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ABSTRACT  

Importance: There are currently no models that predict long-term functional dependency in 

patients with disorders of consciousness (DoC) after traumatic brain injury (TBI). 

Objective: Fit, test, and externally validate a prediction model for 1-year dependency in patients 

with DoC 2 or more weeks after TBI. 

Design: Secondary analysis of patients enrolled in TBI Model Systems (TBI-MS, 1988-2020, 

Discovery Sample) or Transforming Research and Clinical Knowledge in TBI (TRACK-TBI, 

2013-2018, Validation Sample) and followed 1-year post-injury.  

Setting: Multi-center study at USA rehabilitation hospitals (TBI-MS) and acute care hospitals 

(TRACK-TBI). 

Participants: Adults with TBI who were not following commands at rehabilitation admission 

(TBI-MS; days post-injury vary) or 2-weeks post-injury (TRACK-TBI). 

Exposures: In the TBI-MS database (model fitting and testing), we screened demographic, 

radiological, clinical variables, and Disability Rating Scale (DRS) item scores for association 

with the primary outcome. 

Main Outcome: The primary outcome was death or complete functional dependency at 1-year 

post-injury, defined using a DRS-based binary measure (DRSDepend), indicating need for 

assistance with all activities and concomitant cognitive impairment. 

Results: In the TBI-MS Discovery Sample, 1,960 subjects (mean age 40 [18] years, 76% male, 

68% white) met inclusion criteria and 406 (27%) were dependent at 1-year post-injury. A 

dependency prediction model had an area under the receiver operating characteristic curve 

(AUROC) of 0.79 [0.74, 0.85], positive predictive value of 53%, and negative predictive value of 

86% for dependency in a held-out TBI-MS Testing cohort. Within the TRACK-TBI external 

validation sample (N=124, age 40 [16], 77% male, 81% white), a model modified to remove 
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variables not collected in TRACK-TBI, had an AUROC of 0.66 [0.53, 0.79], equivalent to the 

gold-standard IMPACTcore+CT score (0.68; 95% AUROC difference CI: -0.2 to 0.2, p=0.8). 

Conclusions and Relevance: We used the largest existing cohort of patients with DoC after 

TBI to develop, test and externally validate a prediction model of 1-year dependency. The 

model’s sensitivity and negative predictive value were greater than specificity and positive 

predictive value. Accuracy was diminished in an external sample, but equivalent to the best-

available models. Further research is needed to improve dependency prediction in patients with 

DoC after TBI. 
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Introduction 

Most patients with disorders of consciousness (DoC) after traumatic brain injury (TBI) recover 

consciousness1-3. A recent TBI Model Systems (TBI-MS) study demonstrated that among 

patients admitted to inpatient rehabilitation with DoC, 82% recovered consciousness and 40% 

recovered some degree of independence by rehabilitation discharge1. However, the recovery 

endpoint can vary widely, from complete dependency (i.e., inability to perform basic self-care) to 

return to pre-injury level of function2-6. Accurately predicting this outcome could reduce the 

heterogeneity observed in clinical prognostication7 and aid in the meaningful stratification of 

patients for clinical trial enrollment.  

 

Despite its importance to quality of life, health care expenditure, and caregiver burden8-13, the 

predictors of long-term functional dependency in patients with DoC after TBI are uncertain14. 

Though post-acute DoC diagnoses are associated with outcome6, 15-17, the clinical 

characteristics that predict prolonged dependency are not well established. Two models have 

been validated to predict death or severe disability after TBI18-20. However, the accuracy of such 

models in patients who survive the initial injury with DoC is uncertain. 

 

Assessment of dependency is limited by the available outcome scales, including the Glasgow 

Outcome Scale Extended [GOSE] 21, 22 and the Disability Rating Scale (DRS)23, which may lack 

sensitivity or specificity for capturing dependency in severely-injured patients.4, 24 Furthermore, 

the frequently applied endpoint of 6-months post-injury may be too early, as severely injured 

patients are likely still recovering6, 25, 26. We recently developed a novel measure based on the 

DRS, the DRSDepend, that identified patients with complete dependency 1 year after TBI more 

accurately than either the GOSE or the total DRS score4. 
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To improve the accuracy of outcome prediction in patients with DoC after TBI, we aimed to: 1) 

develop and internally test a dependency (DRSDepend) prediction model at 1-year post-injury in a 

large national database (TBI Model Systems [TBI-MS]27); 2) evaluate model performance in an 

independent sample of patients enrolled in the Transforming Research and Clinical Knowledge 

in TBI (TRACK-TBI)28 study; and 3) compare our model’s performance to the International 

Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT)18 score, a frequently-used, 

validated20 prognostic model.  

 

METHODS 

We conducted a secondary analysis of two prospective, longitudinal cohorts: TBI-MS National 

Database27 and TRACK-TBI28 (clinicaltrials.gov NCT02119182; https://tracktbi.ucsf.edu/). 

Characteristics of each cohort have been previously described1, 2, 28-31. Briefly, TBI-MS enrolls 

adults (≥ 16 years) with moderate or severe TBI who survive acute hospitalization and are 

admitted to inpatient rehabilitation centers in the US. 25 centers have contributed data since 

1988. TBI-MS participants are followed at 1, 2, 5, and every 5-years post-injury to assess 

outcomes across a range of domains. TRACK-TBI enrolls participants with TBI and a clinically 

ordered CT scan presenting to 18 Level 1 trauma centers in the US. TRACK-TBI participants 

are assessed across a range of domains at 2-weeks, 3-months, 6-months, and 1-year post-

injury32. Local Institutional Review Boards at each site provide study approval, and participants 

or their surrogates provide written informed consent. The Mass General Brigham Institutional 

Review Board provides local oversight and approved this study (IRB Protocols: 2012P002476, 

2013P002241). 

 

Study Samples: 
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We used the TBI-MS database (i.e., Discovery Sample) to fit and internally test the dependency 

model because of its large sample size (N > 2,000 with DoC at rehabilitation admission), which 

offers a unique opportunity to identify factors associated with long-term dependency.  

The TBI-MS database enrolls only survivors of the acute injury, mitigating the self-fulfilling 

prophecy bias33 resulting from including patients with early death in prediction models.  

We externally validated our model in a cohort of patients with DoC at 2-weeks post injury 

enrolled in TRACK-TBI.  

 

TBI-MS (Discovery Sample) 

TBI-MS participants are enrolled and initially assessed at the time of admission to an inpatient 

rehabilitation hospital, which immediately follows discharge from acute care1, 34. We identified 

patients with DoC on admission to inpatient rehabilitation using the same criteria applied in prior 

studies1, 3, an admission DRSMotor item score > 0 (i.e., absence of command following). We 

excluded patients missing DRS scores on admission to rehabilitation (N=218). We also 

excluded patients with outlier acute care lengths of stay, (N=167; 1.5 x interquartile range [IQR]: 

> 55 days; Supplementary Figure 1), as the first study assessment in these patients would 

occur nearly 2 months post injury. Within this Discovery Sample, participants were randomly 

assigned to 80% Model Derivation and 20% Model Testing cohorts, holding the outcome 

proportions constant in each.  

 

TRACK-TBI (External Validation Sample) 

To assess the external validity of our prediction model, we defined an analogous cohort of 

adults (≥17-years-old) in TRACK-TBI, with moderate or severe TBI (Glasgow Coma Scale 

[GCS] Score < 13 on arrival to the emergency department), and DoC at the 2-week post-injury 

standard assessment (not following commands; DRSMotor > 0; Supplementary Figure 2). TBI-MS 

and TRACK-TBI differ in terms of the minimum TBI severity required for enrollment (moderate 
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[TBI-MS] vs mild [TRACK-TBI]), location of enrollment (inpatient rehabilitation hospital [TBI-MS] 

versus acute care hospital [TRACK-TBI]), and the timing of first post-injury DRS assessment 

(admission to rehabilitation, which does not occur at a fixed time-point [TBI-MS] versus 2-weeks 

post-injury [TRACK-TBI]). 

 

Primary Outcome: 

Our primary outcome was complete functional dependency at 1-year post-injury, defined as a 

positive DRSDepend score (DRSDepend+).  The DRSDepend is a binary DRS-composite score 

corresponding to a DRSFunction item score ≥ 4 (indicating the need for assistance with all 

activities at all times), and a score of > 0 (some assistance needed) on at least one of the 

following items: cognitive ability for Communicating, Feeding, Toileting, or Grooming4. 

Participants meeting DRSDepend criteria require the assistance of another person at all times due, 

at least in part, to cognitive impairment4.  

 

In the primary analysis, the DRSDepend+ outcome category included participants who died after 

admission to rehabilitation, but before the 1-year follow-up. In a secondary analysis, we treated 

these deaths as missing outcome data, given the inherent uncertainty about the ultimate level of 

recovery in such patients. We considered survivors without a documented DRS at 1-year (365 

+/- 62 days post-injury; N=428, Table 1) to have missing outcome data, as recommended by the 

TBI-MS standard operating procedure34. 

 

To mitigate potential bias from missing outcome data, we used inverse propensity weighting 

with gradient boosted models (R: TWANG package), separately in each dataset (TBI-MS and 

TRACK-TBI), to assign participants with complete outcome data a weight based on their clinical 

and demographic similarity to subjects with missing outcome data (Supplementary Figure 3). 
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We used default settings, truncated the weights at the 99th percentile, normalized by the sample 

mean, and applied the scaled weights to the subsequent logistic regressions. 

 

 

Exposure Variables: 

Within the TBI-MS Discovery Sample, we screened demographic, clinical, and radiological 

variables (e.g., presence of contusion in a specific brain lobe) for a possible association with the 

primary outcome. All variables were prospectively collected according to standardized criteria, 

as documented in the TBI-MS standard operating procedure34. A complete list of variables and 

their definitions is provided in the Supplementary Material. Among variable pairs with > 70% 

collinearity by Spearman’s Rho, only one variable was analyzed further (Supplementary Figure 

4). Continuous and ordinal variables were factorized based on their observed univariate 

association with the primary outcome in the 80% TBI-MS Model Derivation cohort.  

 

We excluded variables with missing entries in more than 30% of participants (Supplementary 

Figure 5). Otherwise, missing exposure variables were imputed using multiple imputation with 

chained equations (R software: MICE package). The imputation model was estimated in only 

the 80% training sample, with weights subsequently applied to the 20% testing sample. As 

previously recommended,35 we imputed 5 datasets with 50 iterations per imputation.   

 

Statistical Approach 

TBI-MS (Discovery Sample) 

Within the TBI-MS 80% Model Derivation cohort, we performed a univariate logistic regression 

screen of all exposure variables, retaining variables with p < 0.1 (pooled estimate across 

imputed datasets) for association with the outcome. To identify a minimal set of variables with 

the best outcome-explanatory power while avoiding overfitting, we used Bayesian Information 
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Criterion (BIC)36 based reverse selection. BIC-based selection is slightly more restrictive 

(favoring fewer variables in the model) than Akaike Information Criterion-based selection37. We 

identified variables selected in at least 4 of 5 imputed datasets and fit a final model in each 

imputed dataset with these variables, pooling the final coefficient estimates and standard errors 

across datasets. 

 

We evaluated model performance using Area Under the Receiver Operating Characteristic 

(AUROC) in the 20% TBI-MS Model Testing cohort. We generated model predictions across 

each imputed dataset and averaged them in accordance with Rubin’s Rules for prediction using 

multiply-imputed datasets35, 38. We defined the optimal threshold for predicting dependency as 

the point that maximized the Youden J Statistic (sensitivity+specificity-1). Given our intention to 

create a generalizable model, we then excluded TBI-MS variables not collected in the TRACK-

TBI study or with the potential to reinforce existing sociodemographic disparities and fit a 

second “TRACK-TBI aligned” model using the procedure described above.  

 

External Validation 

To assess external validity of the model, we applied the “TRACK-TBI aligned” prediction model 

to patients meeting inclusion criteria in the TRACK-TBI dataset. We tested whether the 

discrimination performance of our model was different from chance and from the IMPACT18 

prediction model (Delong’s Test). 

 

RESULTS 

TBI-MS (Discovery Sample)  

Among 18,486 subjects in the TBI-MS database enrolled between 10/1/1988 and 09/04/2020, 

2,127 (12%) met criteria for DoC (i.e., not following commands) at first assessment 

(rehabilitation admission). Our final cohort (TBI-MS Discovery Sample) included 1,960 
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participants (Figure 1). At 1-year post-injury, 428 (22%) were lost to follow-up or had missing 

DRS assessment, and the primary outcome (death or DRSDepend+) occurred in 406 (27%).  

 

Participants included in the Discovery Sample were mean (SD) 40 (�19) years old, 

predominantly white (N=1,336 [68%]) and male (N=1,487 [76%], Table 1). A high-velocity 

mechanism of injury was reported in 1,066 (55%) and the median [Interquartile range, IQR] 

GCS on arrival to the acute care hospital was 8 [4, 13]. Our inclusion criteria stipulated that 

participants did not follow commands on DRS assessment at rehabilitation admission. However, 

based on clinical notes, 463 (24%) followed commands at least once within 5 days of injury, 

suggesting a fluctuating neurological examination. Contusions were documented on initial CT 

imaging in 1,388 (76%) and intraventricular hemorrhage (IVH) in 728 (40%). At first assessment 

(mean 25�12 days post-injury), 1,854 (95%) were DRSDepend+, and the median [IQR] DRS total 

score was 22 [19, 23] (vegetative state)2.  

 

Deriving and Testing TBI-MS Prediction Model (Discovery Sample) 

The randomly partitioned Model Derivation (i.e., 80%, N=1,226) and Model Testing (i.e., 20%, 

N=306) cohorts were well-matched (see: Supplementary Table 1 for cohort differences). All 

variables with a univariate association (p�0.1) with the primary outcome in the Model Derivation 

cohort are shown in Supplementary Table 2.  

 

The final model is shown in Figure 2A and Supplementary Table 3. The following variables were 

associated with dependency: age > 55 (adjusted Odds Ratio [aOR]: 4.3 [3.0, 6.1]), first 

assessment DRSFunction sub-scale score (Totally Dependent: 2.6 [1.7, 4.0]), first assessment 

DRSMotor sub-scale score (Flexion/extension/no-movement: 3.4 [2.4, 4.9]; Withdrawal from 

noxious stimulation: 1.7 [1.2, 2.4]), craniectomy (1.8 [1.3, 2.5]), IVH on initial CT (1.6 [1.2, 2.1]), 

non-cortical contusion on initial CT (1.7 [1.2, 2.4]), followed commands within 5 days of injury 
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(0.5 [0.3, 0.7]) and pre-injury employment status (Unemployed: 2.1 [1.5, 2.9]; student: 0.7 [0.4, 

1.2]).   

 

When we tested model performance within the separate TBI-MS Model Testing cohort, our 

prediction model had an AUROC of 0.79 [0.74, 0.85] (Figure 3A). Using the Youden-optimal 

probability threshold of 0.34 (Figure 3B), the model identified dependency with 65% sensitivity 

and 79% specificity, positive predictive value (PPV) of 53% and negative predictive value (NPV) 

of 86%. Model predictions were well-calibrated (Figure 3C; Hosmer and Lemeshow goodness of 

fit test: X2
(8,306)=7.5, p=0.5). 

 

We subsequently developed a “TRACK-TBI Aligned” model, excluding variables not collected in 

the TRACK-TBI study (e.g., non-cortical contusion) and potentially bias-reinforcing 

sociodemographic variables (e.g., employment status). This model (Figure 2B; Supplementary 

Table 4) had undiminished performance in the TBI-MS Testing cohort (Supplementary Figure 6; 

optimal cut-point 0.28, sensitivity 75%, specificity 72%, PPV 50%, NPV 89%, and AUROC of 

0.78 [0.72, 0.84]; 95% CI for AUROC difference between models: -0.04 to 0.02, p = 0.6; Hosmer 

and Lemeshow: X2
(8,306)=7.8, p=0.5).]  

 

We observed that the association between rehabilitation admission DRSMotor score and 1-year 

dependency varied by time (post-injury) to rehabilitation admission (aOR 1.04 [1.01, 1.08] per 

additional day; p=0.01; Supplementary Figure 7). We did not include this interaction in the 

model because in the TBI-MS dataset, time post-injury also encodes acute care length of stay, a 

variable that would not be available when applying the model at a fixed post-injury time point. To 

ensure our results were not dependent on the inclusion of deaths in our primary outcome, we 

repeated our analysis treating deaths as missing outcomes, which resulted in a model that was 

nearly identical to our original model (Supplementary Figure 8).  
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External Validation of the TRACK-TBI-Aligned Model 

Among N = 2,552 participants enrolled in the TRACK-TBI, 124 (5%) met inclusion criteria at 2-

weeks post-injury (Supplementary Figure 2). Twenty-four (19%) were lost to follow-up and 57 

(57%) met criteria for the primary outcome (dead or DRSDepend+ at 1 year; Supplementary Table 

5).  

 

Compared to the TBI-MS Model Testing cohort, TRACK-TBI participants were more likely to be 

white (81% vs 64%, p = 0.001), and appeared more severely injured (Table 2). Additionally, as 

expected, TRACK-TBI subjects were enrolled at an earlier post-injury timepoint (14 vs 24 days, 

p < 0.0001), were less likely to be discharged to inpatient rehabilitation (39% vs 100%, p < 

0.0001), and were more likely to be dead or dependent (57% vs 26%, p < 0.0001) at 1-year 

post-injury (Table 2). These differences persisted even when analyses were restricted to 

participants in TBI-MS assessed at 14�3 days post-injury (Supplementary Table 6). 

 

In the TRACK-TBI cohort, the Track-Aligned Model had an AUROC of 0.66 [0.53, 0.79] (p = 

0.03) for predicting the primary outcome at 1 year. At the optimal cut-point established in the 

TBI-MS Testing Sample, the sensitivity was 83%, specificity was 39%, positive predictive value 

was 61%, and negative predictive value was 67%. The discrimination performance of the Track-

Aligned Model did not differ from that of the IMPACTcore+CT model (AUROC 0.68 [0.55, 0.81]; 

95% CI for AUROC difference: -0.2 to 0.2, p = 0.8). 

 

DISCUSSION 

We used two large prospective studies to develop and characterize a dependency prediction 

model for patients with DoC after TBI. Within TBI-MS, our Discovery Sample, we found that a 

relatively small combination of variables (age, IVH, followed commands within 5 days of injury, 
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and severity of functional and motor impairment at admission to rehabilitation) produces a well-

calibrated estimate of the probability of functional dependency at 1-year. Roughly half of 

participants predicted to be dependent were dependent at 1-year post-injury; over 90% of those 

predicted not to be dependent were identified correctly. This finding was consistent regardless 

of whether deaths were included in the primary outcome. Though our model’s performance was 

diminished in an independent cohort (TRACK-TBI), it remained significantly better than chance 

and equivalent to the IMPACT prognostic model. This is a promising start for outcome prediction 

in patients with prolonged DoC after TBI. 

 

Consistent with previous observations25, 39, despite severe injuries, a substantial proportion of 

patients did not meet criteria for dependency at 1-year post-injury. However, dependency, as 

defined here4, does not indicate complete independence. For instance, the definition of 

DRSDepend+ does not include patients with a DRSFunction item score of 3, which indicates a 

requirement for moderate assistance in the home. 

 

The strongest independent predictors were advanced age and variables reflecting the severity 

of neurological impairment at rehabilitation admission. Patients with severe motor impairment 

(i.e., best motor exam of stereotyped movements such as extension) were nearly four-times as 

likely to be dependent as those without such impairment. The presence of IVH on initial CT scan 

was a weak but significant independent predictor, likely serving as a marker of diffuse axonal 

injury40.  

 

In both datasets (TBI-MS and TRACK-TBI), our predictive model was more accurate in 

identifying patients who were unlikely to remain dependent than those likely to remain 

dependent. While it is inherently easier to develop a “rule-out” test for an uncommon outcome, 

this finding likely indicates that patients with signs of early neurological improvement, (e.g. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.14.23287249doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.14.23287249


command following within 5 days or localizing to noxious stimuli on the motor exam by 

admission to rehabilitation), have either preserved or recovered the substrate for functional 

recovery, which is consistent with prior work41 The absence of such signs, however, does not 

invariably lead to dependency at 1 year. For such patients, a more detailed assessment of the 

underlying neuroanatomical injury is needed, perhaps with advanced neuroimaging42 or 

electrophysiologic43 techniques. 

 

Our findings suggest that the timing of the behavioral assessment is an important consideration 

for a model predicting outcomes after TBI. In patients with DoC at rehabilitation admission, GCS 

scores on hospital admission were not predictive of dependency, even in a univariate context. 

While TBI-MS does not collect all established predictors of outcome (e.g., pupillary reactivity at 

hospital admission), this finding generally suggests that among patients who survive with DoC 

on admission to rehabilitation, neurological impairment on hospital admission is not strongly 

related to recovery potential. However, among all patients with severe TBI, neurological 

impairment on admission is likely still a robust predictor of outcome.  

 

Consistent with prior studies44, 45, in TBI-MS, the association between severe motor impairment 

and outcome was significantly stronger at 1-month compared to 2-weeks post-injury. In our 

TRACK-TBI DoC cohort, where all patients were assessed at 2 weeks post-injury, there was no 

clear association between severe motor impairment and outcome. More work is required to 

determine the optimal post-injury prognostication time, balancing the desire to provide an 

assessment as early as possible with the increased precision that likely comes from waiting.  

 

Several factors likely contributed to the prediction model’s diminished performance in the 

external TRACK-TBI dataset. First, within TRACK-TBI, significantly fewer dependent than not-

dependent outcome participants attended inpatient rehabilitation (16% vs 63%, respectively). 
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Differences in the post-hospital environment and support systems that surround patients may 

alter the probability of achieving favorable functional outcomes. Second, missing outcomes and 

exposure variables in this TRACK-TBI cohort resulted in an effective sample size of fewer than 

80 patients. Recent work establishing best practices for clinical prediction studies report 

unstable accuracy estimates in samples with fewer than several hundred patients46. Third, 

participants in TRACK-TBI appeared more severely injured than those in TBI-MS, even 

accounting for different first assessment times. Indeed, participants in TRACK-TBI had more 

than two times the incidence of dependency as those in TBI-MS. It is possible that predictor 

variables identified in TBI-MS may be less relevant in a population that is more severely injured. 

Finally, the TRACK-aligned model did not include the non-cortical contusion variable, which was 

not collected in TRACK-TBI. It is possible that this injury location variable would have improved 

model performance.  

 

Limitations 

This work has several limitations. First, some important predictors may not have been identified 

due to excessive missingness. Second, our primary outcome used a relatively stringent 

dependency definition. Slightly different predictors may have been identified using less stringent 

outcome criteria. Third, while this represents the largest sample of patients with DoC after TBI 

studied to date, it is possible that additional associations would have been identified with an 

order of magnitude increase in sample size. Fourth, some patients included in the study 

because they were unable to follow commands may have had an isolated disturbance in 

language comprehension, which is difficult to dissociate from DoC47. However, this is unlikely to 

have occurred frequently, because isolated aphasia is uncommon after TBI48, and patients 

generally had multi-domain impairment, evidenced by high total DRS scores at rehabilitation 

admission. Finally, we used the IMPACT score here to benchmark our model’s performance. 

This comparison inherently disadvantages the IMPACT score because we are using a different 
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outcome measure, different outcome time-point, and a different patient population from the 

sample in which IMPACT was initially developed18. 

 

 

Conclusions 

We developed a 1-year functional dependency prediction model for patients with DoC after TBI 

in a large national TBI database (TBI-MS) and tested its external validity in an independent 

dataset (TRACK-TBI). The model incorporates a simple combination of variables, including age, 

severity of neurological impairment at time of assessment, command following in the first 5 days 

post-injury, and intraventricular hemorrhage. The model may serve as a reliable dependency 

rule-out tool for patients admitted to inpatient rehabilitation but has worse performance when 

applied to patients still receiving acute care. Although these findings illustrate the general 

challenges of developing a clinical prognostic model for a heterogeneous disease, this work 

represents an important step towards a systematic approach to predicting recovery for patients 

with DoC after TBI. 
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FIGURE LEGENDS: 
 
Figure 1: TBI-MS Cohort Flowchart 
TBI-MS (Discovery Cohort) CONSORT flow diagram. Abbreviations: DOC = Disorder of 
Consciousness; DRS = Disability Rating Scale, DRSm = DRSMotor sub score 
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Figure 2: Dependency Prediction Models  
(A) A forest plot of adjusted odds ratios (aORs) for variables included in the dependency 
prediction model, with deaths during follow-up included as dependency. (B) A forest plot of 
variables included in the “TRACK-TBI Aligned” model. DRS: Disability Rating Scale, Cmds: 
commands, IVH: intraventricular hemorrhage 
 
Figure 3: Performance in TBI-MS Model Testing Sample 
(A) Area under the Receiver Operating Characteristic Curve for TBI-MS Dependency prediction 
model within the TBI-MS Testing Sample. Shaded area reflects the 95% confidence interval. (B) 
Rug plot showing predicted dependency probabilities (y axis) and the logarithm of the odds of 
dependency (x axis). Each dot represents one subject and each subject is also entered as a tick 
on each axis. Color indicates 1-year outcome (red: DRSDepend+, black: DRSDepend -). The dashed 
line represents the Youden J cut-point (0.34) derived from (A). DRSDepend+ subjects cluster 
towards the upper right quadrant of the plot. (C) Calibration plot showing predicted dependency 
probabilities (x axis) and observed probabilities (y axis). Each dot represents a 10-percentile bin 
of predicted probabilities. Error bars represent 95% confidence intervals. Histogram below the x 
axis shows the relative density of observations in each predicted probability bucket. 
 
 
 
 

Table 1: TBI-MS Cohort Characteristics 
 1-Year Outcome  

All  
(N = 1,960) 

DRSDepend- 
(N = 1126) 

DRSDepend+ 
(N = 303)  

Died 
(N = 103) 

Missing 
(N = 428) 

DEMOGRAPHICS 
Age; Mean (SD) 38 (18) 43 (20) 58 (22) 41 (19) 40 (19) 
Sex Male; N (%) 866/1125 (77) 226/301 (75) 78/103 (76) 317/428 (74) 1487/1957 (76) 

Race White; N (%) 791/1126 (70) 193/303 (64) 77/103 (75) 275/428 (64) 1336/1960 (68) 
Marital status; N (%) 

Single  
Married 
Other 

 
565/1124 (50) 
361/1124 (32) 
198/1124 (18) 

 
151/303 (50) 
104/303 (23) 
48/303 (16) 

 
31/103 (30) 
40/103 (39) 
32/103 (31) 

 
195/426 (46) 
143/426 (33) 
88/426 (21) 

 
942/1956 (48) 
648/1956 (33) 
366/1956 (19) 

Education; N (%) 
< HS  

HS diploma/GED 
Some college 

Batchelor’s Degree 

 
334/986 (34) 
280/986 (28) 
178/986 (18) 
194/986 (20) 

 
80/273 (29) 
88/273 (32) 
45/273 (17) 
60/273 (22) 

 
21/87 (24) 
34/87 (39) 
16/87 (18) 
16/87 (18) 

 
96/303 (32) 

106/303 (35) 
44/303 (15) 
57/303 (19) 

 
531/1649 (32) 
508/1649 (31) 
283/1649 (17) 
327/1649 (20) 

Employment; N (%) 
Competitively Employed 

Student 
Unemployed 

 
622/967 (64) 

76/967 (8) 
269/967 (28) 

 
153/273 (56) 

13/273 (5) 
107/273 (39) 

 
25/94 (27) 

3/94 (3) 
66/94 (70) 

 
166/298 (56) 

21/298 (7) 
111/298 (37) 

 
966/1632 (59) 
113/1632 (7) 

553/1632 (34) 
Housing; N (%) 

Private Home 
Other 

 
1108/1126 (98) 

18/1126 (2) 

 
296/302 (98) 

6/302 (2) 

 
96/102 (94) 

6/102 (6) 

 
416/427 (97) 

11/427 (3) 

 
1916/1957 (98) 

41/1957 (2) 
CLINICAL CHARACTERISTICS 

Injury Mechanism; N (%) 
High-Velocity  
Fall-related 

Low-Velocity/Other 

 
690/1123 (61) 
236/1123 (21) 
197/1123 (18) 

 
149/301(50) 
89/301 (30) 
63/301 (21) 

 
29/103 (28) 
54/103 (52) 
20/103 (19) 

 
198/427 (46) 
103/427 (24) 
126/427 (30) 

 
1066/1954 (55) 
482/1954 (25) 
406/1954 (21) 

Injury Year; Mean (SD) 2010 (6) 2010 (6) 2010 (6) 2010 (8) 2010 (7) 
ED GCSTotal; Median (IQR) 7 (9) 8 (9) 12 (9) 9 (9) 8 (9) 
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ED GCSVerbal < 3; N (%)a 315/1123 (28) 73/299 (24) 28/103 (27) 98/427 (23) 514/1952 (26) 
ED GCSMotor < 5; N (%)b 513/1123 (46) 149/299 (49) 35/103 (34) 196/427 (46) 893/1952 (46) 
ED GCSEye < 2; N (%)b 505/1123 (45) 137/299 (45) 33/103 (32) 198/427 (46) 873/1952 (45) 

Intubated; N (%) 606/1126 (54) 177/303 (58) 41/103 (39) 240/428 (56) 1064/1960 (54) 
Craniectomy; N (%) 138/906 (15) 75/262 (29) 16/90 (18) 54/265 (20) 283/1523 (19) 

CT Compression; N (%) 
None 

Cisterns present/MLS<5mm 
Cisterns absent/MLS>5mm 

 
536/923 (58) 
89/923 (10) 

298/923 (32) 

 
115/251 (46) 
30/251 (12) 

106/251 (42) 

 
40/91 (44) 
12/91 (13) 
39/91 (43) 

 
180/314 (57) 

29/314 (9) 
105/314 (33) 

 
871/1579 (55) 
160/1579 (10) 
548/1579 (35) 

Multiple Episodes of Intracranial 
Hypertension; N (%) 

 
281/1112 (25) 

 
96/294(32) 

 
18/102 (18) 

 
85/422 (20) 

 
480/1930 (25) 

SDH/SAH (%) 914/1077 (85) 262/283 (93) 88/97 (91) 300/367 (82) 1564/1824 (86) 
EDH 117/1073 (11) 35/282 (12) 11/98 (11) 39/367 (11) 202/2830 (11) 
IVH 406/1076 (38) 154/283 (54) 40/98 (41) 128/367 (35) 728/1824 (40) 

Contusions 
Any; N (%) 

Frontal; N (%) 
Temporal; N (%) 
Parietal; N (%) 
Occipital; N (%) 

Non-cortical; N (%) 
Total #; Mean (SD) 

 
812/1076 (76) 
665/1076 (62) 
498/1076 (46) 
235/1076 (22) 

91/1076 (9) 
323/1075 (30) 

2 (2) 

 
222/283 (78) 
184/283 (65) 
144/282 (51) 
76/283 (27) 
32/282 (11) 

121/282 (43) 
3 (2) 

 
71/98 (72) 
60/98 (61) 
39/98 (40) 
18/98 (18) 

3/98 (3) 
22/98 (22) 

2 (2) 

 
283/367 (77) 
229/367 (62) 
170/366 (46) 
83/367 (23) 
34/367 (9) 

104/367 (28) 
2 (2) 

 
1388/1824 (76) 
1138/1824 (62) 
851/1822 (47) 
412/1824 (23) 
160/1823 (9) 

570/1822 (31) 
2 (2) 

Early command following [within 5 
days of injury]; N (%) 

288/1121 (26) 37/302 (12) 36/103 (35) 102/424 (24) 463/1950 (24) 

Days post-injury [first assessment]*; 
Mean (SD) 

24 (11) 30 (12) 24 (13) 24 (12) 25 (12) 

DRSDepend+ [first assessment]*; N(%) 1058/1124 (94) 295/299 (99) 98/102 (96) 403/425 (95) 1854/1950 (95) 
DRS [first assessment]; Median(IQR) 

Total Score 
DRSFunction  

DRSEye  
DRSMotor 

 
21 (5) 
5 (1) 
0 (1) 
1 (1) 

 
23 (4) 
5 (0) 
1 (2) 
2 (2) 

 
22 (4) 
5 (0) 
1 (2) 
2 (2) 

 
21 (5) 
5 (0) 
0 (1) 
1 (1) 

 
22 (4) 
5 (0) 
0 (1) 
1 (1) 

Rehabilitation LOS; Mean (SD) 44 (34) 74 (74) 40 (30) 51 (43) 50 (45) 
OUTCOMES 

DRS [1-year]; Median (IQR) 3 (3) 14 (5) 30 (0) - 7 (8) 
GOSE [1-year]; Median (IQR) 5 (2) 3 (1) 1 (0) 4 (1)  4 (2) 

a = in patient who is not intubated 
b = in patient not receiving sedation/paralytic 
* First assessment at rehabilitation admission 
Abbreviations: ED = Emergency Department; admit = admission; SD = Standard Deviation; IQR = 
Interquartile Range; GED = Geeral Educational Development Test; MLS = Midline Shift; SDH = Subdural 
Hemorrhage; SAH = Subarachnoid Hemorrhage; EDH = Epidural Hemorrhage; IVH = Intraventricular 
Hemorrhage; DRS = Disability Rating Scale; GOSE = Glasgow Outcome Scale Extended; LOS = Length 
of Stay 
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Table 2: Comparison of Model Testing (TBI-MS) and External Validation (TRACK-TBI) Cohorts  

 TBI-MS Testing 
Cohort 

(N = 306) 

TRACK-TBI External 
Validation Cohort  

(N = 124) 

 
P value 

DEMOGRAPHICS    
Age; Mean (SD) 42 (20) 40 (16) 0.4 
Sex Male; N (%) 224/306 (73) 95/124 (77) 0.5 

Race White; N (%) 197/306 (64) 100/123 (81) 0.001 
Education Years; Mean (SD) 12 (3) 12 (2) 0.7 

CLINICAL CHARACTERISTICS    
Craniectomy; N (%) 49/259 (19) 52/122 (43) < 0.0001 

IVH; N (%) 127/294 (43) 28/116 (24) 0.0005 
DRSFunction [first assessment]*; N (%) 
Not Totally-dependent [score=1-4] 

Totally-dependent [5] 

 
72/305 (24) 

233/305 (76) 

 
2/124 (2) 

122/124 (98) 

 
< 0.0001 

DRSEye [first assessment]*; N (%) 
Opens eyes spont/to voice [0-1] 

Opens eyes to nox stim [2] 
Does not open eyes [3]  

 
256/306 (84) 
32/306 (10) 
18/306 (6) 

 
35/123 (28) 
32/123 (26) 
56/123 (45) 

 
 

< 0.0001 

DRSMotor [first assessment]*; N (%) 
Localizing [1] 
Withdrawal [2] 

Flex/extend/no mvmt [3-5] 

 
188/306 (61) 
68/306 (22) 
50/306 (16) 

 
13/123 (10) 
34/123 (28) 
76/123 (62) 

 
< 0.0001 

Days post-injury [first assessment]*; Mean 
(SD) 

24 (11) 14 (3) < 0.0001 

Followed cmds first 5 days; N (%) 68/305 (22) 20/101 (20) 0.7 
Discharged to inpatient rehabilitation; N 

(%) 
306/306 (100) 45/115 (39) < 0.0001 

OUTCOMES    
DRSDepend + [1-year]; N (%) 59/306 (19) 35/100 (35) 0.002 

Died; N (%) 22/306 (7) 22/100 (22) < 0.0001 
GOSE 2-3 [1-year]; N (%) 114/287 (40) 39/100 (39) 0.8 
Missing Outcome; N (%) -- 24/100 (24)   

* First assessment at rehabilitation admission (TBI-MS) and 2 weeks post injury (TRACK) 
Abbreviations: SD = standard deviation; IVH = intraventricular hemorrhage; nox = noxious; DRS = 
Disability Rating Scale; spont = spontaneous; cmds = commands; GOSE = Glasgow Outcome Scale 
Extended (GOSE) 
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