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Abstract 

Genome-wide association studies (GWAS) show conceptual promise to identify novel mechanisms of 

major depressive disorder (MDD), but have not yet achieved this potential. One explanation is that 

MDD risk acts through complex expression networks, and GWAS-identified genes represent 

important components of these networks but in isolation are insufficient for their functional 

annotation. In this study, we aimed to identify and characterize the expression networks through 

which GWAS-identified MDD risk genes operate. We generated and characterized seeded co-

expression networks of 252 MDD risk genes over 11 brain regions. We used principal component 

regression and Mendelian randomization to identify a relation between the networks of two such 

genes (FADS1 and ZKSCAN8) and suicidal ideation. These networks were primarily expressed in 

astrocytes, enriched for functions related to fatty acid metabolism, and could define MDD-altered 

astrocyte states. We then identified FGFR3 to EPHA4 signaling as a putative downstream effector of 

these astrocyte states on synaptic function. Finally through transcriptomic and genetic analyses, we 

identify PPARA as a putative therapeutic target of these mechanisms in MDD. Our study defines a 

tractable pathway to translate genetic findings into therapeutically actionable mechanisms.  
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Introduction 

Major depressive disorder (MDD) is a leading contributor to the global burden of disease and is 

associated with immense socio-economic consequences1,2. Pharmacotherapy is typically the primary 

treatment strategy for MDD but large clinical trials show remission rates of up to 67% with common 

anti-depressant drugs
3
. Therefore, identifying novel therapies must be of the utmost priority, but 

this has been fundamentally hampered by our poor mechanistic understanding of MDD.  

Genome-wide association studies (GWAS) show great conceptual promise to identify MDD 

mechanisms in an unbiased fashion. However, associating GWAS-identified loci to genes and 

downstream mechanisms has proven difficult. Transcriptome-wide association studies (TWAS) are a 

set of methods that attempt to annotate GWAS loci to the level of tissue-specific gene expression, 

by integrating GWAS summary statistics with expression quantitative trait loci (eQTLs). These 

methods have been widely applied and have implicated hundreds of genes in psychiatric disorders, 

such as MDD, but are hampered by false positives 4,5. TWAS method development promises to refine 

identified genes, but we suggest an integrative systems framework that leverages orthogonal 

methods and modalities is needed to confidently delineate causal pathways. 

The genetic architecture of MDD is highly polygenic, and as such risk is not driven by individual 

genes, but through complex networks 6,7. Genetically identified risk genes are likely important 

components of these networks, but in isolation have a minimal contribution to overall risk 7,8. Co-

expression networks are one method to identify the broad networks through which genes act. They 

are typically built in an unbiased fashion using RNA-sequencing datasets 
9
, however, an alternative 

method is to construct seeded co-expression networks, where networks are built around candidate 

genes. These seeded co-expression networks have been used successfully to interrogate the 

mechanistic underpinnings of psychiatric disorders 10,11. In this study, we hypothesized that 

generating and characterizing seeded co-expression networks for MDD TWAS genes would allow us 

to understand therapeutic relevant mechanisms of MDD. 

We first systematically searched the literature to identify MDD TWAS genes. We then built 252 

seeded co-expression networks, across 11 CNS regions using 1113 samples from the gene tissue 

expression (GTEx) study. We used principal component regression analyses followed by Mendelian 

randomization to identify a role for FADS1 (fatty acid desaturase 1)  and ZKSCAN8 (zinc finger with 

KRAB and SCAN domains 8) co-expression networks in the prefrontal cortex with suicidal ideation. 

These networks functionally converged on fatty acid metabolism in astrocytes and network-based 

clustering of single nucleus RNA sequencing (snRNA-seq) data could define biased astrocyte states in 

MDD. We then identified FGFR3 (Fibroblast growth factor receptor 3) to EPHA4 (EPH Receptor A4) 

signaling as a putative downstream effector of these altered states on neuronal function. We finally 

identify PPARA (peroxisome proliferator activated receptor alpha) as a druggable regulator of these 

processes. 
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Results 

Identification and characterization of MDD-seeded co-expression networks 

We first systematically searched the literature to identify genes implicated in MDD by TWAS 

methodologies (see methods and Figure 1). This review highlighted 252 MDD TWAS genes that were 

present across regions in the GTEx v8 dataset (Figure 2A; Supplementary table 1). As expected, the 

TWAS genes were strongly enriched in MDD GWAS summary statistics using MAGMA with different 

window sizes 12, but the strongest enrichment was achieved by H-MAGMA (P=3e-11) 13 (Figure S1B). 

We then asked if the TWAS genes were enriched within co-expression modules built using an 

unbiased approach (WGCNA; weighted correlation network analysis) from the CNS tissues of GTEx or 

a post-mortem suicide dataset
14,15

. We observed no enrichment among any of the modules (Figure 

S1A), suggesting a seeded approach may be better suited for mechanistic inference. 

We then generated seeded co-expression networks for the 252 MDD TWAS genes in their relevant 

CNS tissue using the GTEx v8 dataset 
16

. Following filtering, normalization, and regression of 

technical covariates (see methods), we tested each MDD TWAS seed for co-expression with each of 

the 21194 genes in the dataset. Any gene with a correlation coefficient > 0.5 or < -0.5 and an FDR P-

value < 0.05, was said to be positively or negatively co-expressed, respectively. Together all genes 

positively or negatively co-expressed with a particular seed were said to form positive or negative 

co-expression networks, respectively. There was a strong correlation across all regions between the 

size of the positive and negative co-expression networks (Figure 2B). Remarkably 76% of all genes 

tested for co-expression were co-expressed with at least one MDD TWAS seed (Figure 2C). Plasticity 

and activity-dependent processes were among the most common gene ontology (GO) terms 

enriched across all networks, with similar terms enriched in both positive and negative networks, 

suggesting oppositional regulation of processes by MDD risk genes (Figure 2D and 2E). 

Of all co-expressed genes, 86% were co-expressed with more than one TWAS seed (Figure 2F) and 

there was a dose-dependent inverse relationship between the number of networks a particular gene 

was present within and their tolerance to mutation in the gnomAD database 17 (Figure 2G). 

Psychiatric risk genes are typically highly intolerant to mutations, prompting us to ask if they were 

present in more networks than the background set of brain-expressed genes. Indeed we saw MDD 

TWAS genes, SFARI high-confidence autism genes, and schizophrenia risk genes (associated with rare 

variants 
18

) were present in more networks than expected (Figure 2H). We next categorized genes 

into those present in more or less than five networks for enrichment analyses. Genes present in 

more than five networks were enriched in both an MDD GWAS 19 (Figure S1C) and genes 

differentially expressed in models of chronic stress 20 (chronic variable stress- nucleus accumbens 

P=1.5e-11; chronic variable stress- prefrontal cortex P=2.5e-6; social isolation- nucleus accumbens 

P=1.1e-28; social isolation-  prefrontal cortex P=1.9e-5; Fischer’s Exact Test) (Figure 2I). Genes 

present in more than five networks were also enriched in GWAS of common variants for bipolar 

disorder (P=7.5e-7) and schizophrenia (P=1.7e-9; Figure 2I). 

 

Association of large co-expression networks with specific MDD symptoms 

MDD is a clinically heterogenous entity, which prompted us to ask if our co-expression networks are 

associated with specific MDD symptoms. To answer this question, we limited our search to networks 

of more than 750 genes (63 networks, top 12.5% in size), reasoning that larger networks would be 

more biologically relevant, as well as more amenable to functional characterization and downstream 

analyses. We used GWAS summary statistics from the patient health questionnaire nine (PHQ9) 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2023. ; https://doi.org/10.1101/2023.03.16.23287352doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.16.23287352
http://creativecommons.org/licenses/by-nc-nd/4.0/


answered as part of the UK Biobank 21. The PHQ9 queries the current presence of the nine DSM 

depressive symptoms. We used H-MAGMA, to associate all 63 networks with each of the nine 

symptoms. We hierarchically  clustered the scaled beta coefficients from the principal component 

regressions, which identified three groups of networks that were primarily associated with three 

groups of symptoms (Figure 3A). 

Interestingly these three clusters are associated with functionally distinct GO enrichment patterns. 

Cluster 1 networks, whare ich primarily associated with suicidal ideation, were enriched for terms 

related to lipid metabolism, protein synthesis, inflammation and gliogenesis (Figure 3B). Cluster 2 

networks, which primarily associated with dysphoric symptoms (anhedonia, depressed mood, 

concentration problems and feelings of inadequacy), was enriched for GO terms related to ion 

transport, synaptic processes, metabolism and neurodevelopment (Figure 3C). Cluster 3 networks, 

which primarily associated with somatic symptoms (tiredness, appetite changes, psychomotor 

changes and sleep problems), was enriched for GO terms related to neuronal plasticity and function 

(Figure 3D). Considering our poor understanding of suicidal traits and the tractability of studying 

them in post-mortem tissue we focused our subsequent analysis on the Cluster 1 networks 

We used Mendelian randomization (MR) as an orthogonal method to associate Cluster 1 networks 

with suicidal ideation. We annotated the genes within each Cluster 1 network to independent eQTLs 

(from the GTEx catalogue 16), for use as instrumental variables. We then estimated the effect of 

these eQTLs on the suicidal ideation GWAS form the PHQ9. Using the inverse variance weighted 

method, two networks (FADS1 positive network in the anterior cingulate cortex and the ZKSCAN8 

positive network in the anterior cingulate cortex, hereafter referred to as FADS1ACC and ZKSCAN8ACC) 

had nominally significant P-values, with the FADS1ACC network passing correction for multiple 

comparisons (FADS1ACC P=0.003, FDR P=0.04, β=5.14e-04; ZKSCAN8ACC P=0.009, FDR P=0.06, β=5.84e-

04; Inverse variance weighted method; Figure 3E). These networks also had significant effects 

(P<0.05) with at least one other MR method and were directionally consistent across all methods 

(Figure S2), without evidence of instrument heterogeneity or horizontal pleiotropy (Supplementary 

tables 2-4). Interestingly FADS1 was also a TWAS gene in the DLPFC, and this network (FADS1DLPFC) 

also clustered with suicidal ideation and was directionally consistent, although not significant 

(P=0.39), with a positive effect in the MR analysis. The DLPFC and ACC are also the brain regions with 

the strongest causal evidence for a relation with MDD 22,23 and targeting the interactions between 

the two regions is used therapeutically 24. Therefore, we chose to focus our subsequent analyses on 

the FADS1ACC, FADS1DLPFC and ZKSCAN8ACC networks (Supplementary table 5). 

 

The FADS1ACC , FADS1DLPFC and ZKSCAN8ACC networks converge on fatty acid metabolism in astrocytes 

We first used a bootstrapping approach to estimate the size (i.e. number of co-expressed genes) of 

the three networks across all CNS regions present in the GTEx catalogue, which found the largest 

networks in the regions more commonly implicated in MDD (DLPFC, ACC, hippocampus and nucleus 

accumbens). Whereas regions less commonly associated with MDD, such as the cerebellum and 

spinal cord, had the smallest network sizes (Figure S3A). 

We found a striking consistency across the three networks, with a strong congruence across 

correlation coefficients for all 21194 genes tested for co-expression (Figure 4A; R = 0.81 to 0.92; 

Pearson correlation) and within their co-expression networks (i.e. R > 0.5 and FDR P-value < 0.05; 

Figure 4B). All three networks were also enriched for similar GO terms, primarily relating to fatty 

acid metabolism (Figure 4C), and were also specifically expressed in astrocytes (Figure 4D). We also 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2023. ; https://doi.org/10.1101/2023.03.16.23287352doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.16.23287352
http://creativecommons.org/licenses/by-nc-nd/4.0/


note that all three networks were strongly enriched for protein-protein interactions (Figure S4). 

FADS1 is a fatty acid desaturase with a well characterized role in lipid metabolism 
25

. On the other 

hand, ZKSCAN8 is a transcription factor without an established role in fatty acid metabolism, but has 

been reported to bind to the FADS1 locus 26, suggesting ZKSCAN8 may affect depression risk through 

FADS1 regulation. 

We next asked if we could identify genes specifically co-expressed with FADS1DLPFC, ZKSCAN8ACC and 

FADS1ACC in post-mortem MDD tissue. We used a bootstrapping approach to construct networks 

from control and MDD individuals using bulk RNA-sequencing data from Labonté et al 27 (Figure 4E). 

This approach identified 335, 1514 and 735 genes in the FADS1DLPFC, ZKSCAN8ACC and FADS1ACC 

networks, respectively, which were specifically co-expressed in MDD. Considering the concordance 

of network function and cell-specificity among these three networks, we reasoned these networks 

were likely acting through a common mechanism. We accordingly identified 42 genes that were 

common across all three networks (Figure 4F), which were enriched for GO terms related to 

inflammation (Figure 4G). Mounting evidence suggests a core role for inflammation in MDD 28 and 

fatty acid signalling has important roles in inflammatory signalling 29, but the interplay with between 

fatty acid signalling and inflammation in MDD has not been well-studied.  

Interestingly, in the GTEx dataset we also observed a notable increase in size of the FADS1ACC  and 

FADS1DLPFC networks in individuals with a high MDD polygenic risk score (PRS) compared to a low 

MDD PRS, and an increased size of the ZKSCAN8ACC and FADS1ACC networks in females compared to 

males (Figure 4H), suggesting the three networks were also sensitive to depression risk factors. Of 

note, these changes occurred in the absence of FADS1 or ZKSCAN8 expression differences between 

either high/low MDD PRS or female/male groups (Figure S3B).  

 

FADS1DLPFC network-based clustering identifies astrocyte states altered in MDD 

Astrocytes have diverse functions, leading us to wonder if the networks could define astrocyte states 

and if these states would be altered in MDD. We answered this question using snRNA-seq data from 

the DLPFC of control and MDD individuals from Nagy et al 
30

. We clustered the astrocytes from this 

dataset based only on the genes present in the FADS1DLPFC network (see methods section). This 

clustering approach allowed us to ask if variation in expression of the FADS1DLPFC network could 

define specific astrocyte states and then ask if these states were altered in MDD. We identified three 

clusters of astrocytes using this approach (Figure 5A and 5B; Figure S5A-S5C). The highest 

expression of FADS1DLPFC genes was in Cluster 0 and Cluster 1, with lower expression in Cluster 2 

(Figure 5C). Our initial characterization showed large skews in the distribution of astrocytes in 

control and MDD samples (Figure 5D), which we also observed using a neighbourhood-based 

approach to differential abundance testing, implemented through the MiloR package that allowed 

us to regress the effects of age and batch from the analysis (Figure 5E and Figure S5D).  

All three clusters expressed canonical astrocyte markers (Figure 5F). Cluster 1, which was sharply 

decreased in MDD, had strong expression of blood-brain barrier genes (BBB) (Figure 5F) and GO 

terms related to protein translation (Figure S5G; Supplementary table 6). 

Cluster 2, which was increased in MDD, expressed a high level of synaptic genes (Figure 5F) and 

markers of this cluster were enriched for proteins present at the tripartite synapse (Figure S5E), in a 

GWAS for MDD (Figure S5F) and for GO terms related to synaptic function (Figure S5G; 

Supplementary table 6). 
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Cluster 0 seemed to fall between these clusters, expressing BBB and synaptic genes at a moderate 

level. We found GABRB1 (Gamma-Aminobutyric Acid Type A Receptor Subunit Beta 1), along with 

several ion channels (Figure 5F), among the genes most highly enriched in Cluster 0 suggesting a 

sensitivity to neuronal activity. Interestingly the GABA-A receptor, of which the GABRB1 encodes a 

subunit, is the target for the newly approved anti-depressant brexnanolone 31. Furthermore, marker 

genes from Cluster 0 were also enriched in astrocytic components of the tripartite synapse (Figure 

S5E), in a GWAS for MDD (Figure S5F) and GO terms related to cell-cell interactions (Figure S5G; 

Supplementary table 6). 

We next wanted to assess the spatial localization of these astrocyte states and thereby uutilizedthe 

human DLPFC spatial transcriptomic dataset from Maynard et al 32. We used genes enriched 

(positive logFC and FDR P-value<0.05) within each astrocyte cluster, as well as genes enriched in 

broad classes of other canonical cell types, to build module scores in the spatial transcriptomic data 

(representative scores of the astrocyte clusters can be seen in Figure 5G) of 12 sections and 

correlated the spatial localisations of these scores. In line with our previous analysis, there was a 

strong colocalization between the Cluster 2 score and a score from excitatory neurons. Cluster 1 was 

also strongly expressed in layer I and the white matter, and was strongly colocalized with the 

endothelial cell score, again suggesting a role at the blood-brain barrier. Cluster 1 was also enriched 

for an astrocyte layer I signature previously observed in mice 
33

 (Figure S5E). The Cluster 0 score 

showed a diffuse pattern without strong colocalization for other cell types. Again suggesting it 

represented a functionally diffuse astrocyte state. 

There was a sharp decrease in Cluster 1 nuclei in MDD, leading us to wonder if we could identify a 

transitional trajectory away from this cluster. To do this we used a pseudotime analysis employed 

within the Monocle 3 package, which identified a trajectory from Cluster 1 toward Cluster 0 (Figure 

5I). We conducted differential expression along this trajectory and used K-means clustering to sort 

the top 300 differentially expressed genes into three clusters (Figure 5J; Supplementary table 7). 

Cluster A contained genes that were increased in their expression towards the end of the trajectory, 

with Cluster B and Cluster C genes primarily expressed in the middle and at the start of the 

trajectory, respectively. All three clusters were enriched for GO terms related to synaptic function 

(Figure 5K), suggesting astrocyte-neuronal communication may be an important regulator of 

astrocyte state transitions in MDD. 

 

 

FGFR3-EPHA4 as a driver of altered astrocyte-neuronal communication in MDD 

We next wondered what lay downstream of these altered astrocyte states. We reasoned that the 

most likely metric of the downstream processes associated with genes positively correlated with 

FADS1 in the DLPFC was genes negatively correlated with FADS1 in the DLPFC (hereafter the 

FADS1DLPFC negative network). The FADS1DLPFC negative network was primarily expressed in excitatory 

neurons (Figure 6A) and enriched for GO terms relating to the presynapse (Figure 6B). We also note 

there was a high degree of overlap between the FADS1DLPFC, FADS1ACC, and ZKSCAN8ACC negative 

networks (Figure S6A). The FADS1DLPFC negative network was broadly expressed across all excitatory 

neuron subclusters, implying it was representative of a general excitatory presynaptic expression 

program (Figure 6C). Clustering of excitatory neurons based on genes within the FADS1DLPFC negative 

network produced similar results to standard clustering (Figure S6B- 6E). 
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We next employed LIANA, a consensus cell-cell interaction method 34, to identify complexes involved 

in communication between cell types. For this analysis, we used our three astrocyte states as the 

sending cell types and designated the broad cell classifications as the receiving cell types (Figure 6D 

and 6E). We then subset the ligand results to genes present in the FADS1DLPFC positive network and 

the receptors to genes present in the FADS1DLPFC negative network (Figure 6D). Considering the 

negative network was primarily expressed in excitatory neurons, we focused our attention on these 

nuclei and further refined our analysis to those ligand-receptor pairs with at least one member 

differentially expressed in MDD astrocytes or excitatory neurons, respectively (Figure 6F). This 

strategy produced a list of four ligand-receptor complexes; SPON1 (Spondin 1) to APP (Amyloid-beta 

precursor protein), S100A1 (S100 Calcium Binding Protein A1) to RYR2 (Ryanodine receptor 2), FGFR3 

(Fibroblast growth factor receptor 3) to EPHA4 (EPH Receptor A4) and BMP7 (Bone morphogenetic 

protein 7) to PTPRK (protein tyrosine phosphatase receptor type K). We next examined the cell type 

expression of the astrocyte ligands and observed only minimal expression of S100A1 and BMP7 in 

astrocytes, with moderate expression of SPON1 that was specific to astrocytes and high levels of 

FGFR3 expression that was highly selective for astrocytes (Figure 6G). FGFR3 is a well-conserved 

regulator of astrocyte morphology 35–37, with several previous studies also reporting differential 

expression of FGFR3 in post-mortem MDD tissue 38–40. Furthermore, EPHA4 is present at the synapse 

in the mouse brain 41,42, increases at the protein level in post-mortem MDD tissue 43, knockdown or 

inhibition shows anti-depressant-like effects in mice 
43,44

, has an established role in astrocyte-

neuronal communication 
42

 and binds to FGFR3 
45

. Therefore, FGFR3-EPHA4 represented the best 

candidate to mediate altered astrocyte-neuronal communication in MDD. Several previous studies 

have broadly implicated FGF signaling in MDD46,47 , prompting us to assess differential expression 

across the full FGF signaling family. Notably, we observed several FGF members were differentially 

expressed in astrocytes, suggesting altered FGFR3-EPHA4 signaling may exist within the context of 

broad dysregulation of FGF signaling in MDD. 

 

PPARA as a therapeutic target in MDD 

We next sought to identify druggable therapeutic targets from our analyses (Figure 7A). We 

reasoned two of our approaches were the most promising signatures to investigate; the 42 common 

genes that were specifically co-expressed in MDD (Figure 4E and 4F) and Cluster A genes that were 

upregulated towards the end of our pseudotime trajectory (Figure 5J). We analyzed these signatures 

for an association with the DrugMatrix and Connectivity Map databases of transcriptomic 

perturbations 48. We found 152 and 52 compounds associated with the MDD network specific and 

pseudotime lists, respectively (Figure 7B and Supplementary table 8). Considering the distinct 

nature of our signatures, we found a surprisingly strong convergence between results, with the 

PPARA agonist fenofibrate among the top hits for both signatures. We note these analyses define 

agents that modulate our signatures and may therefore be pro- or anti-depressant. For instance 

among the top hits was the pro-inflammatory agent, lipopolysaccharide (LPS), whose pro-depressive 

effects are well characterized 28. We also identified several interesting drug classes including anti-

inflammatory (e.g. ampiroxicam and dexamethasone), sex-hormone targeting (e.g. diethylstilbestrol, 

norethindrone, tamoxifen and epitiostanol) and a selective-serotonin reuptake inhibitor (sertraline). 

These databases contain signatures across multiple cell lines and concentrations, therefore, we 

reasoned that an association across multiple conditions would provide stronger evidence of an 

association. Among the most frequently associated drugs were four that target PPARA. Moreover, 

each of the four drugs were associated with both the MDD network-specific and pseudotime DEG 

signatures (Figure 7C). PPARA is a nuclear receptor that regulates the expression of a range of lipid-
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modulating genes 49 and so represented an intriguing candidate. Encouragingly PPARA was also a 

member of the FADS1ACC (R=0.79), FADS1DLPFC (R=0.74 )and ZKSCAN8ACC (R=0.65) networks (Figure 

S7A), but the other PPAR family members PPARD and PPARG were not present in any of the three 

networks (Figure S7B and S7C). 

We finally used the Open Targets platform to search for genetic associations with PPARA. 

Surprisingly there was a GWAS significant locus 88Kb from PPARA in a GWAS of MDD (Figure 7D; 

Supplementary table 9) 50, making it the second closest gene to the locus (WNT7B was the closest at 

84Kb). We could not identify any brain QTLs for PPARA, despite its robust expression, which negated 

the possibility of confirming the association using colocalization or Mendelian randomization. There 

was however also evidence for PPARA as the causal gene in multiple other GWAS, including several 

pertaining to co-morbidities or risk factors for MDD including addiction, inflammation and body 

weight (Figure 7D). Together these data support the further study of PPARA as a putative 

therapeutic target in MDD. 
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Discussion 

In this study, we used multiple complementary and orthogonal methods to derive therapeutically 

actionable MDD mechanisms from genetic studies. We identify multiple expression networks 

associated with MDD and suicidality that converge on fatty acid metabolism within astrocytes of the 

prefrontal cortex. Furthermore, we identify PPARA as a putative anti-depressant target to modulate 

these mechanisms. Considering the diffuse definitions of MDD used in GWAS 
51

 and the limitations 

of TWAS 5, we illustrate that integrating results across data modalities and using orthogonal methods 

is a viable strategy for the delineation of therapeutically actionable mechanisms in MDD. 

Several streams of research have linked astrocyte alterations to MDD in humans 
52–54

 or depressive-

like behaviors in animal models 
55–57

. One notable finding from these studies has been a specific 

disruption of astrocyte function at the BBB 55,56,58,59. We could observe similar effects by clustering 

astrocytes based on the FADS1DLPFC network, suggesting a role for fatty acid metabolism in astrocyte 

dysregulation at the BBB. Many fatty acids, particularly polyunsaturated fatty acids (PUFAs), are 

supplied to the brain via the periphery 29. PUFAs are metabolized by FADS1 into various active 

metabolites, such as arachidonic acid and eicosapentaenoic acid, which play an important role in the 

regulation of inflammation 
60

. Interestingly we found genes specifically co-expressed with the three 

networks in MDD were enriched for inflammatory processes, suggesting PUFA metabolism is a 

potential contributing mechanism to altered inflammatory signaling in MDD. Furthermore, both 

FGFR3 and EPHA4, to whom we ascribe a putative role for mediating downstream synaptic effects of 

the FADS1DLPFC network, have characterized roles in inflammatory signaling pathways 61–63. 

Therefore, our study suggests a model whereby astrocyte dysfunction at the BBB facilitates the entry 

of PUFAs to the brain, which are metabolized by FADS1 to produce inflammatory mediators that 

lead to altered astrocyte-neuronal communication. Crucially PUFAs also act as endogenous agonists 

for PPARA 29, suggesting modulation of this process may be therapeutically relevant. 

Our study points to PPARA as a putative therapeutic target in MDD, with the literature suggesting 

PPARA agonism as the likely desired therapeutic action. For instance, administration of 

palmitoylethanolamide (PEA; an endogenous PPARA ligand), or the inhibition of PEA degradation, 

produces anti-depressant-like effects in mice 64–66 and PEA improved the anti-depressant effect of 

Citalopram when used as an adjuvant in a small clinical trial 67. Non-endogenous PPARA agonists 

such as fenofibrate, WY14643 and aspirin also have a range of PPARA-dependent effects within the 

rodent brain including anti-depressant-like 
65,68,69

 and anxiolytic-like effects 
65,70

, modulation of 

memory 
70–72

, altered astrocyte function 
70,73

 and increased synaptic plasticity 
71,72

. Furthermore, 

knocking out PPARA in mice results in reduced cognitive flexibility and altered synaptic gene 

expression 74–76. Together with these data, our results provide a strong basis for the further 

investigation of PPARA agonists as anti-depressant agents. 

Currently, the primary clinical use of the PPARA agonists is for dyslipidemia 
77

 and interestingly 

peripheral lipid alterations are commonly observed in MDD 78–80. The FADS locus (includes FADS1, 

FADS2 and FADS3) is the most pleiotropic regulator of peripheral metabolite levels, with significant 

genetic associations for 79 metabolites, including 75 lipid species 25.  Furthermore, there is also 

evidence to suggest that peripheral lipid dysregulation caused by the FADS locus is causal in MDD 81. 

FADS1 has also been identified through TWAS as a depression risk gene within the brain and we 

describe alterations in FADS1 co-expression networks in the prefrontal cortex associated with MDD 

and suicidality. Disentangling the peripheral and central effects of FADS1 lipid metabolism in MDD is 

an important future question. To fully address this question, larger cohorts and emerging methods 

with improved throughput and resolution for lipid analysis that are suitable for use in post-mortem 

tissue will be essential. 
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The current study also comes with limitations. First, the generation of robust co-expression networks 

requires large sample sizes and study designs, such as ours, will benefit from increasing MDD cohort 

sizes. Secondly, we also rely on transcriptomic methods throughout this study. However, these 

methods are limited in their ability to infer events that may not be well represented at the 

transcriptome level, such as lipid metabolism. Emerging single-cell metabolomic methods 82 promise 

to build upon our results. 

In conclusion, we implicate fatty acid metabolism in astrocytes as a driving mechanism in MDD and 

suicidality and identify PPARA as a putative therapeutic target to modulate this pathway. 
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Methods 

Systematic search 

We conducted a systematic search of the literature to identify previous studies that used a TWAS 

framework to identify MDD risk genes. On March 14
th

, 2022 we searched the PubMed and Web of 

Science databases for manuscripts containing [“MDD” or “Major depressive disorder”] AND 

[“Transcriptome-wide association study” or “TWAS”] from the previous five years. Only TWAS were 

considered, and proteome-wide association studies were removed. Duplicate studies were removed 

by matching PMIDs and the titles of 148 unique articles were then screened for relevance, returning 

87 articles whose abstracts were evaluated for relevance. After this process 23 studies remained for 

full text evaluation, of which 7 were deemed suitable. See Supplementary Table 1 for a list of 

included studies. TWAS genes carried forward were limited to GTEx CNS tissues to fit within the 

scope of the analyses, leaving 359 MDD TWAS genes across 11 CNS regions. TWAS genes identified 

in the GTEx “Cerebellum” or “Cerebellar hemispheres” were combined as were those in “Frontal 

cortex BA9” and “Cortex”, as the GTEx consortium notes these as technical replicates. 

Bulk RNA sequencing quality control and normalisation 

Gene Tissue Expression (GTEx) consortium: GTEx v8 data 16 were downloaded from the GTEx portal 

or through dbGaP (accession number phs000424.v9.p2). Raw data were filtered to retain genes 

expressed in all brain regions, to facilitate regional comparisons. Only genes and samples passing 

GTEx quality control were used in the downstream analysis. The cortical and cerebellar samples 

processed through alternative methods to the rest of the samples were removed. Samples were 

excluded if they were ineligible for the study or the presence of the following was noted: 

Amyotrophic Lateral Sclerosis, Alzheimer's OR Dementia, Dementia With Unknown Cause, Active 

Encephalitis, Influenza (acute viral infection including avian influenza), Multiple Sclerosis, Parkinson's 

Disease, Reyes Syndrome, Documented Sepsis, Systemic Lupus, Cerebrovascular Disease (stroke, TIA, 

embolism, aneurysm, other circulatory disorder affecting the brain), Alzheimer's, Bacterial Infections 

(including septicaemia, meningococcal disease, staphylococcal infection, streptococcus, sepsis), 

Current Diagnosis Of Cancer, MDD, Heroin Use, Prescription pill abuse, Pneumonia, Schizophrenia, 

Unexplained seizures or Positive blood cultures. Data were normalized using DESeq2 v1.34.0 with 

the TMM method and log normalization. Genes were filtered to those with > 0.1 CPM in >25% of 

samples. Outlying samples were identified by a connectivity Z-score greater than three standard 

deviations and were removed. There was no effect of RIN on mapped reads (linear regression P-

value =  0.979). A principal component analysis of 32 sequencing metrics was conducted and the first 

10 principal components along with RIN, interval of onset to death, Hardy scale, body refrigeration, 

sex and age were regressed from the data using a linear mixed effects model with subject as a 

random intercept term with the lme4 v1.1-31 package 
83

. 

Labonté et al: Data from Labonté et al 27 were downloaded from GSE102556 in FPKM form. Genes 

were filtered to those with an FPKM > 0.5 in 25% of samples, leaving 22893 genes in the dataset. The 

effects of age, age2, pH, sex, post-mortem interval, RIN and RIN2 were then regressed from the data. 

 

Generation of co-expression networks 

Co-expression networks were generated using a Pearson correlation between the TWAS gene and all 

genes expressed in the dataset. A gene was said to be positively co-expressed with an R > 0.5 and an 

FDR P-value < 0.05, a gene was said to be negatively co-expressed with an R < -0.5 and an FDR < 
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0.05. Bootstrapping was carried out using 1000 iterations while down sampling to the smallest 

sample size among compared groups.  

Mutational intolerance analysis 

Loss of function metrics v2.1.1 were downloaded from the gnomAD database 
17

. We used the LOEUF 

score as a conservative measure of mutational intolerance. All genes expressed in the GTEx dataset 

that were tested for co-expression were used as background in the analysis. 

Enrichment analyses 

Fisher’s Exact Test was conducted to test enrichment between gene sets of interest and co-

expression networks as implemented in the GeneOverlap v1.30.0 package 84. All genes expressed in 

the GTEx dataset that were tested for co-expression were used as background in the analysis. 

GWAS enrichment 

We conducted GWAS enrichment using MAGMA v1.10 12, with GWAS annotated to the gene level 

either using H-MAGMA 
13

 or the standard window approach in MAGMA. We compared the H-

MAGMA approach to the window approach using enrichment of MDD TWAS genes in a MDD GWAS. 

H-MAGMA returned stronger statistical results and was therefore used for the remainder of the 

analysis. H-MAGMA is an extension to the MAGMA framework under which the GWAS of interest is 

annotated to the gene level using Hi-C data from a relevant region. We used SNP annotations from 

the 1000 genomes European dataset and gene annotations from the NCBI website build 38. We 

annotated GWAS using Hi-C data from the DLPFC 
85

, which was obtained from 

https://zenodo.org/record/6382668#.Y9PSG3bMJPY.  

For the PHQ9 analysis, the beta coefficients from the principal component regression were scaled 

for each network and hierarchically clustered using the pheatmap v1.0.12 package 86. The 

dendrograms were then cut to form three clusters of rows and three clusters of symptoms. 

For details of GWAS summary statistics used and their sources see Supplementary Table 10. 

Gene ontology (GO) analysis 

We conducted GO analysis using the clusterProfiler v4.2.2 package 87, with all genes expressed in the 

relevant dataset used as background in the analysis. We ran enrichment for biological processes, 

cellular components, and molecular functions together. For Figure 3B-2D, significant terms were 

imported into Cytoscape v3.8.0 
88

, where similar terms were clustered and a word cloud was used to 

suggest words common to all terms within a given cluster. We then manually refined these terms for 

brevity and clarity. 

Mendelian randomization 

We conducted Mendelian randomization using eQTLs as instrumental variables for an effect on 

suicidal ideation. We obtained independent eQTLs from the GTEx v8 catalogue for all CNS relevant 

brain regions 16. We converted SNP location to rsIDs using the lookup tables provided by GTEx. We 

used the TwoSampleMR v0.5.6 package 89 to harmonize the effect alleles and analyse the effect of 

the eQTLs on suicidal ideation using the Inverse variance weighted, weighted median, weighted 

mode and MR Egger methods. We used leave-one-out and Cochranes Q-test to assess heterogeneity 

among SNPs and the Egger intercept to asses horizontal pleiotropy, all using standard settings in the 

TwoSampleMR package. 

Protein-protein interactions 
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Estimates of protein-protein interactions were made using the STRING database 90 using standard 

settings. Protein-protein interaction networks were then exported to Cytoscape v3.8.0 
88

 for 

plotting. 

Single cell expression of networks 

We assessed the single cell expression of co-expression networks using the module score function in 

Seurat v4.3.0 91. We first downloaded single cell or single-nucleus data from the ACC and DLPFC 

(Tran et al 92 and Nagy et al 30, respectively). We downloaded the normalized ACC dataset as detailed 

in the Tran et al manuscript, and converted the Single Cell object to a Seurat object using the 

as.Seurat() function and identified variable features and principal components using the standard 

Seurat workflow. We retained the original clusters from this dataset, but combined them to form 

broad cell-type classes (e.g. astrocytes, oligodendrocytes, excitatory neurons, etc). We then 

generated a module score for plotting using the AddModuleScore() function in Seurat. 

We downloaded the Nagy et al raw data from GSE144136 and used the cell type assignations from 

the original study, but again grouped them to from broad cell classes. We excluded nuclei expressing 

fewer than 700 and greater than 7000 genes, before normalization with the NormalizeData() 

function. Data were then split and integrated by batch using the Seurat method of data integration 

and the standard Seurat pipeline before using the AddModuleScore() function to identify cell type 

specific expression patterns. 

Analysis of snRNA-seq data 

To cluster astrocytes based on variation in expression of genes within the FADS1DLPFC networks we 

took the Seurat object from the Nagy et al dataset generated by the previous section and subset the 

astrocytes. We then removed the integrated assay and removed two batches as they had fewer than 

100 nuclei (1M and 2M) and we were unable to successfully integrate them with the larger batches. 

We then subset the count matrix to genes within the FADS1DLPFC network and ran the standard 

Seurat integration and analysis pipeline as previously described. We used the first 10 principal 

components and a resolution of 0.2 to generate clusters and a UMAP dimensional reduction of the 

nuclei. We then extracted the metadata with the FADS1 based clusters and combined it with the full 

astrocyte count matrix to perform downstream analysis, such as identification of cluster marker 

genes and differential expression. 

Differential abundance testing  

We conducted differential abundance testing between control and MDD cells using the miloR v1.2.0 

package 93. We started with our FADS1 clustered object containing the full count matrix and 

converted it to a Single Cell Experiment object and subsequently to a Milo object. We used the 

following parameters for the analysis; k = 20, d =  20 and prop = 0.2. We then tested neighbourhoods 

for differential abundance using batch and age as covariates. 

Spatial analysis of module scores 

We downloaded 10X Visium data from Maynard et al (samples: Br2743, Br2720, Br3942, Br6432, 

Br6471, Br6522, Br8325, Br8492, Br8667) 
32

. We normalized data using the Seurat pipeline and the 

SCTransform() function. We created a module score using the AddModuleScore() function. This 

score was created using all genes enriched in broad cell types or the FADS1-defined astrocyte 

clusters. Marker genes were those with a positive logFC and an FDR P-value < 0.05. Correlations 

between cell types were generated independently for all slices. We then averaged the correlation 

coefficients of all slices to obtain the final correlation matrix for plotting. 
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Pseudotime analysis 

We conducted pseudotime analysis using the monocle3 v1.3.1 package 94. We converted the FADS1 

clustered astrocyte object with full count matrix to a cell data set object and used the Seurat UMAP 

embeddings to learn a pseudotime trajectory using standard settings. Considering there was a 

notable decrease in Cluster 1 astrocytes in the MDD group and our question was if we could identify 

a transitional trajectory away from this cluster, we designated Cluster 1 as the root of the graph. We 

then identified genes differentially expressed across pseudotime using the graph_test() function. We 

conducted K-means clusters on the top 300 DEGs using the kmeans() function and created a 

heatmap for expression of these genes using the ComplexHeatmap v2.10.0 package 95. 

Cell-cell interaction analysis 

We conducted cell-cell interaction analysis using a consensus of methods as implemented in the 

LIANA v0.1.6 package 34. We used the normalized object with all cell types present in the DLFPC for 

the analysis. We used the liana_test() and liana_aggregate() functions to identify consensus ranks of 

cell-cell interactions from this Seurat object. We then filtered the results for ligands and receptors 

that were present in the FADS1DLPFC positive and negative networks, respectively. We also excluded 

any interactions with an aggregate rank > 0.05 (similar interpretation to a P-value threshold). 

Perturbagen analysis 

We conducted perturbagen analysis using the DrugMatrix and Connectivity Map databases using the 

iLINCS software 48. We used the online interface provided and the standard settings to identify 

patterns of association (Supplementary Table 8). Results were returned in the form of absolute Z-

score. We aggregated the significant results by perturbagen to identify targets associated with 

multiple concentrations or cell lines. 

Open Targets 

We used the Open Targets Genetics platform 
96

 to search for GWAS hits associated with PPARA. We 

conducted our search in December 2022. We manually annotated the results into broad groups to 

facilitate interpretation. We provide the data using the Open Targets L2G score, which is analogous 

to a probability score based on a machine learning pipeline trained to identify likely causal genes 

from significant GWAS hits. The L2G score can be interpreted as probability the gene is the target of 

the causal locus under the assumption the GWAS is similar to those included in the training set. 

Statistical analysis 

All analysis unless otherwise stated were carried out using R v4.1.1 
97

 and Rstudio v1.4.1717 
98

. 

GWAS enrichment using MAGMA or H-MAGMA was conducted using the MAGMA command line 

software. All package versions are specified in their relevant methods section. Plots were generated 

using either the packages mentioned throughout the methods section or in ggplot2 v3.4.0 99. Plots 

were combined into figures using Inkscape v1.0. A significance threshold of 0.05 was used 

throughout, with the Benjamini-Hochberg method (False Discovery Rate; FDR) used to correct for 

multiple comparisons. The relevant statistical tests used are described throughout the results 

section and the figure legends. 
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Figure legends 

Figure 1 

Schematic of the current study 

Figure 2 

Generation and characterization of seeded co-expression networks.  

A. Circos plot describing the MDD TWAS seeds used to generate co-expression networks. Each outer 

segment represents an individual CNS region. The width of the segment is proportional to the 

number of seeds in that region. Light orange on the inner bar indicates a seed unique to that region 

and dark orange indicates that the seed is shared with another region, with this link represented by 

the purple connector.  

B. Scatter and density plots of all generated co-expression networks describing the number of genes 

positively and negatively co-expressed with each MDD TWAS gene. Pearson correlations between 

positive and negative networks for each region are shown. 

C. Bar plot representing the total number of genes in the full gene expression dataset (red bar) and 

those genes co-expressed with at least one MDD TWAS seed (dark blue bar).  

D and E. The most common GO terms enriched among the negative (D) and positive (E) networks. 

The x-axis is a count of the number of networks the relevant term is enriched within at an FDR P-

value < 0.05. The regions with networks enriched for the relevant term are listed within each bar. 

F. Histogram of the number of networks genes co-expressed with at least one TWAS seed (also 

represented in the dark blue bar of C) are present within, includes both positive and negative 

networks.  

G. LOEUF scores for genes present in more than the indicated number of networks. Each category is 

inclusive of the subsequent categories i.e. genes present in >40 networks are also present in the >30 

network category and so forth. Kruskal–Wallis test was first conducted (P<2.2e-16) followed by 

Wilcoxon post-hoc test (P-values indicated on graph). 

H. The number of networks MDD TWAS genes, SFARI high-confidence genes and genes associated 

with schizophrenia rare variants appear within. Kruskal–Wallis test was first conducted (P<2.2e-16) 

followed by Wilcoxon post-hoc test (P-values indicated on graph). 

I. Enrichment analysis of those genes appearing in > 5 or < 5 networks for genes differentially 

expressed in animal models of chronic stress (brown gradient; Fisher’s Exact Test) or in GWAS for 

psychiatric-related traits or disorders (green gradient; H-MAGMA). The larger dots indicate a 

corrected P-value < 0.05, with a darker colour indicating a lower P-value. 

Figure 3 

Clustering of co-expression networks by their enrichment in the nine DSM symptoms of MDD.  

A. Heatmap showing the enrichment of all networks (positive and negative) larger than 750 genes (y-

axis) in GWAS summary statistics from PHQ9 ascertained symptoms of MDD (x-axis). The beta 

coefficient (row scaled) of the principal component regression for the effect of each network on 

each symptom is shown in the relevant tile. Yellow and black indicate a higher or lower beta 
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coefficient, respectively. Results are grouped by hierarchical clustering into three symptom clusters 

and three network clusters. Dendrogram for network clusters is shown on the y-axis.  

B-D. All GO terms enriched (FDR corrected P-value < 0.05) for Cluster 1 (B; green colours), Cluster 2 

(C; yellow colours) and Cluster 3 (D; purple colours) networks are grouped into nodes, with edges 

between nodes representing genes common between terms. Node size corresponds to Z-score of 

enrichment. Labels describe the broad annotation of their adjacent cluster of nodes. 

E. Mendelian randomization (MR) for an effect of eQTLs associated with Cluster 1 networks (x-axis) 

on suicidal ideation. Inverse variance weighted (IVW) effect size (y-axis) is shown with 95% 

confidence intervals.  

Figure 4 

FADS1 and ZKSCAN8 networks in the prefrontal cortex converge on fatty acid metabolism in 

astrocytes.  

A. Scatter plots comparing the correlation coefficients of FADS1ACC, FADS1 DLFPC, and ZKSCAN8ACC 

networks for all 21194 genes tested for co-expression. Pearson correlation coefficient and associated 

P-value is shown for each comparison. 

B. Venn diagram showing the overlap in genes within the FADS1ACC (green), FADS1 DLFPC (orange) 

and ZKSCAN8ACC (purple) positive networks. 

C and D. GO (C) and single cell expression (D) for the FADS1ACC (green), FADS1 DLFPC (orange) and 

ZKSCAN8ACC (purple) positive networks.  

E. MDD bootstrapped networks in the Labonté et al dataset for FADS1ACC (green), FADS1 DLFPC 

(orange) and ZKSCAN8ACC (purple). In each panel a dot represents a gene ranked by the percentage 

of 1000 bootstrapped networks it appears within. A grey colour indicates that the gene also appears 

in more than 75% of bootstrapped networks from control individuals. A green, orange or purple 

colour indicates that the gene is specifically co-expressed in MDD. Counts of these genes appear as 

insets.  

F. The overlap in MDD specific co-expressed genes across networks (i.e. the green, orange, or purple 

bars from the insets within E).  

G. GO terms enriched for the 42 common genes specifically co-expressed in MDD across the 3 

networks.  

H. Bootstrapped network size in GTEx for the FADS1ACC, FADS1DLPFC and ZKSCAN8ACC based on MDD 

polygenic risk score (PRS; light and dark maroon; partitioned by median split) or sex (light green and 

dark green for females and males, respectively). 1000 bootstrap iterations were used for all size 

estimations. 

Figure 5 

The FADS1DLPFC network defines MDD biased astrocytic states.  

A-C. UMAP of FADS1DLPFC network-based clustered astrocytes coloured by: defined clusters (A), 

control or MDD status (B) and a module score of the FADS1DLPFC network (C; red and blue indicating 

higher or lower levels of the network, respectively).  

D. Stacked bar plot for the proportion of control and MDD nuclei in each cluster.  
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E. Differential abundance of neighbourhoods in control and MDD groups adjusted for batch and age. 

Positive or negative logFC indicates an increased or decreased abundance in MDD, respectively. 

Edges between nodes represent nuclei common to neighbourhoods.  

F. Violin plots of gene expression across the three defined astrocyte clusters.  

G and H. Marker genes for the three astrocyte clusters projected into Visium data from the human 

DLPFC (Maynard et al). G displays representative images of the scores for the 3 clusters (layer I is at 

the top of the image, with the white matter at the bottom). The spatial correlations of these scores 

with scores generated in a similar manner for glia and neuronal populations is shown in J (average 

from 12 DLPFC slices).  

I. Pseudotime trajectory is plotted on the UMAP coordinates.  

J. The top 300 genes differentially expressed across pseudotime identifies 3 clusters (Cluster A, 

Cluster B and Cluster C). 

K. Gene ontology enrichment of the 3 clusters from J. 

Figure 6 

FGFR3 to EPHA4 signalling as a mediator of astrocyte-neuronal communication in MDD 

A. The cell type specificity of the FADS1DLPFC negative network module score. 

B. GO terms enriched in the FADS1DLPFC negative network.  

C. Expression of the FADS1DLPFC negative network in excitatory neuron clusters.  

D. Cell-cell interaction analysis using LIANA. Astrocytic expressed ligands are on the y-axis, with 

receptors on the x-axis. Colour of the dots represent the magnitude of expression, yellow 

representing higher expression of both ligand and receptor in their respective cell types. The size of 

the dots is proportional to the -log of the aggregate rank, which has an equivalent interpretation to a 

-log P-value.  

E. Schematic for identifying ligand-receptor pairs of interest.  

F. Heatmap showing the differential expression of the four LIANA nominated ligands in all astrocytes 

and the expression of their four putative receptors in all excitatory neurons. Tiles are coloured by 

the logFC of a comparison between control and MDD nuclei, with red indicating increased 

expression in MDD. The largest dot indicates an adjusted P-value < 0.05, the intermediate sized dot 

indicates an unadjusted P-value < 0.05 and the smallest dot indicates an unadjusted P-value > 0.05. 

P-values are based on Wilcoxon rank sum test comparison of gene expression comparing all control 

or MDD astrocytes or excitatory neurons. 

G. Cell type expression of the four astrocyte ligands prioritized by the LIANA analysis.  

H. Heatmap for differential expression of FGF receptor signalling pathway members (GO:0008543) in 

astrocyte clusters. Tiles are coloured by logFC, with red indicating increased expression in MDD and 

a larger dot indicating and adjusted P-value < 0.05. P-values are based on Wilcoxon rank sum test 

comparing expression between control and MDD nuclei within the specific astrocyte cluster. 

Figure 7 

PPARA is a putative therapeutic target in MDD.  
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A. Schematic of drug target prioritisation strategy.  

B. Significantly associated perturbagens from the DrugMatrix and Connectivity Map databases 

ranked by absolute Z-score for an association with common MDD network specific genes (dark 

green) or Cluster A pseudotime differentially expressed genes (dark blue). Notable perturbagens are 

labelled. Z-scores are generated from two-tailed P-values for the change in expression of the 

relevant signatures in the relevant perturbagen gene expression dataset. 

C. Count of perturbagen appearances (e.g. from different cell types or concentrations) from B. Drugs 

targeting PPARA are highlighted in bold.  

D. GWAS hits with evidence of an association with PPARA in the open targets database. The y-axis 

indicates the L2G (locus to gene) score, which ranges from 0-1 and can be interpreted as probability 

of being the causal gene under identical conditions to the GWAS training set. Each ‘lollipop’ on the x-

axis represents a distinct GWAS, which are functionally grouped and notable GWAS are labelled. 

 

 

Supplementary figure 1 

A. Enrichment of MDD TWAS genes in WGCNA modules using a Fischer’s Exact Test. Each point 

represents an individual WGCNA module tested for enrichment. Dashed line is the Bonferroni 

threshold for multiple comparisons. 

B. Enrichment of MDD TWAS genes in MDD GWAS (Howard et al 2019) using MAGMA with 3 

different windows and H-MAGMA, using Hi-C data from the DLPFC.  

C. Enrichment of genes present in >5 (orange) or <5 (blue) networks within the MDD GWAS from 

Howard et al (without 23 and me subjects) using H-MAGMA. Across all panels the dashed line 

represents the threshold for statistical significance. 

Supplementary figure 2 

Alternative Mendelian randomization methods (y-axis) for an effect of FADS1ACC or ZKSCAN8ACC 

network eQTLs on suicidal ideation. The estimate of the effect size with 95% confidence intervals are 

presented on the x-axis. Dashed line passes through zero. 

Supplementary figure 3 

A. Size of FADS1 and ZKSCAN8 bootstrapped networks across 11 regions of the brain and spinal cord, 

dashed line indicates the median network size across all regions. FADS1 median = 823 and ZKSCAN8 

median = 1122. 

B. There are no changes in expression of FADS1 or ZKSCAN8 between males/females or high/low 

MDD polygenic risk scores (PRS). Panels are labelled with the gene and region for which the relevant 

expression comparison is conducted. Comparisons were made using a Wilcoxon test. 

Supplementary figure 4 

Protein-protein interactions for members of the FADS1ACC, FADS1DLPFC and ZKSCAN8ACC networks 

from STRING. Each node represents a protein in the network with edges representing protein-

protein interactions. Nodes are ranked based on their connectivity. Each network is significantly 

more connected than expected by chance (FADS1ACC enrichment P-value < 1.0e-16, average node 
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degree 12.4; FADS1DLPFC enrichment P-value < 1.0e-16, average node degree 10.4; ZKSCAN8ACC 

enrichment P-value < 1.0e-16, average node degree 11.8) 

Supplementary figure 5 

A. UMAP coloured by batches.  

B. Stacked bar plot showing the proportion of nuclei in each cluster by batch.  

C. Astrocytes clustered using standard methods but coloured by their cluster designation from the 

FADS1DLPFC network clustering.  

D. Differentially abundant neighbourhoods stratified by the astrocyte cluster in which they 

predominately reside. A negative Log fold change (and red colour) indicates a decrease in abundance 

in MDD.  

E. Enrichment of cluster marker genes in a layer 1 astrocyte signature derived from Batiuk et al’s 33 

mouse dataset and astrocytic genes, whose protein product is present at the tripartite synaptic 

structure (as identified in mice by Takano et al 
100

). Larger dot indicates P-value < 0.05, smaller dot 

indicates P-value > 0.05. A darker brown colour indicates a smaller P-value.  

F. H-MAGMA enrichment of markers of astrocyte clusters in a MDD GWAS.  

Enrichment of cluster marker genes in a layer 1 astrocyte signature derived from Batiuk et al’s 
33

 

mouse dataset and astrocytic genes, whose protein product is present at the tripartite synaptic 

structure (as identified in mice by Takano et al 100). Larger dot indicates P-value < 0.05, smaller dot 

indicates P-value > 0.05. A darker brown colour indicates a smaller P-value.  

G. GO terms enriched in cluster identifying genes of Cluster 0, Cluster 1 and Cluster 3. 

Supplementary figure 6 

A. Overlap between FADS1ACC, FADS1DLPFC and ZKSCAN8ACC negative networks.  

B. Clustering of excitatory neurons by FADS1DLPFC negative network identified 10 clusters.  

C. UMAP coloured by Control and MDD.  

D. UMAP coloured by batches.  

E. FADS1DLPFC negative network module score across all FADS1DLPFC negative network clustered 

excitatory neurons shows high levels of expression in all clusters. 

Supplementary figure 7 

A-C. PPARA is co-expressed with FADS1 in the DLPFC and ACC, and ZKSCAN8 in the ACC (A). Neither 

PPARD (B) or PPARAG (C) is co-expressed with FADS1 in the DLPFC and ACC, and ZKSCAN8 in the 

ACC. 
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