Prevalence and predictors of not testing for HIV among

young men in Papua New Guinea: a cross-sectional

analysis from a nationally representative sample

4 McKenzie Ken Maviso¹*

1

2

3

7

10

11

- ¹Division of Public Health, School of Medicine and Health Sciences, University of Papua New
- 6 Guinea, Port Moresby, Papua New Guinea
- 8 *Corresponding author
- 9 Email: mckenzie.maviso@upng.ac.pg

Abstract

- HIV testing is a crucial strategy for HIV prevention, treatment, care, and support. However, its
- uptake is suboptimal among young people, particularly in settings where the HIV burden is
- highest. In Papua New Guinea (PNG), HIV testing and its predictors among young men are
- understudied. This study aimed to assess the prevalence and predictors of not testing for HIV
- among young men aged 15-24 years in PNG. Data were drawn from the 2016-2018 PNG
- Demographic and Health Survey (DHS). A total of 1,362 young men were included in the
- study. A multivariable logistic regression analysis using the complex sampling technique was
- used to determine predictors of not testing for HIV. Results were reported as adjusted Odds
- 20 Ratios (AOR) with 95% Confidence Intervals (CI). The prevalence of not testing for HIV
- 21 among young men was 82.7%. Young men who were never married (AOR 1.88; 95% CI:
- 22 1.19–2.96), did not own a mobile phone (AOR 1.79; 95% CI: 1.17–2.77), had not paid anyone
- 23 for sex (AOR 2.82; 95% CI: 1.29-6.14), and had no STIs (AOR 1.97; 95% CI: 1.00-3.85) had
- 24 higher odds of not testing for HIV. The odds of not testing for HIV remained lower among
- young men who did not always use a condom during sex (AOR 0.62; 95% CI: 0.39–0.96). HIV
- testing among young men in this study was much lower, suggesting an urgent need to adopt
- 27 novel prevention approaches to address this shortfall. Furthermore, youth-oriented health
- services should be prioritized with a focus on improving HIV knowledge, risk reduction, and
- behaviour change among young men in this setting.

Keywords: HIV, HIV testing, STIs, Young people, Papua New Guinea

Introduction

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Globally, significant progress has been made in efforts to address the burden of the human immunodeficiency virus (HIV), leading to a 32% reduction in new infections since 2010 [1]. At the same time, there was a 46% decrease in new HIV infections among young people aged 15–24 years [2]. Despite the remarkable progress, HIV continues to have a significant impact on this population, with new infection rates remaining high and health disparities becoming more evident [3,4]. Two out of every seven new HIV infections in 2019 were among young people [2], contributing to an estimated 36% of new HIV infections globally [5]. In the Asia-Pacific region, an estimated 63,000 young people were living with HIV in 2021, contributing to 26% of new HIV infections, with young men being twice as likely to acquire HIV as young women [6]. In addition, about 35% of young females and 65% of young males in the region were newly infected with HIV, despite being credited with some of the initial achievements in HIV prevention interventions [7]. HIV testing rates remain low among this population, with many unaware of their statuses, and those living with the virus exhibit low adherence to antiretroviral therapy (ART) [8–10], which is below reaching the ambitious goals of ART adherence [11]. Sexual risk behaviours such as having sex at an early age, having multiple sexual partners, having sex under the influence of alcohol or drugs, and having unprotected sex are welldocumented drivers for HIV and other STIs [12-14]. In addition, a lack of HIV knowledge and inconsistent condom use, especially among young people, significantly increase the risk of HIV transmission [15–17]. Efforts to increase knowledge of condom use and reduce HIV risks, as well as HIV testing, remain critical for young people. In particular, HIV testing is among the

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

cornerstones of most HIV prevention strategies, in which individuals can be educated about risky behaviours regarding the infection and offered an initial step into the continuum of care, as well as preventing transmission [18]. This aligns with the ambitious UNAIDS 95–95–95 target: 95% of all people living with HIV will know their actual status; 95% of people with diagnosed HIV infection will receive sustained antiretroviral therapy (ART); and 95% of all people receiving ART will have viral suppression [19]. Papua New Guinea (PNG) is one of the most linguistically diverse countries in the Western Pacific region and has the highest prevalence of HIV. In 2020, an estimated 55,000 people were living with HIV [20]. Among the general adult population with HIV in PNG, the incidence has been increasing among young people, with 27% of new infections occurring in 2020 [6]. Recent estimates suggest that HIV prevalence among young people in PNG stands at 0.2% and 0.4% for males and females, respectively [21]. Heterosexual sex remains the predominant mode of HIV transmission among the adult population in the country. Efforts to strengthen the availability and accessibility of HIV testing services as part of the National Strategic Plan for HIV and AIDS (Acquired Immunodeficiency Syndrome) have expanded over the years [22]. HIV testing, which includes risk reduction counselling that greatly influences one's perception of HIV acquisition and increases access to ART, has been shown to change HIV-related risk behaviours in PNG [23-25]. Despite commendable efforts to increase the availability of HIV testing and treatment services in all provinces of PNG, the current HIV counselling and testing rate, particularly among young people, falls within the national HIV strategic guidelines [22]. Their engagement further remains a challenge within the cascade of HIV services as well as access to sexual and reproductive health [26,27]. While understanding the drivers of HIV among this population remains multifaceted, the incidence and prevalence of HIV have been widely explored among the general adult population [28–32] and key populations [33–35]. Among young men, prior studies have found that their attitudes toward HIV and sex are designed through dominant sociocultural narratives and understandings, and these influence their perceptions about sexual health, including sexually transmitted infections (STIs) and HIV [36]. HIV transmission can be prevented by recognizing and addressing the risks and protective factors associated with it.

In PNG, the evidence on targeted HIV prevention programs for young people is limited.

Furthermore, the country has not reported nationally representative prevalence estimates or the distribution of young men who do not test for HIV. Such information would be important in developing targeted interventions and national-level policies for HIV prevention. The aim of this study was to estimate the prevalence of not testing for HIV and associated predictors

Methods

Study design and sample

among young men aged 15-24 years in PNG.

We used secondary data from the 2016–2018 PNGDHS, a cross-sectional two-stage cluster sampling study representative of the entire country, for analysis. The survey used the list of census units (CUs) from the 2011 PNG National Population and Housing Census as the sampling frame [37]. Stratification of the sample was achieved by two categories: urban and rural areas, resulting in 43 sampling strata except for the National Capital District, which has no rural areas. In each stratum, samples of CUs were arbitrarily selected in two stages: The first stage involved the selection of 800 CUs, which was done using probability proportional to CU size. In the second stage, 24 households from each cluster were systematically selected through probability sampling, which yielded a total sample size of 19,200 households. The

selected sample consisted of 17,505 households. Of the total number of households selected, 16,754 were occupied, and 16,021 were successfully interviewed (96% response rate) [38]. Data were collected using two sets of validated questionnaires: household and (male) individual questionnaires. The dataset was created to analyze the HIV testing variable by merging the relevant information from these two questionnaires. Of the 7,333 men (aged 15–49 years) who participated in the interviews, 1,362 young men (aged 15–24 years), with variables of interest were included in the study, as shown in Fig 1. Details on the sampling technique, training of the survey team, household selection, survey questionnaires, and validation procedures are available in the final report [39].

Fig 1. Flowchart of sample selection

Study Variables

The primary outcome variable of this study was "ever been tested for HIV?" and was coded as "0" for "no" or "1" for "yes." The explanatory variables in this study were selected based on literature and their relevance [40–42] and were divided into three categories: sociodemographic characteristics (such as age group, marital status, educational level, occupation, wealth index, region, and place of residence); HIV-related knowledge (such as having ever heard of AIDS or STIs, can get HIV from mosquito bites, and knowing about the mother-to-child transmission (MTCT) of HIV during birth and through breastfeeding); and HIV-related factors (such as the age of sexual debut, number of sexual partners, had ever paid for sex, always use a condom, know a testing facility, ever tested for HIV, and had any STI in the last 12 months). Other health-related risk behaviours measured included exposure to mass media (such as newspapers, magazines, radio, and television) and mobile phone ownership.

Statistical analysis

Our analyses were restricted to participants with complete data for the variables of interest. We performed descriptive statistics and bivariate analysis to explore the characteristics of the sample, which were presented as frequencies (the actual number of participants) and proportions (weighted %). Then we conducted a bivariate analysis to examine associations between the outcome variable (ever been tested for HIV) and selected explanatory variables. Variables with a significant p-value ≤ 0.05 were included in the multivariable logistic regression model. Finally, we performed a multivariable logistic regression analysis to determine predictors of not testing for HIV after adjusting for potential confounders. Complex data analysis techniques were employed to account for the multistage sampling used in the DHS. Adjusted odds ratios (AOR) with 95% confidence intervals (CI) were reported. All

statistical analyses were performed using IBM Statistical Package for the Social Sciences

(SPSS), Version 26.0 (Armonk, NY: IBM Corp).

This work is reported under the STROBE guidelines for cross-sectional studies (included as

S1 File) [43].

Ethical Considerations

The Institutional Review Board of ICF International and the PNG Medical Advisory Committee

(MRAC), the National Department of Health, examined and approved the 2016–2018

PNGDHS protocol. Informed consent was obtained from all participants before the survey

was conducted. The datasets were de-identified, with no identifiable information on the survey

participants when accessed for analysis. This study received a letter of approval from the

DHS program.

Results

Characteristics of the study population

Table 1 presents the participants' characteristics. Overall, 1,362 sexually active young men aged 15–24 years were enrolled in the study. More than three-quarters (82%) of young men lived in rural areas, and 73.7% of them were never married. Less than half of them had primary (44.3%) and secondary (45.4%) education, and 62% were not working at the time of the survey. Approximately 72% of the young men read newspapers or magazines and listened to the radio, and 57.8% owned mobile phones. Regarding HIV knowledge, almost all the young men had heard of acquired immunodeficiency syndrome (AIDS) (92.7%) and STIs (94.3%), and 70.8% of them knew about a testing facility. More than half knew about the MTCT of HIV during birth and by breastfeeding (65% and 54.6%, respectively). The majority, 83.9%, of young men initiated sex before the age of 20, and 57.7% had multiple sexual

partners. Nearly one-third (27.7%) of young men do not always use condoms during sex.

Young men who reported paying anyone for sex or having STIs in the last 12 months

remained significantly low (5.1% and 5.3%, respectively).

159

160

161

162

Table 1. Characteristics of the study population (N = 1,362)

Variables	Frequency	(%)*
<u>Demographics</u>		
Age group (years) 15–19 20–24	414 948	(29.9) (70.1)
Marital status Never married Married Divorced/separated	1,011 321 30	(73.7) (24.3) (2.0)
Education No formal education Primary Secondary Tertiary	76 614 632 40	(5.8) (44.3) (45.4) (4.5)
Occupation (n = 1,361) Not working Working	881 480	(62.0) (38.0)
Wealth Index Poor Middle Rich	330 233 799	(29.3) (19.0) (51.7)
Residence Urban Rural	453 909	(18.0) (82.0)
Read newspaper/magazine (n = 1,348) No Yes	433 915	(28.4) (71.6)
Listen to radio (n = 1,355) No Yes	412 943	(28.3) (71.7)

Table 1. Characteristics of the study population (N = 1,362)

Variables	Frequency	(%)*
Owns a mobile phone (n = 1,360)		
No	628	(42.2)
Yes	732	(57.8)
HIV knowledge		
Ever heard of AIDS		
No	107	(7.3)
Yes	1,255	(92.7)
Ever heard of STI (n = 1,361)		
No	86	(5.7)
Yes	1,275	(94.3)
Know HIV testing facility ($n = 1,254$)		
No	349	(29.2)
Yes	905	(70.8)
Can get HIV from mosquito bites (n = 1,255)		(-)
No or don't know	970	(76.6)
Yes	285	(23.4)
MTCT during birth (n = 1,253)	470	(05.0)
No or don't know Yes	473 780	(35.0) (65.0)
	700	(65.0)
MTCT through breastfeeding (n = 1,251)	550	(AE A)
No or don't know Yes	552 699	(45.4) (54.6)
	000	(54.0)
HIV-related risk factors		
Age of sexual debut (years)	4 474	(00.0)
< 20 20 or more	1,171 191	(83.9) (16.1)
	191	(10.1)
Number of sexual partners (n = 1,358) 0–1	1,160	(95.3)
2 or more	1,160	(85.3) (14.7)
	.50	()
Paid for sex (n = 1,313) No	1,248	(94.9)
Yes	65	(5.1)
		` '

Table 1. Characteristics of the study population (N = 1,362)

Variables	Frequency	(%)*
Always use a condom (n = 1,249)		
No	354	(27.7)
Yes	895	(72.3)
Had any STIs (last 12 months) (n = 1,350)		
No or don't know	1,275	(94.7)
Yes	75	(5.3)
Ever tested for HIV		
No	1,103	(82.7)
Yes	259	(17.3)

^{*}Weighted percentage (%); MTCT – Mother-to-Child Transmission of HIV.

The prevalence of ever being tested for HIV

163

164

165

166

167

168

169

170171

The overall prevalence of having been tested for HIV among young men was 17.3% (95% CI: 0.15–0.19), whereas having not been tested was 82.7% (95% CI: 0.81–0.85), as reported in **Table 1**. Across the region, the prevalence of HIV testing remained low and differed significantly, ranging from 11% in the Momase region to 21.9% in the Highlands region, as shown in **Fig 2**.

Fig 2. The prevalence of ever tested for HIV among young men by region in PNG.

Bivariate analysis of ever been tested for HIV

Table 2 shows the association between demographic characteristics, HIV knowledge, related risk factors, and having ever been tested for HIV among young people in PNG. In the bivariate analysis, having not been tested for HIV remained higher among young men aged 20-24 (68.3%), never been married (75.6%), had a primary education (46.4%), not working (63.8%), and living in rural areas (84%). Furthermore, having not been tested for HIV was common among young men who read newspapers/magazines (69.5%), listened to the radio (70.1%), and owned a mobile phone (54.8%). Over half (52.7%) of those who knew about the MTCT of HIV through breastfeeding did not test for HIV. The number of sexual partners (p = 0.003), paying anyone for sex (p = 0.001), always using a condom during sex (p = 0.018), and having any STIs in the last 12 months (p < 0.001) were all statistically significant variables in HIV-related risk factors.

Table 2. Bivariate analysis of ever been tested for HIV among young men (15-24 years) in PNG (N = 1,362)

	HIV testing		
Variables	No, n (%)*	Yes, n (%)*	p-value
Demographic factors			
Age group (years)			0.004
15–19	355 (31.7)	59 (21.9)	
20–24	748 (68.3)	200 (78.1)	
Marital status			0.003
Never married	838 (75.6)	173 (64.6)	
Married	243 (22.6)	78 (32.3)	
Divorced/separated	22 (1.8)	8 (3.1)	
Education			< 0.001
No formal education	70 (6.6)	6 (2.2)	
Primary	533 (46.4)	81 (33.9)	
Secondary	477 (42.7)	155 (58.0)	
College	23 (4.3)	17 (5.8)	

Table 2. Bivariate analysis of ever been tested for HIV among young men (15-24 years) in PNG (N = 1,362)

HIV testing			
Variables	No, <i>n</i> (%)*	Yes, n (%)*	p-value
Occupation (n = 1,361)			0.004
Not working	735 (63.8)	146 (53.6)	
Working	367 (36.2)	113 (46.4)	
Wealth Index			< 0.001
Poor	298 (31.7)	32 (17.9)	
Middle	193 (18.8)	40 (20.2)	
Rich	612 (49.5)	187 (61.9)	
Residence			< 0.001
Urban	339 (16.0)	114 (27.2)	
Rural	764 (84.0)	145 (72.8)	
Read newspaper/magazine (n = 1,348)			< 0.001
No	381 (30.5)	52 (18.8)	
Yes	708 (69.5)	207 (81.3)	
Listen to radio (n = 1,355)			0.008
No	353 (29.9)	59 (21.1)	
Yes	745 (70.1)	198 (78.9)	
Own a mobile phone (n = 1,360)			< 0.001
No	549 (45.2)	79 (27.8)	
Yes	552 (54.8)	180 (72.2)	
HIV knowledge			
Can get HIV from mosquito bites (n = 1,255))		0.183
No or don't know	783 (77.4)	187 (73.2)	
Yes	213 (22.6)	72 (26.8)	
MTCT during birth (n = 1,253)			0.187
No or don't know	390 (34.2)	83 (38.8)	0
Yes	604 (65.8)	176 (61.2)	
MTCT by breastfeeding (n = 1,251)	,	, ,	0.005
No or don't know	463 (47.3)	89 (36.9)	0.000
Yes	531 (52.7)	168 (63.1)	
	` '	,	

Table 2. Bivariate analysis of ever been tested for HIV among young men (15-24 years) in PNG (N = 1,362)

	HIV testing		
Variables	No, <i>n</i> (%)*	Yes, <i>n</i> (%)*	p-value
HIV-related factors			
Age of sexual debut (years) < 20 20 or more	946 (83.5) 157 (16.5)	225 (85.7) 34 (14.3)	0.411
Number of sexual partners (n = 1,358) 0–1 2 or more	946 (86.7) 153 (13.3)	214 (78.9) 45 (21.1)	0.003
Paid for sex (n = 1,313) No Yes	1,022 (96.3) 41 (3.7)	226 (94.9) 24 (5.1)	< 0.001
Always use a condom (n = 1,249) No Yes	271 (26.2) 719 (73.8)	83 (34.1) 176 (65.9)	0.018
Had any STIs (last 12 months) (n = 1,350) No or don't know Yes	1,041 (95.8) 50 (4.2)	234 (89.7) 25 (10.3)	< 0.001

^{*}Weighted percentage (%); MTCT – Mother-to-Child Transmission of HIV; Chi-square (p ≤ 0.05).

Multivariable analysis of predictors of not testing for HIV

Table 3 presents adjusted predictors of not testing for HIV. Marital status, mobile phone ownership, having ever paid anyone for sex, always using a condom during sex, and having any STI in the last 12 months were significant predictors of not testing. In the multivariable analysis, young men who were never married (AOR 1.88; 95% CI: 1.19–2.96), who did not own a mobile phone (AOR 1.79; 95% CI: 1.17–2.77), who had not paid anyone for sex (AOR 2.82; 95% CI: 1.29–6.14), and who had no STIs or did not know (AOR 1.97; 95% CI: 1.00–3.85) had higher odds of not being tested for HIV. In contrast, young men who did not always

use a condom during sex (AOR 0.62; 95% CI: 0.39–0.96) had lower odds of not being tested for HIV.

194

195

196

Table 3. Multivariable logistic regression analysis of predictors of not testing for HIV among young men (15-24 years) in PNG (N = 1,362)

Variables	AOR (95% CI)	p-value
Age group (years)		0.413
15–19 20–24	1.24 (0.74–2.06) 1	
Marital status Married Never married Divorced/separated	1 1.88 (1.19–2.96) 0.97 (0.29–3.24)	0.017
Education No formal education Primary High/Secondary College/Tertiary	1.15 (0.25–5.31) 0.92 (0.33–2.55) 0.79 (0.28–2.22) 1	0.882
Occupation Not working Working	1.40 (0.89–2.21) 1	0.148
Wealth Index Poor Middle Rich	1.47 (0.78–2.79) 0.82 (0.42–1.61) 1	0.234
Residence Urban Rural	1 1.60 (0.95–2.69)	0.077
Read a newspaper/magazine No Yes	1.32 (0.79–2.20) 1	0.287
Listen to radio No Yes	0.99 (0.61–1.62) 1	0.978
Owns a mobile phone No Yes	1.79 (1.17–2.77) 1	800.0
MTCT by breastfeeding No or don't know Yes	1.45 (0.95–2.22) 1	0.087

Table 3. Multivariable logistic regression analysis of predictors of not testing for HIV among young men (15-24 years) in PNG (N = 1,362)

Variables	AOR (95% CI)	p-value
Number of sexual partners 0–1 2 or more	1.41 (0.85–2.33) 1	0.184
Paid for sex No Yes	2.82 (1.29–6.14) 1	0.009
Always use a condom No Yes	0.62 (0.39–0.96) 1	0.033
Had any STI (last 12 months) No or don't know Yes	1.97 (1.00–3.85) 1	0.049

^{1 –} Reference Category; AOR – Adjusted Odds Ratio; CI – Confidence Interval; MTCT – Mother-to-Child Transmission of HIV.

Discussion

This study assessed the prevalence and predictors of not testing for HIV among young men aged 15–24 years in PNG. Our study found a statistically significant association between marital status, mobile phone ownership, having paid anyone for sex, always using a condom during sex, and having any STI and not testing for HIV among young men (p < 0.05). The prevalence of testing for HIV among young men in this study was much lower (17.3%) compared to those who were not tested. In addition, the prevalence of not testing for HIV differed significantly by region, ranging from 78.1% in the Highlands to 89% in the Momase. These results were consistent with the literature [40]. The difference in HIV testing could be interpreted in the context of young men's risk behaviours and whether HIV services are accessible in each region. Given the high HIV prevalence (0.9%) in the country [20], the low

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

HIV testing rates among this group are a concern. This study offers insights into HIV testing among young men living in a high HIV prevalence setting. Our study found a significantly lower prevalence of HIV testing among young men than in studies conducted in Nigeria [40] and the Gambia [41]; however, these findings contributed to a better understanding of the current HIV prevention challenges among young men in PNG. The low rates of HIV testing found in this study show only a minimal decrease in the HIV testing uptake in this age group when compared to the country's recent data [39]. While the reasons are unclear, there is growing evidence that low uptake of HIV testing in this population is impeded by the inaccessibility of HIV services, confidentiality and disclosure issues, stigma, the perceived risk of sexual exposure, poor social support, and the attitudes of health workers [44–47]. This provides a plausible explanation for the low uptake of HIV testing, with increased HIV vulnerability suggesting possible transmission among the study population. Young people, who remain most vulnerable to HIV acquisition and transmission, seem to have minimal attention [3,12]. This finding is still implausible given UNAIDS' ambitious goals to end the HIV epidemic by 2030 [11]. Given the importance of timely HIV diagnosis, treatment, and retention in care [48,49], there is a need for specific policy frameworks that focus on strengthening HIV prevention while simultaneously addressing social and contextual barriers to access and uptake of HIV among young men in PNG. While education was not statistically related to not testing for HIV in our study, in similar studies from South Africa [10] and The Gambia [41], educational attainment and HIV knowledge were found to be significant predictors of HIV testing among young people. We further found that the odds of not testing remained high among young men with low educational attainment and unemployment. This association may imply that, as previously reported [40,41,50], a lack of HIV knowledge and a low wealth index were recognized as

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

barriers to HIV prevention, care, and treatment efforts, as well as engagement in risky sexual behaviours. Such low rates of testing and lack of HIV knowledge increase the possibility that this group is unaware of their HIV-positive statuses and may, therefore, accidentally transmit HIV to others. However, there is increasing evidence that higher education attainment and HIV knowledge are potential proxy measures for HIV prevention [51,52]. Knowledge of HIV and disclosure status remains a critical step in the HIV prevention cascade, particularly among young people, as it has been associated with reducing risky behaviours among the most at-risk population, including those who have HIV [51,53]. As the availability of HIV testing services expands to meet the demand for HIV incidence reduction in PNG, more alternative HIV testing models are required to increase testing for HIV among young men. Our study suggests that effective, innovative pedagogy for sexual and reproductive health education and youth-friendly initiatives are required to stimulate positive sexual behaviour and increase the uptake of HIV testing in this population. Our findings revealed that significant proportions of young men in rural areas were not tested for HIV, a finding comparable to studies in other countries [40,41]. It is not surprising that access to and utilization of HIV testing services in rural areas were low in this study, which could be construed in terms of their diffusion, including societal norms and perceptions about HIV. Recent studies showed that HIV testing options in rural areas are frequently impeded by stigma and disclosure issues, including limited access, under-resourcing, and the cost of services that may lead to delays in testing [46,54,55], an area that needs further investigation in PNG's context. The WHO guidelines have highlighted the need for strategic and novel approaches to implement HIV testing services for hard-to-reach populations, such as selftesting and community-based HIV testing [56]. These strategies are suggested as having the potential to increase testing uptake, especially among young people who would not normally

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

access HIV testing services [44,57]. Increasing self-testing and mobile community-based HIV testing should continue to be expanded as complementary approaches, especially in rural areas where HIV testing is low and health disparities are more pronounced. Regarding mobile phone ownership, more than half (57.8%) of young men who owned mobile phones were not tested for HIV in this study. Our study did not explore the relationships between mobile phones and HIV testing. However, mobile phones in healthcare have shown promising results in a hard-to-reach population for HIV prevention [58–60]. Mobile phones can be used as mediums for preventing HIV in young people and serving as reminders for health action, reinforcing sexual risk reduction skills, increasing HIV knowledge, and linking them to HIV testing [58,60]. Studies evaluating the mobile phone's efficacy in health care have shown that it increases HIV testing, condom use, and HIV/STI knowledge among young people [61]. Furthermore, mobile phones could be feasible for addressing complex intersecting barriers in the HIV continuum to improve optimal outcomes for young men. Recent evidence suggests that mobile phone technologies can potentially help overcome barriers associated with low HIV testing uptake among young men, including stigmatization, discrimination, fear of refusal, lack of privacy and confidentiality, and embarrassment in seeking sexual health services, by providing safe, cost-effective, and tailored prevention interventions [58,62]. Our study underscores the urgency for innovative strategies to reach and deliver HIV prevention services to young people—a most at-risk population with suboptimal engagement in HIV prevention programs. This study further highlights the significance of a formative evaluation concerning the feasibility and acceptability of mobile phone-based HIV prevention interventions. In this study, we found that having paid anyone for sex was a statistically significant predictor of not testing for HIV. Those who did not pay for sex were almost three times (AOR 2.83)

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

more likely to not be tested for HIV compared to their counterparts. This finding is different from another study, which reported that having paid for sex was associated with low HIV testing rates (26.4%) [63]. Young men who participate in high-risk sexual activities may not accurately perceive their HIV risk; therefore, they report low rates of HIV testing and do not consistently use condoms during sex. Risk perception issues may as well explain the interesting finding that young men who were sexually active but had not paid for sex reported statistically significant rates of not testing for HIV. The fact that young men are engaging in risky behaviours such as paying for sex may indicate that their overall perception of risk is different from that of those who are not participating in these behaviours [12,52]. Additionally, the higher odds of not being tested for HIV among this group compared to those who paid for sex could be due to a fear of disclosing their social identities (i.e., male sex workers or men who have sex with men), experiencing stigma and discrimination, including accessing HIV treatment and care if HIV-positive, as previously reported in studies [50,64]. This is one possible explanation, which is why they masked their social identities during the survey. While the data in this study did not identify young men as key populations, there is empirical evidence that they engage in transactional sex [4,6,63]. In PNG, transactional sex is unlawful, but the practice is prevalent [35], and this, along with other structural barriers, may have limited young men's access to HIV testing services. Innovative risk reduction and behaviour change interventions are needed to address this gap in this population. Our study showed that less than a quarter (26.2%) of young men do not always use condoms during sex compared to their counterparts. Our findings are consistent with those from Brazil [14] and Indonesia [16], showing low rates of condom use among young people (22.8% and 27.4%, respectively). Low and sporadic use of condoms has been linked with poor knowledge of HIV and sexual health education, which are potential risk factors for HIV transmission

[13,15]. The high proportion of young men with primary education in this study suggests that this could be one possible explanation for low condom use. Another reason accounting for this finding could be the result of the multifaceted array of individual- and interpersonal-level influences on condom use among young people. There is evidence that unequal gender and social norms, peer influences, negative perceptions about condoms and their use, and poor youth-friendly sexual and reproductive health services have been associated with low and inconsistent condom use among young people [16,65]. However, consistent condom use has been acknowledged as one of the most fundamental preventative measures against HIV acquisition and transmission [13]. In other recent studies, rates of consistent condom use have been shown to increase with higher levels of education and comprehensive sexual health education [15,17,66]. Approaches aimed at improving consistent condom use among young men should consider multi-level influences, including attitudes and decisions around condom use. Our findings suggest that comprehensive information, education, and communication on condom self-efficacy could increase condom use and attitudes toward its use among this population.

Study strengths and limitations

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

The findings reported in this study have some limitations. First, results from this study should be interpreted with caution as it was restricted to young people (aged 15–24 years) only, limiting the generalizability to a wider population. Second, data discrepancies from the selected samples may be a limitation since secondary data was utilized for this study. For instance, there was a wide variation in the selected samples, more so in females than males. Third, considering the age of the study sample, questions relating to their sexual behaviours may have resulted in recall bias. Fourth, discussions around the subject of sexuality are sensitive and perceived as taboo in some societies, which may have led to underreporting or

overreporting. Nevertheless, the findings of the study are based on nationally representative survey data, which provided insights on predictors of not testing for HIV among young men. The study offers significant information for optimizing HIV prevention programs that target young people in the country.

Conclusion

Our study found that HIV testing among young men remained significantly low in PNG, suggesting an unmet need for targeted HIV prevention programs. Young men were less likely to get tested for HIV if they were unmarried, had no formal education, were unemployed, were from rural areas, did not have mobile phones, did not pay for sex, did not always use a condom during sex, and did not know they had any STIs. Efforts to increase HIV testing should include novel prevention approaches to supplement the current national HIV prevention services and address this shortfall. Improving access to HIV testing services, particularly for rural young men, may further increase self-testing uptake and their acceptance of treatment and care. Additionally, youth-oriented health services should be prioritized with a focus on improving HIV knowledge, risk reduction, and behaviour change among young men in this setting.

Supporting information

The STROBE guidelines for cross-sectional studies (included as S1 File).

Declarations

Authors' contributions

MKM: Conceived and designed the experiments; Performed the analysis and interpreted the data; Wrote the manuscript. The author read and approved the final manuscript.

Funding

352

355

359

361

364

- 353 This research received no specific grant from any funding agency in the public, commercial,
- 354 or not-for-profit sectors.

Availability of Data and Materials

- The 2016–2016 PNGDHS dataset used in this study is not publicly available since the author
- received a data access letter from the DHS specific to the project, but is available from the
- 358 DHS team upon request at https://dhsprogram.com/

Conflict of Interest

The author declares that there are no competing interests.

Acknowledgments

- I would like to thank the Measure DHS program and its partners for permitting me to analyze
- 363 the 2016–2018 PNGDHS data.

References

- 365 [1] UNAIDS. Global HIV statistics: Fact sheet 2022 2022.
- 366 [2] UNAIDS. Young people and HIV. Geneva, Switzerland: UNAIDS; 2021.
- Koenig LJ, Hoyer D, Purcell DW, Zaza S, Mermin J. Young People and HIV: A Call to Action. Am J Public Health 2016;106:402–5. https://doi.org/10.2105/AJPH.2015.302979.
- Bekker L-G, Hosek S. HIV and adolescents: focus on young key populations. J Int AIDS Soc 2015;18:20076. https://doi.org/10.7448/IAS.18.2.20076.
- Khalifa A, Stover J, Mahy M, Idele P, Porth T, Lwamba C. Demographic change and HIV epidemic projections to 2050 for adolescents and young people aged 15-24. Null 2019;12:1662685. https://doi.org/10.1080/16549716.2019.1662685.
- UNAIDS. Putting young key populations first HIV and young people from key populations in the Asia and Pacific region 2022. Geneva, Switzerland: 2022.
- UNICEF. Adolescent HIV prevention: Turning the tide against AIDS will require more concentrated focus on adolescents and young people 2020.
- https://data.unicef.org/topic/hivaids/adolescents-young-people/.

- Ajayi Al, Awopegba OE, Adeagbo OA, Ushie BA. Low coverage of HIV testing among adolescents and young adults in Nigeria: Implication for achieving the UNAIDS first 95.

 PLOS ONE 2020;15:e0233368. https://doi.org/10.1371/journal.pone.0233368.
- [9] Kim S-H, Gerver SM, Fidler S, Ward H. Adherence to antiretroviral therapy in
 adolescents living with HIV: systematic review and meta-analysis. AIDS 2014;28:1945–
 56. https://doi.org/10.1097/QAD.00000000000316.
- [10] Peltzer K, Matseke G. Determinants of HIV testing among young people aged 18 24
 years in South Africa. Afr Health Sci 2013;13:1012–20.
 https://doi.org/10.4314/ahs.v13i4.22.
- [11] Wong VJ, Murray KR, Phelps BR, Vermund SH, McCarraher DR. Adolescents, young people, and the 90-90-90 goals: a call to improve HIV testing and linkage to treatment.
 AIDS 2017;31 Suppl 3:S191–4. https://doi.org/10.1097/QAD.000000000001539.
- [12] Manu A, Ogum-Alangea D, Azilaku JC, Anaba EA, Torpey K. Risky sexual behaviours
 and HIV testing among young people in Ghana: evidence from the 2017/2018 Multiple
 Indicator Cluster Survey. Reproductive Health 2022;19:125.
 https://doi.org/10.1186/s12978-022-01439-1.
- [13] Mhlongo S, Dietrich J, Otwombe KN, Robertson G, Coates TJ, Gray G. Factors
 Associated with Not Testing For HIV and Consistent Condom Use among Men in
 Soweto, South Africa. PLOS ONE 2013;8:e62637.
 https://doi.org/10.1371/journal.pone.0062637.
- [14] Felisbino-Mendes MS, Araújo FG, Oliveira LVA, Vasconcelos NM de, Vieira MLFP, Malta
 DC. Sexual behaviors and condom use in the Brazilian population: analysis of the
 National Health Survey, 2019. Rev Bras Epidemiol 2021;24:e210018.
 https://doi.org/10.1590/1980-549720210018.supl.2.
- [15] Bolarinwa OA, Ajayi KV, Sah RK. Association between knowledge of Human
 Immunodeficiency Virus transmission and consistent condom use among sexually active
 men in Nigeria: An analysis of 2018 Nigeria Demographic Health Survey. PLOS Glob
 Public Health 2022;2:e0000223. https://doi.org/10.1371/journal.pgph.0000223.
- [16] Putra IGNE, Astuti D, Widyastari DA, Phuengsamran D. Prevalence and determinants of
 condom use among male adolescents in Indonesia 2021;33.
 https://doi.org/10.1515/ijamh-2018-0141.
- [17] Finigan-Carr NM, Craddock JB, Johnson T. Predictors of condom use among system involved youth: The importance of Sex Ed. Children and Youth Services Review
 2021;127:106130. https://doi.org/10.1016/j.childyouth.2021.106130.
- 413 [18] World Health Organization. Consolidated guidelines on HIV testing services, 2019 2020.
- [19] UNAIDS. Understanding Fast-Track: Accelerating action to end the AIDS Epidemic by 2030. Geneva, Switzerland: 2015.
- [20] UNAIDS. UNAIDS Data 2021. Geneva, Switzerland: UNAIDS; 2021.

- [21] UNAIDS. Country Factsheet: HIV and AIDS Estimates 2021. Country: Papua New Guinea 2022. https://www.unaids.org/en/regionscountries/countries/papuanewguinea.
- [22] NACS. Papua New Guinea National STI and HIV Strategy 2018-2022. Port Moresby,
 Papua New Guinea: 2018.
- [23] Gare J, Kelly-Hanku A, Ryan CE, David M, Kaima P, Imara U, et al. Factors Influencing Antiretroviral Adherence and Virological Outcomes in People Living with HIV in the Highlands of Papua New Guinea. PLoS One 2015;10:e0134918–e0134918. https://doi.org/10.1371/journal.pone.0134918.
- [24] Man WYN, Kelly A, Worth H, Frankland A, Shih P, Kupul M, et al. Sexual risk behaviour,
 marriage and ART: a study of HIV-positive people in Papua New Guinea. AIDS
 Research and Therapy 2013;10:17. https://doi.org/10.1186/1742-6405-10-17.
- 428 [25] Worth H. HIV Prevention in Papua New Guinea: Is It Working or Not? World Journal of 429 AIDS 2012;2:117.
- [26] Baigry MI, Ray R, Lindsay D, Kelly-Hanku A, Redman-MacLaren M. Barriers and enablers to young people accessing sexual and reproductive health services in Pacific Island Countries and Territories: A scoping review. PLOS ONE 2023;18:e0280667. https://doi.org/10.1371/journal.pone.0280667.
- [27] Gray N, Azzopardi P, Kennedy E, Willersdorf E, Creati M. Improving Adolescent
 Reproductive Health in Asia and the Pacific: Do We Have the Data? A Review of DHS
 and MICS Surveys in Nine Countries. Asia Pac J Public Health 2013;25:134–44.
 https://doi.org/10.1177/1010539511417423.
- [28] Kelly-Hanku A, Nightingale CE, Pham MD, Mek A, Homiehombo P, Bagita M, et al. Loss to follow up of pregnant women with HIV and infant HIV outcomes in the prevention of maternal to child transmission of HIV programme in two high-burden provinces in Papua New Guinea: a retrospective clinical audit. BMJ Open 2020;10:e038311.
 https://doi.org/10.1136/bmjopen-2020-038311.
- 443 [29] Maviso M. Sociodemographic characteristics of people tested HIV-positive by notifying 444 testing facilities in Papua New Guinea, 2010-2014: A descriptive analysis. Papua New 445 Guinea Medical Journal 2020;63:132–43.
- [30] Persson A, Kelly-Hanku A, Mek A, Mitchell E, Nake Trumb R, Worth H, et al. Polygyny,
 Serodiscordance and HIV Prevention in Papua New Guinea: A Qualitative Exploration of
 Diverse Configurations. Null 2020;21:248–63.
 https://doi.org/10.1080/14442213.2020.1758202.
- 450 [31] Persson A, Kelly-Hanku A, Mek A, Mitchell E, Nake Trumb R, Worth H, et al. Making
 451 Sense of Serodiscordance: Pathways and Aftermaths of HIV Testing among Couples
 452 with Mixed HIV Status in Papua New Guinea. The Asia Pacific Journal of Anthropology
 453 2021;22:298–314. https://doi.org/10.1080/14442213.2021.1942184.

- 454 [32] Vallely A, Ryan CE, Allen J, Sauk JC, Simbiken CS, Wapling J, et al. High prevalence 455 and incidence of HIV, sexually transmissible infections and penile foreskin cutting among 456 sexual health clinic attendees in Papua New Guinea. Sex Health 2014;11:58–66.
- [33] Hakim AJ, Coy K, Badman SG, Willie B, Narokobi R, Gabuzzi J, et al. One size does not
 fit all: HIV prevalence and correlates of risk for men who have sex with men, transgender
 women in multiple cities in Papua New Guinea. BMC Public Health 2019;19:623.
 https://doi.org/10.1186/s12889-019-6942-7.
- [34] Kelly-Hanku A, Willie B, Weikum D, Boli Neo R, Kupul M, Coy K. Kauntim mi tu: Multi-site summary report from the key population integrated bio-behavioural survey, Papua New Guinea. Goroka: Papua New Guinea Institute of Medical Research and Kirby Institute, UNSW Sydney 2018.
- [35] Weikum D, Kelly-Hanku A, Hou P, Kupul M, Amos-Kuma A, Badman SG, et al. Kuantim mi tu ("Count me too"): Using Multiple Methods to Estimate the Number of Female Sex Workers, Men Who Have Sex With Men, and Transgender Women in Papua New Guinea in 2016 and 2017. JMIR Public Health Surveill 2019;5:e11285.
 https://doi.org/10.2196/11285.
- [36] Kelly A, Akuani F, Kepa B, Pirpir L, Mek A, Kupul M, et al. Young people's attitudes towards sex and HIV in the Eastern Highlands of Papua New Guinea. Monograph 2008;1.
- [37] National Statistical Office [PNG]. 2011 National Population and Housing Census of Papua New Guinea. Port Moresby, Papua New Guinea: 2013.
- ISS National Statistical Office [PNG], ICF. Papua New Guinea Demographic and Health Survey 2016-18. Port Moresby, Papua New Guinea & Rockville, Maryland, USA: NSO & ICF; 2019.
- Igent 19 National Statistical Office (NSO) [Papua New Guinea], ICF. Papua New Guinea Demographic and Health Survey 2016-18. Port Moresby, Papua New Guinea, and Rockville, Maryland, USA: NSO and ICF; 2019.
- [40] Ajayi AI, Awopegba OE, Adeagbo OA, Ushie BA. Low coverage of HIV testing among adolescents and young adults in Nigeria: Implication for achieving the UNAIDS first 95. PLOS ONE 2020;15:e0233368. https://doi.org/10.1371/journal.pone.0233368.
- [41] Sonko I, Chung M-H, Hou W-H, Chen W-T, Chang P-C. Predictors of HIV testing among
 youth aged 15–24 years in The Gambia. PLOS ONE 2022;17:e0263720.
 https://doi.org/10.1371/journal.pone.0263720.
- 487 [42] Asaolu IO, Gunn JK, Center KE, Koss MP, Iwelunmor JI, Ehiri JE. Predictors of HIV
 488 Testing among Youth in Sub-Saharan Africa: A Cross-Sectional Study. PLOS ONE
 489 2016;11:e0164052. https://doi.org/10.1371/journal.pone.0164052.
- [43] Cuschieri S. The STROBE guidelines. Saudi Journal of Anaesthesia 2019;13:S31.
 https://doi.org/10.4103%2Fsja.SJA_543_18.

- [44] Indravudh PP, Sibanda EL, d'Elbée M, Kumwenda MK, Ringwald B, Maringwa G, et al. 'I
 will choose when to test, where I want to test': investigating young people's preferences
 for HIV self-testing in Malawi and Zimbabwe. AIDS 2017;31.
- [45] Sam-Agudu NA, Folayan MO, Ezeanolue EE. Seeking wider access to HIV testing for
 adolescents in sub-Saharan Africa. Pediatric Research 2016;79:838–45.
 https://doi.org/10.1038/pr.2016.28.
- [46] Knight R, Small W, Shoveller JA. HIV stigma and the experiences of young men with
 voluntary and routine HIV testing. Sociology of Health & Illness 2016;38:153–67.
 https://doi.org/10.1111/1467-9566.12345.
- [47] Nall A, Chenneville T, Rodriguez LM, O'Brien JL. Factors Affecting HIV Testing among
 Youth in Kenya. Int J Environ Res Public Health 2019;16:1450.
 https://doi.org/10.3390/ijerph16081450.
- [48] Hosek S, Pettifor A. HIV Prevention Interventions for Adolescents. Curr HIV/AIDS Rep 2019;16:120–8. https://doi.org/10.1007/s11904-019-00431-y.
- [49] Pettifor A, Stoner M, Pike C, Bekker L-G. Adolescent lives matter: preventing HIV in adolescents. Curr Opin HIV AIDS 2018;13:265–73.
 https://doi.org/10.1097/COH.000000000000453.
- [50] Sharma S, Malone S, Levy M, Reast J, Little K, Hasen N, et al. Understanding barriers to
 HIV testing and treatment: a study of young men and healthcare providers in KwaZulu Natal and Mpumalanga. South African Health Review 2019;2019:125–32.
- [51] Faust L, Yaya S. The effect of HIV educational interventions on HIV-related knowledge,
 condom use, and HIV incidence in sub-Saharan Africa: a systematic review and meta analysis. BMC Public Health 2018;18:1254. https://doi.org/10.1186/s12889-018-6178-y.
- 515 [52] Ajide K, Balogun F. Knowledge of HIV and intention to engage in risky sexual behaviour 516 and practices among senior school adolescents in Ibadan, Nigeria. Archives of Basic and 517 Applied Medicine 2018;6:3.
- [53] Tiwari R, Wang J, Han H, Kalu N, Sims LB, Katz DA, et al. Sexual behaviour change
 following HIV testing services: a systematic review and meta-analysis. Journal of the
 International AIDS Society 2020;23:e25635. https://doi.org/10.1002/jia2.25635.
- [54] Sanga ES, Mukumbang FC, Mushi AK, Lerebo W, Zarowsky C. Understanding factors
 influencing linkage to HIV care in a rural setting, Mbeya, Tanzania: qualitative findings of
 a mixed methods study. BMC Public Health 2019;19:383.
 https://doi.org/10.1186/s12889-019-6691-7.
- [55] Sande L, Maheswaran H, Mangenah C, Mwenge L, Indravudh P, Mkandawire P, et al.
 Costs of accessing HIV testing services among rural Malawi communities. AIDS Care
 2018;30:27–36. https://doi.org/10.1080/09540121.2018.1479032.

- [56] World Health Organization. Guidelines on HIV self-testing and partner notification:
- supplement to consolidated guidelines on HIV testing services. Geneva, Switzerland:
 World Health Organization; 2016.
- [57] Wilson KS, Mugo C, Katz DA, Manyeki V, Mungwala C, Otiso L, et al. High Acceptance
 and Completion of HIV Self-testing Among Diverse Populations of Young People in
 Kenya Using a Community-Based Distribution Strategy. AIDS and Behavior
 2022;26:964–74. https://doi.org/10.1007/s10461-021-03451-1.
- 535 [58] Feroz AS, Ali NA, Khoja A, Asad A, Saleem S. Using mobile phones to improve young 536 people sexual and reproductive health in low and middle-income countries: a systematic 537 review to identify barriers, facilitators, and range of mHealth solutions. Reprod Health 538 2021;18:9–9. https://doi.org/10.1186/s12978-020-01059-7.
- [59] Garg PR, Uppal L, Mehra S, Mehra D. Mobile Health App for Self-Learning on HIV
 Prevention Knowledge and Services Among a Young Indonesian Key Population: Cohort
 Study. JMIR Mhealth Uhealth 2020;8:e17646-e17646. https://doi.org/10.2196/17646.
- [60] Jennings Mayo-Wilson L, Kang B-A, Mathai M, Mak'anyengo MO, Ssewamala FM.
 Mobile phone access, willingness, and usage for HIV-related services among young
 adults living in informal urban settlements in Kenya: A cross-sectional analysis.
 International Journal of Medical Informatics 2022;161:104728.
 https://doi.org/10.1016/j.ijmedinf.2022.104728.
- [61] Ippoliti NB, L'Engle K. Meet us on the phone: mobile phone programs for adolescent sexual and reproductive health in low-to-middle income countries. Reproductive Health 2017;14:11. https://doi.org/10.1186/s12978-016-0276-z.
- [62] Visser M, Kotze M, van Rensburg MJ. An mHealth HIV prevention programme for youth:
 lessons learned from the iloveLife.mobi programme in South Africa. AIDS Care
 2020;32:148–54. https://doi.org/10.1080/09540121.2020.1742866.
- [63] Dizechi S, Brody C, Tuot S, Chhea C, Saphonn V, Yung K, et al. Youth paying for sex:
 what are the associated factors? Findings from a cross-sectional study in Cambodia.
 BMC Public Health 2018;18:113. https://doi.org/10.1186/s12889-017-4999-8.
- [64] Pantelic M, Casale M, Cluver L, Toska E, Moshabela M. Multiple forms of discrimination and internalized stigma compromise retention in HIV care among adolescents: findings from a South African cohort. J Intern AIDS Soc 2020;23.
 https://doi.org/10.1002/jia2.25488.
- [65] Aventin Á, Gordon S, Laurenzi C, Rabie S, Tomlinson M, Lohan M, et al. Adolescent condom use in Southern Africa: narrative systematic review and conceptual model of multilevel barriers and facilitators. BMC Public Health 2021;21:1228. https://doi.org/10.1186/s12889-021-11306-6.
- [66] Yosef T, Nigussie T. Behavioral Profiles and Attitude toward Condom Use among
 College Students in Southwest Ethiopia. BioMed Research International 2020;2020:1–6.
 https://doi.org/10.1155/2020/9582139.

