hr)
+ Far UV (5ACH)

Classroom 2

Figure 6: Energy versus transmission rate tradeoffs for hypothetical ventilation scenarios in Classroom
2. Small points show individual daily values, while large points with error bars show mean ± standard
deviation. Right plot is relative to “Baseline” for each day.

large oval-shaped conference room, with additional chairs along the back wall of the room. The room
has one exterior-facing wall with sealed windows.

Timeseries data is plotted in Figure 13, while daily energy and transmission-rate metrics are shown
in 14.

Lecture Hall 1
Lecture Hall 1 is a moderately sized lecture hall used for larger lectures. Ventilation and cooling is
provided by an air-handling unit (AHU), which is set to 100% outdoor-air operation throughout the
monitoring period. Heating is provided by radiators. Seating is in attached seats with stowable writing
boards arranged in slightly curved rows facing a chalkboard at the front of the room. There is slight
vertical separation between the rows to facilitate view. The room has two exterior-facing walls with
operable windows.

Timeseries data is plotted in Figure 15, while daily energy and transmission-rate metrics are shown
in 16.

Lecture Hall 2
Lecture Hall 2 is a moderately sized lecture hall used for larger lectures. Ventilation and cooling is
provided by an air-handling unit (AHU), which is set to 100% outdoor-air operation throughout the
monitoring period. Heating is provided by radiators. Seating is in attached seats with stowable writing
boards arranged in slightly curved rows facing a chalkboard at the front of the room. There is modest
vertical separation between the rows to facilitate view. The room has three exterior-facing walls with
operable windows.

Timeseries data is plotted in Figure 17, while daily energy and transmission-rate metrics are shown
in 18.
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Figure 7: Timeseries data for Classroom 3 over the study period.
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deviation. Right plot is relative to “Baseline” for each day.

Office
Office is a modestly sized shared office used by graduate students. As a result of remodeling, the room
is served by two separate dedicated outdoor-air systems. (Unfortunately, only one of the systems has
a flow measurement, and so we assume that ventilation measurements are not available for this room.)
Similarly, cooling is provided by two in-room fan-coil units which control to different setpoints (thus
creating a measurable temperature gradient within the room). Heating is via radiators. Seating is pri-
marily in office chairs at desks arranged in rows separated by cubicle walls. Each row has space for one
or two occupants on either side. There is also a small kitchen area with a table, sink, microwave, and
coffee maker in the middle of the room. There is one long exterior-facing wall with sealed windows.

Timeseries data is plotted in Figure 19, while daily energy and transmission-rate metrics are shown
in 20.

Small Office 1
Small Office 1 is a small office space and waiting area near additional small offices. The room is served
by a dedicated outdoor-air system with supplemental heating and cooling provided by in-room radiators
and fan-coil units. Seating is at one chair behind a desk and three additional chairs on the other side of
the room for waiting occupants. The room has one exterior-facing wall with sealed windows.

Timeseries data is plotted in Figure 21, while daily energy and transmission-rate metrics are shown
in 22.

Small Office 2
Small Office 2 is a small office space and meeting area. The room is served by a dedicated outdoor-air
system with supplemental heating and cooling provided by in-room radiators and fan-coil units. Seating

13
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Figure 9: Timeseries data for Classroom 3* over the study period.
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is at one chair behind a desk and at four additional chairs arranged around a small conference table. The
room has one exterior-facing wall with sealed windows.

Timeseries data is plotted in Figure 23, while daily energy and transmission-rate metrics are shown
in 24.

3 Transmission Modeling Details
Mentioned in the main text, the partial differential equation model for the time-evolution of infectious
pathogen concentration, 𝐶 (𝑟, 𝑡), per droplet size in a room of volume 𝑉 and area 𝐴 can be modeled as
[18]:

𝑉
𝜕𝐶 (𝑟, 𝑡)

𝜕𝑡
= 𝑁𝑖 (𝑡)𝑃 (𝑟 ) −

(
𝑄𝑎 + 𝑝 𝑓 (𝑟 )𝑄𝑟 + 𝑣𝑠 (𝑟 )𝐴 + 𝜆𝑣 (𝑟 )𝑉 +

∑︁
𝑑

𝑝𝑑 (𝑟 )𝑄𝑑

)
𝐶 (𝑟, 𝑡). (5)

where 𝑁𝑖 are the number of infectors present in the room exhaling infectious droplets with rate 𝑃 (ex-
plained in the next paragraph). Infectious droplets are removed through ventilation (𝑄𝑎), filtration in
the recirculated airflow (𝑝 𝑓 (𝑟 )𝑄𝑟 ), sedimentation (𝑣𝑠 (𝑟 )𝐴), deactivation (𝜆𝑣 (𝑟 )𝑉 ), and the action of dis-
infection devices (

∑
𝑑 𝑝𝑑 (𝑟 )𝑄𝑑 ). All removal mechanisms can be expressed as rates, 𝜆𝑎 = 𝑄𝑎/𝑉 , 𝜆𝑓 (𝑟 ) =

𝑝 𝑓 (𝑟 )𝑄𝑟/𝑉 , 𝜆𝑠 (𝑟 ) = 𝑣𝑠 (𝑟 )𝐴/𝑉 , and 𝜆𝑑 (𝑟 ) =
∑

𝑑 𝑝𝑑 (𝑟 )𝑄𝑑/𝑉 , and lumped into a single parameter the de-
scribes the supply of “equivalent outdoor air" (EOA) delivered to the space, 𝜆EOA = 𝜆𝑎+𝜆𝑓 +𝜆𝑠+𝜆𝑣+𝜆𝑑 [19].
EOA quantifies each removal mechanism in terms of volumetric flow of outdoor-air ventilation that
would lead to an equivalent removal rate of infectious particles, thus facilitating comparisons among
disparate processes. Although our particulate sensors can measure some size-resolved distributions,
which are known to influence removal mechanisms and pathogen infectivities, the resolution is not fine
enough to distinguish human-expired particles from the background concentration. We therefore use
size-averaged effective parameters in our models [18] to facilitate data analysis (SI 4). However, addi-
tional research may provide better estimates for size-dependent transmission parameters, allowing the
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Figure 11: Timeseries data for Classroom 4 over the study period.
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use of the full size-dependent model and size-resolved particle data.
For airborne transmission, the production of pathogen, 𝑃 (𝑟 ), comes from the exhaled breath of in-

fectious individuals. This is given as

𝑃 (𝑟 ) = 𝑄𝑏𝑛𝑑 (𝑟 )𝑉𝑑 (𝑟 )𝑝𝑚 (𝑟 )𝑐𝑣 (𝑟 ), (6)

where𝑄𝑏 is the breathing flow rate of the individuals; 𝑛𝑑 (𝑟 ) is the number density of pathogens per vol-
ume of breath, which is known to vary with factors that include respiratory activity, time since infection,
etc.; 𝑉𝑑 (𝑟 ) is the volume of the aerosol droplets; 𝑝𝑚 is a mask penetration factor which accounts for the
proportion of pathogen that may be filtered out by the mask (where a value of 1 means all pathogen
escapes the mask and 0 means all pathogen is filtered by the mask) [20]; and 𝑐𝑣 (𝑟 ) is the pathogen con-
centration in the droplets.

According to this model, the steady-state value of pathogen concentration if one infector is present
is

𝐶𝑠 (𝑟 ) =
𝑃 (𝑟 )

𝜆EOA(𝑟 )𝑉
, (7)

where 𝜆EOA was defined in the main text.
We note that the distribution of a ventilation system (location of inflow and outflow) may impact the

risk of spreading a contaminant. This risk increase is more complicated and must be analyzed by solving
for the airflow patterns using computational fluid dynamics (CFD) techniques. If a ventilation system
is not laid out well, this can lead to an increase of transmission risk upon an increase in ventilation.
Alternatively, ventilation strategies like displacement ventilation deliberately cause stratification of the
air within a room, which can lead to further complications. These factors are important to consider
when designing and analyzing transmission in indoor spaces. However, all spaces monitored in this
study make use of mixing ventilation, which is intentionally designed to achieve thorough mixing. The
well-mixed assumption has been shown to capture the dominant transmission dynamics and leads to
simple guidelines, which is why we focus on it in this study.
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Figure 13: Timeseries data for Conference Room over the study period.
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4 Safety Guideline Derivation
The safety guideline derivation is based on [21] and amore detailed derivation of the mathematics, which
is also presented here, is given in [22].

The safety guideline is based on a linear approximation to the exponential dose-response model,
which is derived here. The infection process has two main steps. The first step involves a person being
exposed to pathogens. This step is mainly dictated by the physics of aerosol transport, which we have
goodmodels to quantify. The second step involves the pathogen evading the body’s defenses and actually
causing an infection. This step is mainly dictated by pathogen and human biology, which is harder to
quantify is thus often lumped into parameters that can be fit to epidemiology data.

To quantify exposure, we will assume that all people and pathogens act independently. We also
assume that the pathogen is randomly distributed in a room. Therefore, the number of pathogens that
a person breathes in during an event is Poisson-distributed. Therefore, the probability that 𝑣 pathogens
are inhaled is given by

𝑃𝑖𝑛ℎ𝑎𝑙𝑒 (𝑣) =
𝜆𝑣𝑒−𝜆

𝑣!
, (8)

where 𝜆 is the expected value of pathogen consumption which is called the average dose in the dose-
response literature. The average dose is equal to the product of the amount of air breathed in and the
concentration of the pathogen, 𝐶 (𝑟, 𝑡). We define the amount of air a person is breathing in to be 𝑄𝑏 ,
whichwe assume to be constant in time. If we include a factor to account for potential mask usage, whose
filtration efficiency may be size-dependent, the concentration of pathogen is given by

∫ 𝜏

0

∫ ∞
0 𝐶 (𝑟, 𝑡)𝑑𝑟𝑑𝑡 .

Therefore, the average dose is

𝜆 = 𝑄𝑏

∫ 𝜏

0

∫ ∞

0
𝐶 (𝑟, 𝑡)𝑑𝑟𝑑𝑡 . (9)

To quantify infection, we will assume that all exposures have the same probability that each con-
sumed pathogen will initiate an infection, but this probability may be size-dependent. Therefore, the
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Figure 15: Timeseries data for Lecture Hall 1 over the study period.
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number of pathogens that cause an infection is binomial-distributed. Therefore, the probability that
there will be 𝑓 infections from the 𝑣 pathogens inhaled is

𝑃𝑖𝑛𝑓 𝑒𝑐𝑡 (𝑓 , 𝑣) =
𝑣!

𝑓 !(𝑣 − 𝑓 )!𝑐
𝑓

𝑖
(1 − 𝑐𝑖)𝑣−𝑓 , (10)

where 𝑐𝑖 is the probability that a pathogen causes an infection.
We can then multiply these probabilities and sum over all values of 𝑓 and 𝑣 that would cause an

infection in order to get the total probability of infection:

𝑃𝑖𝑛𝑓 𝑒𝑐𝑡𝑖𝑜𝑛 =

∞∑︁
𝑓 =𝑓𝑚𝑖𝑛

∞∑︁
𝑣=𝑓

𝑃𝑖𝑛ℎ𝑎𝑙𝑒 (𝑣)𝑃𝑖𝑛𝑓 𝑒𝑐𝑡 (𝑓 , 𝑣) (11)

=

∞∑︁
𝑓 =𝑓𝑚𝑖𝑛

∞∑︁
𝑣=𝑓

(
𝜆𝑣𝑒−𝜆

𝑣!

) (
𝑣!

𝑓 !(𝑣 − 𝑓 )!𝑐
𝑓

𝑖
(1 − 𝑐𝑖)𝑣−𝑓

)
, (12)

where 𝑓𝑚𝑖𝑛 is the minimum number of infections required to cause the illness or disease associated with
the infection.

We can simplify this by cleverly rearranging the right hand side, as done in [22], to be

𝑃𝑖𝑛𝑓 𝑒𝑐𝑡𝑖𝑜𝑛 =

∞∑︁
𝑓 =𝑓𝑚𝑖𝑛

(𝜆𝑐𝑖) 𝑓 𝑒−𝜆𝑐𝑖
𝑓 !

∞∑︁
𝑣=𝑓

(𝜆(1 − 𝑐𝑖))𝑣−𝑓 𝑒−𝜆(1−𝑐𝑖 )
(𝑣 − 𝑓 )! . (13)

To evaluate the rightmost sum we can pull out the 𝑒−𝜆(1−𝑐𝑖 ) and begin to expand it as

∞∑︁
𝑣=𝑓

(𝜆(1 − 𝑐𝑖))𝑣−𝑓 𝑒−𝜆(1−𝑟 )
(𝑣 − 𝑓 )! = 𝑒−𝜆(1−𝑐𝑖 )

(
1 + (𝜆(1 − 𝑐𝑖)) +

(𝜆(1 − 𝑐𝑖))2

2!
+ (𝜆(1 − 𝑐𝑖))3

3!
+ ...

)
. (14)
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Figure 17: Timeseries data for Lecture Hall 2 over the study period.
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Figure 18: Energy versus transmission rate tradeoffs for hypothetical ventilation scenarios in LectureHall
2. Small points show individual daily values, while large points with error bars show mean ± standard
deviation. Right plot is relative to “Baseline” for each day.

Recognizing the sum as the exponential Taylor series we get

∞∑︁
𝑣=𝑓

(𝜆(1 − 𝑐𝑖))𝑣−𝑓 𝑒−𝜆(1−𝑐𝑖 )
(𝑣 − 𝑓 )! = 𝑒−𝜆(1−𝑐𝑖 )𝑒𝜆(1−𝑐𝑖 ) = 1. (15)

Therefore, if we also assume that one infection is enough to provoke the illness/disease, our probability
of infection is now just

𝑃𝑖𝑛𝑓 𝑒𝑐𝑡𝑖𝑜𝑛 =

∞∑︁
𝑓 =1

(𝜆𝑐𝑖) 𝑓 𝑒−𝜆𝑐𝑖
𝑓 !

. (16)

We notice that this is just the sum of the probability mass function of a Poisson distribution, just missing
the 𝑓 = 0 term. Therefore, since the sum of the probability must equal one, this is equal to one minus
the 𝑓 = 0 term:

𝑃𝑖𝑛𝑓 𝑒𝑐𝑡𝑖𝑜𝑛 = 1 − 𝑒𝜆𝑐𝑖 . (17)

We now see how 𝑐𝑖 relates to the idea of “infection quanta” from the literature [23]. Since 𝜆 represents
amount pathogen, 𝑐𝑖 represents the infection quanta per pathogen. We also see that 𝑐−1

𝑖 is the amount
of pathogen required to cause an infection with probability 1 − 𝑒−1 = 63%. Since 𝑐𝑖 may also be size-
dependent, we can lump it in with the size integral to get

𝑄𝑏

∫ 𝜏

0

∫ ∞

0
𝐶 (𝑟, 𝑡)𝑐𝑖𝑑𝑟𝑑𝑡 . (18)

To get a simple formula, we can now Taylor expand the exponential term in Equation (17) up to linear
order to get

𝑃𝑖𝑛𝑓 𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑄𝑏

∫ 𝜏

0

∫ ∞

0
𝐶 (𝑟, 𝑡)𝑐𝑖 (𝑟 )𝑑𝑟𝑑𝑡 . (19)
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Figure 19: Timeseries data for Office over the study period.
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deviation. Right plot is relative to “Baseline” for each day.

We now add several terms to account for additional physical and biological effects. Since occupants
may be wearing masks, the size-dependent mask penetration factor, 𝑝𝑚 (𝑟 ), multiplies the pathogen con-
centration. Also, it has been observed that different subpopulations of people may be more susceptible
to certain viruses and strains then others. To account for this, we also add a relative susceptibility, 𝑠𝑟 , for
rescaling the transmission rate.

After incorporating these effects, we now have

𝑃𝑖𝑛𝑓 𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑄𝑏𝑠𝑟

∫ 𝜏

0

∫ ∞

0
𝐶 (𝑟, 𝑡)𝑝𝑚 (𝑟 )𝑐𝑖 (𝑟 )𝑑𝑟𝑑𝑡 . (20)

We then define the airborne transmission rate as

𝛽𝑎 (𝑡) = 𝑄𝑏𝑠𝑟

∫ ∞

0
𝐶 (𝑟, 𝑡)𝑝𝑚 (𝑟 )𝑐𝑖 (𝑟 )𝑑𝑟 . (21)

Thus, the expected number of transmission to a single person is∫ 𝜏

0
𝛽𝑎 (𝑡)𝑑𝑡 . (22)

Since a single person can only be infected at most once (for the timescales that we are interested in)
we treat an expected number of transmission of 1 and more than 1 on the same footing. Therefore, we
can use this expected number of transmissions as an upper bound on the probability of transmission
being at least 1 due to Markov’s inequality.

We can now define an indoor reproductive number, R𝑖𝑛 (𝜏), as the expected number of transmissions
in a room of 𝑁𝑠 susceptible people to be

R𝑖𝑛 (𝜏) = 𝑁𝑠

∫ 𝜏

0
𝛽𝑎 (𝑡)𝑑𝑡 . (23)
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Figure 21: Timeseries data for Small Office 1 over the study period.
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To set a specific safety guideline, we will typically want to bound R𝑖𝑛 (𝜏) by a maximum tolerance, 𝜖 .
We can define a simple formula for the safety guideline using the steady-state pathogen concentra-

tion, which is valid when 𝜏 >> 𝜆−1
𝐸𝑂𝐴

.
The steady-state approximate transmission rate now becomes

𝛽𝑎 = 𝑄𝑏𝑠𝑟

∫ ∞

0
𝐶𝑠 (𝑟 )𝑝𝑚 (𝑟 )𝑐𝑖 (𝑟 )𝑑𝑟 (24)

=
𝑄2
𝑏
𝑠𝑟

𝑉

∫ ∞

0

𝑛𝑑 (𝑟 )𝑉𝑑 (𝑟 )𝑝2
𝑚 (𝑟 )𝑐𝑖 (𝑟 )𝑐𝑣 (𝑟 )

𝜆𝐸𝑂𝐴 (𝑟 )
𝑑𝑟 (25)

We now assume 𝑝𝑚 is not size-dependent and define the concentration of infection quanta as 𝑛𝑞 (𝑟 ) =

𝑛𝑑 (𝑟 )𝑉𝑑 (𝑟 )𝑐𝑣 (𝑟 )𝑐𝑖 (𝑟 ) we integrate over all 𝑟 to get the total infection quanta in exhaled air as 𝐶𝑞 =∫ 𝑟

0 𝑛𝑞 (𝑟 )𝑑𝑟 . We can plus this into Equation (25) to get

𝛽𝑎 = 𝑠𝑟
𝑄2
𝑏
𝑝2
𝑚

𝑉

𝐶𝑞

𝜆𝐸𝑂𝐴 (𝑟 )
, (26)

where the effective droplet radius 𝑟 is defined such that Equation (25) and (26) are equal.
We now arrive at our final safety guideline

𝑁𝑠𝑡 < 𝜖
𝜆𝐸𝑂𝐴 (𝑟 )𝑉
𝑄2
𝑏
𝑝2
𝑚𝐶𝑞𝑠𝑟

. (27)

We note that all of the difficult to measure biological factors are lumped into a single parameter 𝐶𝑞

which can be fit to data for documented indoor spreading events and rescaled for different modes of
respiration, as was first demonstrated for the COVID-19 wild type [18] and extended for the alpha, beta,
gamma, delta, and omicron variants in our online app [24]. All other parameters are well-known. In
addition, the parameters 𝜆𝐸𝑂𝐴 and 𝑝𝑚 can be controlled to reduce transmissions.
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Figure 23: Timeseries data for Small Office 2 over the study period.

28



0.00 0.02 0.04 0.06 0.08 0.10
Transmission Rate (1/infector hr)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

En
er

gy
 C

os
t (

$/
da

y)

100 0 100 200 300
Relative Transmission Rate (%)

90

80

70

60

50

40

Re
la

tiv
e 

En
er

gy
 C

os
t (

%
)

Ventilation
Strategy

Baseline
Curtailed
In-Zone Filtration
(2 ACH)
In-Zone Far UV
(5 ACH)
ASHRAE
Minimum
DCV
(800 ppm)
TCV
(0.05 1/infector hr)
TCV
(0.05 1/infector hr)
+ Far UV (5ACH)

Small Office 2

Figure 24: Energy versus transmission rate tradeoffs for hypothetical ventilation scenarios in Small Office
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5 CO2-based Safety Guideline Derivation
The CO2-based safety guideline can be derived by considering the steady-state CO2 concentration to the
dynamical model given in Equation (1). The steady-state solution is

𝐶𝐶𝑂2,𝑠 −𝐶𝐶𝑂2,𝑂𝐴 =
𝑁𝑡𝑄𝑏𝐶𝐶𝑂2,𝑏

𝜆𝑎𝑉
. (28)

We can rearrange Equation (28) and combine with Equation (27) to arrive at the CO2-based safety guide-
line

(𝐶𝐶𝑂2,𝑠 −𝐶𝐶𝑂2,𝑂𝐴)𝜏 < 𝜖
𝐶𝐶𝑂2,𝑏

𝑄𝑏𝑝
2
𝑚𝐶𝑞

𝜆𝐸𝑂𝐴 (𝑟 )
𝜆𝑎

, (29)

where we have assumed that 𝑁𝑡/𝑁𝑠𝑁𝑖 ≈ 1.

6 Short-Range Transmission Risk
The models and control strategies discussed in the main paper are focused on long-range transmissions,
i.e., after the exhaled infectious particles have thoroughly mixed with the background air within the
room. However, when an unmasked susceptible occupant inhales directly from a plume of air exhaled
by an active infector (which of course requires the pair to be in close proximity), there is a potential for
short-range transmissions that would not be captured by the previous models [25]. Estimation of direct
short-range transmissions is possible but more uncertain due to the intricacies of localized turbulent
flow. In this section, we attempt to quantify these short-range effects and compare their magnitude to
the long-range transmissions considered previously. For brevity, we do not consider variation in particle
size, but the extension is straightforward.

Estimates of short-range transmission rates can be derived from the theory of turbulent jets [18].
This analysis predicts that the concentration of infectious particles in the jets of infectors’ exhaled breath
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decays as 1/𝑥 where 𝑥 is horizontal distance. A key deficiency of this model is that it does not account for
the buoyancy of exhaled breath, which causes it to quickly rise out of the breathing zone of a potential
susceptible. Thus, rather than use the turbulent jet models directly, we instead employ an empirical
model derived from the experimental results of [26]. In that paper, the authors calculate a “susceptibility
index“ defined as 𝜖 B 𝐶 (𝑥)/𝐶∞ where𝐶 (𝑥) is the infectious particle concentration at horizontal distance
𝑥 from the mouth of the infector, and 𝐶∞ is the background room concentration. For our purposes, we
assume the concentration within the jet follows the model

𝜃 B
𝐶 (𝑥) −𝐶∞
𝐶𝑏 −𝐶∞

≈ 𝑘

𝑥

where 𝑘 is an unknown constant to be determined. Assuming 𝐶∞ = 𝐶𝑏𝑄𝑏/𝑉𝜆EOA follows the pseudo-
steady well-mixed model, we can derive the relationship

𝜃 =
(𝜖 − 1)𝑄𝑏

𝑉𝜆EOA −𝑄𝑏

Specific values used in the study are𝑄𝑏 = 0.56m3/h,𝑉 = 37.8m3, and 𝜆EOA = 6.6 h−1 (consisting of 5.6 h−1

from ventilation and an assumed 1.1 h−1 from deactivation and deposition), with measurements 𝜖 = 1.34
at 𝑥 = 0.35 m and 𝜖 = 1.7 at 𝑥 = 1.1 m. These values lead to least-squares estimate of 𝑘 = 3.00 × 10−4 m.
We assume that short-range transmissions in the monitored spaces follow this relationship.

To quantify the short-range transmission rate, we use the model

¤𝑅short = 𝑄𝑏𝐶 (𝑥)𝑝short

in which the new parameter 𝑝short represents the probability that a susceptible is directly within the
short-range plume exhaled by each infector. This parameter is difficult to quantify, but as a conserva-
tive approximation, we make use of values reported by liu:dou:et-al:2022. In liu:dou:et-al:2022, image-
processing techniques were used to estimate the fraction of time that subway riders are oriented face-to-
face, reporting fractions of 16.4% during rush hour and 52.8% during other times. Based on these values,
we assume 𝑝short = 1 for the small offices, 0.5 for the conference room, and 0.15 for all other spaces. Note
that in all cases, we set 𝑝short = 0 during times where there are fewer than two occupants (as no short-
range transmission could take place). We assume in addition that 𝑥 = min(𝑥0,

√︁
0.8𝐴/𝑁𝑡 ) to reflect the

fact that face-to-face contact would generally occur at distance 𝑥0 = 1 m unless total occupant density
𝑁𝑡/𝐴 is high enough that they must stand closer.

Under the preceding assumptions, Figure 25 shows distributions for the short- and long-range trans-
mission rates in each space. We see that across all spaces, the short-range transmission rates are always
a small fraction of long-range transmission rates, thus justifying the focus on the latter route. The only
possible outliers are the small offices, in which face-to-face contact is likely. Fortunately, this risk can be
eliminated completely by requiring occupants to wear masks.

7 Hypothetical Ventilation Strategy Details
In this section, we provide additional details about the hypothetical operating scenarios. These include
additional in-zone devices, as well as the demand-controlled and transmission-controlled ventilation
scenarios, in which time-varying ventilation is simulated in accordance with a specific control objective.
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Figure 25: Distributions of short-range and long-range transmission rates in monitored spaces. Short-
range rates are calculated from an empirical model based on the results of [26], while long-range rates
use the pseudo-steady model from the main paper. As in Figure 5, the distributions are weighted based
on the number of occupants in the space at each time point.

7.1 In-Zone Devices
For hypothetical simulation, we consider two types of in-zone disinfection devices: a free-standing HEPA
air filter and upper-room far UV lamps. For the air filter, modeling is relatively straightforward. We
assume that enough devices are installed to deliver the chosen volumetric airflow (set to 2 ACH in each
room). We assume a removal efficiency of 0.999, which is multiplied by the nominal airflow to give EOA.
Total power consumption is calculated assuming 0.65 W/CFM for the devices. Note that this scaling
factor is in line with many residential air cleaners, which have power consumption between 0.1 and
2 W/CFM [27].

For far UV, the modeling is slightly more complicated. To calculate the equivalent outdoor air, we
assume that sufficient lamps are installed to give a constant UV intensity throughout the volume of the
room. This intensity then causes a constant decay rate for the microbes (commonly called the 𝑘 or 𝑍
factor), which we assume to be equal to 5 cm2/mJ as measured by [28] for human coronaviruses. Thus,
to deliver 5 ACH of EOA, the UV intensity of the room must be equal to 0.28 µW/cm2. This value is
in line with the “Medium” scenario reported in [29] and does not violate any exposure guidelines. To
estimate power consumption, we assume that the lamps operate at a constant efficiency for conversion
of input power to UV radiation in the relevant 222 nm band. We estimate this efficiency to be equal to
0.0055, which follows from the experiments of [28] in which a 12 W far UV lamp was found to deliver
an intensity of 100 µW/cm2 over an area of 666 cm2. The power consumption in each room can thus be
calculated from the imposed intensity, the floor area of the room, and this efficiency factor.

7.2 Demand-Controlled Ventilation
In the demand-controlled ventilation scenarios, time-varying ventilation is determined by standard proportional-
integral control applied to themeasuredCO2 concentration. Given time-varying bounds𝑄min

𝑎 [𝑡],𝑄max
𝑎 [𝑡],

and𝑄mid
𝑎 B (𝑄min

𝑎 [𝑡]+𝑄max
𝑎 [𝑡])/2, as well as a (possibly time-varying) CO2 setpoint𝐶

sp
CO2

[𝑡], a controller
gain 𝑘𝑐 , and an integral time 𝜏𝑖 = 5 minutes, the time-varying ventilation 𝑄𝑎 [𝑡] is calculated in discrete
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time (with timestep 𝛿) as follows:

𝜖 [𝑡] B 𝐶CO2 [𝑡] −𝐶
sp
CO2

[𝑡]

𝑄𝑎 [𝑡] = clip
(
𝑄mid
𝑎 [𝑡] + 𝑘𝑐 (𝜖 [𝑡] + 𝑒 [𝑡]/𝜏𝑖), 𝑄min

𝑎 [𝑡], 𝑄max
𝑎

)
𝑒 [𝑡 + 1] B

{
𝑒 [𝑡] + 𝜖 [𝑡]𝛿 if 𝑄min

𝑎 [𝑡] < 𝑄𝑎 [𝑡] < 𝑄max
𝑎 [𝑡]

𝑒 [𝑡] else

Note that the new state variable 𝑒 [𝑡] represents the integral of tracking error, which is used to ensure
that the CO2 concentration reaches its setpoint (or ventilation reaches one of its bounds).

A key input to this algorithm is the actual CO2 concentration 𝐶CO2 . Because this value is directly
affected by ventilation, we thus have to simulate what the CO2 concentration would be under the new
ventilation strategy. To accomplish this, we make use of the following model for CO2 concentration:

𝑑𝐶CO2

𝑑𝑡
= 𝑔CO2 +

𝑄𝑎

𝑉
(𝐶CO2,OA −𝐶CO2)

in which 𝑔CO2 B 𝑄𝑏𝐶CO2,𝑏𝑁𝑡/𝑉 gives the instantaneous generation rate of CO2 due to occupants. In
discrete time, this equation becomes

𝐶CO2 [𝑡 + 1] = 𝐶CO2 [𝑡] exp(−𝑄𝑎 [𝑡]𝛿/𝑉 ) + 𝑔CO2 [𝑡]𝛿 exprel(−𝑄𝑎 [𝑡]𝛿/𝑉 )
with exprel(𝑥) B (exp(𝑥) − 1)/𝑥 and constant sample rate 𝛿 = 1 minute. Using this equation, we can
thus solve for the generation rate 𝑔CO2 [𝑡] at each time using the actual measurements from the monitor-
ing period and then simulate a new trajectory with that same generation rate but different ventilation.
(Note that to reduce the effect of measurement noise, we filter the raw 𝑔CO2 [𝑡] sequence via a 10-minute
moving average and then clip negative values to zero prior to simulating the new trajectory; these steps
ensure predictions are more physically realistic, although it will overestimate the buildup of CO2 during
nighttime unoccupied hours.)

This strategy can be implemented by most modern BMSs provided that a measurement of CO2 con-
centration is available. There may be various modifications or adjustments, for example integration with
economizer logic to increase outdoor-air flow under appropriate outdoor conditions, or measuring CO2
in multiple places and controlling the worst-case value to its setpoint. However, the general premise
is the same: outdoor airflow is adjusted so as to control the CO2 concentration to its setpoint. Thus,
the system will automatically increase ventilation when occupants enter the room and decrease it when
occupants leave.

To illustrate the resulting ventilation profiles, Figure 26 shows the resulting ventilation rate, CO2
concentration, and (dynamic) reproductive number for Classroom 1 as actually operated and under three
different CO2 setpoints. From the CO2 plot, we can see that DCV does consistently achieve its control
objective, keeping CO2 concentration at or below its setpoint with only small overshoot (which is to
be expected with this type of control following abrupt occupancy changes). However, by examining
the reproductive number trajectory, we see that performance is not quite ideal: when there is a large
increase in occupancy, the controller waits for the CO2 measurement to exceed its setpoint before taking
real action; thus, there is a period of unnecessarily high transmission risk. While this deficiency could be
addressed by adjusting controller tuning or possibly adding derivative action, we instead propose using
a different variable as the control objective as described in the next section.

7.3 Transmission-Controlled Ventilation
Given that our primary goal is to control the transmission risk in each room, we propose using the
reproductive number directly as a controlled variable, rather than using CO2 as in DCV. Specifically,
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Figure 26: Simulated demand-controlled ventilation in comparison with actual operation for Classroom
1. The second column shows a zoomed-in view of the gray shaded region in the first column.

we propose using the pseudo-steady calculated transmission risk, which brings two key benefits: (1) the
pseudo-steady value provides a slight degree of predictive action, as it reflects where the room is headed
rather than where it currently is; and (2) the formulas are considerably simpler to evaluate.

To implement this control strategy, we of course first need to evaluate the current transmission rate
¤R. The pseudo-steady model gives ¤R B 𝑄2

𝑏
𝐶𝑞𝑁𝑠/𝜆EOA𝑉 , in which we have removed some extra factors

for brevity. The value of 𝜆EOA𝑉 can be calculated using flow measurements and filtration parameters for
the BMS-provided clean air and the humidity measurements and physics-basedmodels for the deposition
and deactivation components of EOA. To estimate 𝑁𝑠 , we note from the discussion of DCV that the CO2
generation rate 𝑔CO2 B 𝑄𝑏𝐶CO2,𝑏𝑁𝑡/𝑉 can be calculated from successive measurements of 𝐶CO2 and
𝑄𝑎 = 𝜆𝑎𝑉 . We could then calculate 𝑁𝑖 B max(𝑁𝑡 − 1, 0), although we propose using 𝑁𝑖 ≈ 𝑁𝑡 to add a
slight degree of robustness for small rooms. We thus arrive at the formula

¤R =
𝑄𝑏𝐶𝑞

𝜆EOA

𝑔CO2

𝐶CO2,𝑏

which can be evaluated by the BMS.
To define the action of the controller, we thus take a transmission-rate setpoint ¤Rsp and invert the

previous formula to find the corresponding EOA setpoint

𝜆
sp
EOA B

𝑄𝑏𝐶𝑞𝑔CO2

¤Rsp𝐶CO2,𝑏

From this value, the BMS can adjust its various setpoints to deliver the required amount of EOA. In cases
where the BMS can control multiple sources of EOA (e.g., ventilation, filtration via recirculation, and
possibly in-zone disinfection devices), some form of prioritizationwould be needed, for example selecting
in order of increasing energy consumption. However, for the spaces being monitored, ventilation is the
only directly controllable source of EOA, and thus the logic is straightforward. Specifically, we have

𝑄𝑎 B clip
(
𝑉 (𝜆spEOA − 𝜆𝑠 − 𝜆𝑣 − 𝜆𝑑), 𝑄min

𝑎 , 𝑄max
𝑎

)
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Figure 27: Simulated transmission-controlled ventilation in comparison with actual operation for Class-
room 1. The second column shows a zoomed-in view of the gray shaded region in the first column.

using the sedimentation and deactivation models to calculate 𝜆𝑠 and 𝜆𝑣 . As before, this value is clipped
to (possibly time-varying) bounds to respect minimum limits and maximum capacity.

To illustrate the resulting ventilation profiles, Figure 27 shows the resulting ventilation rate, CO2
concentration, and (dynamic) reproductive number for Classroom 1 as actually operated and under two
different ¤R setpoints. With this modified strategy, we see that the transmission rate now stays within
its established bound whenever possible (with violations occurring only when ventilation hits its up-
per bound). Using the pseudo-steady model allows the control system to adjust ventilation before the
transient dynamics in CO2 concentration have resolved, thus avoiding periods of unnecessarily high
transmission risk.

8 Data Availability
All data used in this study, plus the sensor data that was collected but not used, is available at https:
//github.com/acoh64/MIT-JCI-IAQ-HVAC. The full dataset consists of timeseries data for
eachmonitored room, one common timeseries weather file, and a table of fixed parameters for the rooms.
Timeseries data files are in Parquet format, while the table of parameters is a single CSV file.

Each set of timeseries data comes in both a “raw” and “clean” version (filenames *_raw.parquet
and *_clean.parquet respectively). The raw data contains values exactly as collected, including
possible irregular sample rate and gaps when data collection was unavailable. The clean data is the result
after interpolation and imputation to remove clear outliers and fill in missing values.

Timeseries data files for each room (filenames <room>_*.parquet, where <room> is the room
name with spaces removed) contain the following columns:

• CO2 Concentration (ppm)

• Occupancy (#)
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• Supply Air Flow (cfm)

• Supply Air Temperature (°F)

• Room Relative Humidity (%)

• Room Temperature (°F)

• TVOC Concentration (ppb)

• PM10 Concentration (µg/m3)

• PM2.5 Concentration (µg/m3)

Note that “TVOC” stands for “total volatile organic compounds”, while “PM” is “particulate matter”.
The weather data files (filenames Weather_*.parquet) contain the following columns:

• Outdoor Air Relative Humidity (%)

• Outdoor Air Temperature (°F)

All timeseries files contain a datetime index giving local time for each row.
The room parameter file room_parameters.csv contains the following columns:

• Name

• Area (ft2)

• Ceiling Height (ft)

• Design Occupancy (#)

• Assumed Peak Occupancy (#)

• Mean Ventilation (ACH)

• ASHRAE Minimum Ventilation (ACH)

• Assumed Maximum Ventilation (ACH)

• In-Zone Filtration (ACH)

The “Name” column in this table correspond to the names in the timeseries data files. Values are as
shown in Table 1.

8.1 Timeseries Room Data Details
Timeseries room data was collected by a mix of in-room Kaiterra sensors, measurements taken by the
BMS, and manually counted or imputed occupancy counts. Within each room dataset, the following
columns were collected by the deployed Kaiterra sensors:

• CO2 Concentration (ppm)

• Room Relative Humidity (%)
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• Room Temperature (°F)

• TVOC Concentration (ppb)

• PM10 Concentration (µg/m3)

• PM2.5 Concentration (µg/m3)

In rooms where multiple sensors are placed, these values represent an average of the measurements.
Gaps are filled by linear interpolation, with the exception of “CO2 Concentration” in which large gaps
were repaired with exponential decays to avoid implying significant overnight occupancy. The CO2
concentration also undergoes a “recalibration” procedure so that minimum values are set to 400 ppm.
(Note that the sensors themselves contain similar logic, so this procedure generally does not change
values significantly. However, it was applied to remove some periods where measured values were near
300 ppm, which is unrealistically low.) Outlier removal was not otherwise performed for these data
streams.

Columns collected by the BMS are as follows:

• Supply Air Flow (cfm)

• Supply Air Temperature (°F)

Note that all monitored rooms were supplied by 100% outdoor air, so the “Supply Air Flow” column
gives the provided outdoor-air ventilation. Unfortunately, BMS data was not available for the final week
of the study, so those periods have been imputed with constant values, as will be evident in the clean
data files. Outliers from the flow measurements were removed during data cleaning. For rooms without
flow measurements, values were set to the estimated ventilation rates as described in the paper. (This
procedure was also applied for Office, as the measured flow includes only part of the total supply flow
to the room.)

Finally, the “Occupancy” column in the clean data files are as calculated by the occupancy-estimation
procedure described in the paper. We provide these values for convenience and note that alternative
occupancy-estimation procedures could be applied using the other data streams. In the raw data files
for Classroom 1 and Office, there are also periods where occupancy was manually counted. For other
spaces, the raw occupancy data is completely empty.

8.2 Timeseries Weather Data Details
To collect weather data, two QuantAQ sensors were deployed on roofs of monitored buildings. Unfortu-
nately, these sensorswere placed in areas receiving significant direct sunlight, which led to unrealistically
high temperature measurements (upwards of 90 °F many afternoons). Thus, we have instead opted to
use data collected from a nearby weather station. Values in the raw file are the hourly values reported
from the weather station, while the values in the clean file are linearly interpolated to match the sample
rate of the other timeseries data.

8.3 Room Parameter Details
During sensor installation, “CeilingHeight” for each roomwasmeasured using a laser distancemeter. For
spaces with variable height, the value is a rough average. “Design Occupancy” was estimated by counting
seats in the room. “Area” was measured from architectural drawings provided by the facilities team.
“Assumed Peak Occupancy” was taken as a fraction of “Design Occupancy” based on observed room
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utilization. “In-Zone Filtration” was calculated from nameplate capacity of installed in-zone filtration
devices (present only in Classroom 3).

“Mean Ventilation” is taken as the mean measured value in room with BMS flow measurements and
set to the estimated value otherwise. “ASHRAE Minimum Ventilation” was calculated from ASHRAE
Standard 62.1-2019 based on space usage. “Assumed Maximum Ventilation"” was generally estimated
based on expected design heat loads, with some manual adjustments to match measured data.

9 Transmission Parameter Values
The parameters used in our transmission modeling and their typical ranges are given in Table 2.
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Symbol Meaning Typical Values
Engineering Parameters

𝜏 Time since an infected person entered the room 0-1000 h
𝑉 Room volume 10–104 m3

𝐴 Floor surface area 5–5,000 m2

𝑄𝑎 Ventilation outflow rate 1–105 m3/h
𝜆𝑎 Ventilation (outdoor air exchange) rate, 𝑄𝑎/𝑉 0.1–20 h−1

𝑄𝑟 Recirculation flow rate 1–105 m3/h
𝜆𝑟 Recirculation air exchange rate, 𝑄𝑟/𝑉 0.1–20 h−1

𝜆𝑠 Drop sedimentation rate 0.01–10 h−1

𝜆𝑣 Pathogen (virion) deactivation rate 0–70 h−1

𝑝 𝑓 Probability of droplet filtration via recirculation 0–1.0
𝜆𝑓 Filtration removal rate, 𝑝 𝑓 𝜆𝑟 0–30 h−1

𝑄𝑑 Volumetric flow through disinfeciton device 1–104 m3/h
𝑝𝑑 Probability of removal/deactivation in disinfection device 0.5–1
𝜆𝑑 Total removal/deactivation rate for disinfection devices 1–100 h−1

𝜆EOA Equivalent outdoor air supply rate, 𝜆𝑎 + 𝜆𝑓 + 𝜆𝑠 + 𝜆𝑣 + 𝜆𝑑 0.1–250 h−1

𝑝𝑚 Mask penetration probability 0.01–0.1
Physical Parameters

𝑟 Respiratory drop radius 0.1–100 𝜇m
𝑉𝑑 Drop volume, ≈ 4

3𝜋𝑟
3 10−5–106𝜇m3

𝑛𝑑 Drop number density per radius 0.01–1.0 (cm3𝜇m)−1

𝑣𝑠 Drop settling speed 10−5–102 mm/s
𝜆𝑠 Drop settling rate, 𝑣𝑠 (𝑟 )/𝐻 10−5–102 h−1

𝑥 Distance from infected person 0.1-10 m
𝑝short Probability of being in the respiratory jet of an infected person 0–1
𝑄𝑏 Mean breathing flow rate 0.5–3.0 m3/h

𝐶CO2,OA Background CO2 concentration 350–450 ppm
𝐶CO2,𝑏 Exhaled CO2 concentration 35,000–40,000 ppm

Epidemiological Parameters
𝑁𝑡 , 𝑁𝑠 , 𝑁𝑖 Number of total, susceptible, and infected persons 1-1000

𝛽𝑎 Airborne transmission rate per infected-susceptible pair 10−6–10 quanta/h−1

𝑟 Effective infectious drop radius 0.3–5𝜇m
𝑃 Pathogen production rate / air volume / drop radius 10−6–109 (h𝜇m)−1

𝐶 Infectious pathogen concentration / air volume / radius 10−8–104 (m3𝜇m)−1

𝐶𝑠 Steady-state airborne pathogen concentrations, 𝑃/(𝜆EOA𝑉 ) 10−8–104 virions/(m3 · 𝜇m)
𝑐𝑣 Pathogen (virion) concentration per drop volume 104–1011 RNA copies/mL
𝑐𝑖 Pathogen infectivity, 1/(infectious dose) 0.001–1.0
𝐶𝑞 Infectiousness of breath, exhaled quanta concentration 1–1000 quanta/m3

Rin Indoor reproductive number 0.001–100
𝜖 Risk tolerance, bound on R𝑖𝑛 0.005–0.5

Table 2: Parameters used in transmission modeling theory with typical ranges and units.
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