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Estimation of wall thickness frommeshes
Three dimensional meshes with the local wall thicknesses (WT) were generated from the myocardial segmentations of the
end systolic (ES) and end diastolic (ED) phases, using previously published methods.1–3 In order to make the modelling of
the WT computationally tractable, the meshes were decimated by 99%. Specifically, because of the one-to-one correspon-
dence between subjects’ meshes vertices and atlas vertices, the decimation was applied to the atlas only, and the closest
resulting vertices to the original atlas were selected from all meshes. This allowed us to preserve the correspondence
between the individual vertices across all meshes.

Unsupervised analysis of wall thickness values
Wall thicknesses were firstly adjusted by age at cardiac magnetic resonance (CMR) imaging, sex and ancestry using a linear
regression, and normalized afterwards using the Seurat package for R.4 To remove the intrinsic correlations between the
values, due to the spatial nature of the data, and to reduce the effect of statistical noise, the data was compressed applying
a principal components analysis (PCA), and retrieving the first 50 principal components.

A shared nearest neighbor graph (SNN) was built from the compressed data, where the nodes corresponded to the
subjects, and the edges corresponded to the Jaccard index between the nearest neighbours of each pair of subjects. The
nearest neighbors corresponded to the 20 subjects with the smallest cosine distance from each subject. Thus, the SNN
graph was partitioned using the multilevel Louvain algorithm, with resolutions varying from 0.1 to 1 in steps of 0.1. Both
SNN and its partitioning were performed using Seurat package for R.4

The optimal resolution was chosen by inspecting the cluster stability with clustree, corresponding to the partitioning
before any mixing of cluster assignment was visible5 (Supplementary Figs. 2, 3). Additionally, stability of the clusters was
assessed by rerunning the clustering on 1000 random subsets, each with a size equal to 80% of the whole cohort, using
the function clusterboot from the fpc package for R.6

If more than one partitioning was found corresponding to the same branch structure of the clustree plot, that with
the greater stability was chosen (Supplementary Tables 1, 2).

DDTree modelling of wall thickness values
DDRTree was applied on the adjusted wall thicknesses for age at CMR, sex and ancestry. Following the same approach
described in the previous section, the first 50 principal components were calculated and used as input for the DDRTree
algorithm.7 All parameters were kept as default. The underlying tree structure, result of the procedure, was automatically
partitioned into branches by considering as branching those points with a degree equal to 3. Subsequently, we manually
merged small branches into their larger neighbour, such that the main structure of the tree was preserved. This step
aimed at reducing the number of phenotypic sub-types and increase the statistical power of the subsequent modelling.
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A set of clinical and anthropometric measures were tested for statistical association with the tree branches. We first
applied a Kruskal Wallis test to continuous variables and 𝜒2 test to discrete variables. Those variables showing a signifi-
cant association (Benjamini-Hochberg adjusted P < 0.05) were post-hoc tested. A Dunn test was used to test each pair of
branches, whereas the exact Fisher test was used for discrete variables in one-vs-all fashion. All P-values were adjusted
for multiple testing using Benjamini-Hochberg method.

External validation
Wall thicknesses were residualized by linear regression using sex and age at scan as covariates. In this way, we could
compare the similarities between the intra-cohort statistical properties ofWT values. The first 5 principal components were
estimated from the development cohort and used to project the adjusted SingaporeanWT values. The development cohort
principal component scores were used to fit two random forest models aimed at predicting the x and y tree coordinates.

Performances of the models were evaluated using a 10-fold cross-validation, repeated 3 times. The fitted models were
therefore used to predict the tree coordinates of the Singaporean individuals, from their principal component scores.
Faithfulness of the tree mapping for the Singaporean cohort was evaluated by the “trustworthiness” M1 measure, which
estimates how observations that are similar in the original high dimensional space are placed close to each other in the
low dimensional space. It ranges from 0 to 1, with larger values corresponding to a better representative low dimensional
mapping.8

In order to evaluate the consistency of the local statistical patterns between the development tree and the projected Sin-
gaporean individuals, we considered Spearman’s correlation between nearest neighbour points in the tree. We estimated
the correlations between the adjusted WT of the closest points in the development tree, and compared their distribution
with that of the correlations between the Singaporean WT and their closest points in the development tree. In order to
test differences in the distributions, we used a Wilcoxon test for difference of medians, and a Kolmogorov Smirnov test for
difference of distributions.
Supplementary Table 1. Cluster stability at end diastole. Results from the analysis of the cluster stability for end diastolic wall
thickness (ED WT) in 1000 subsets. The possible values range between 0 and 1, where 0 means that the cluster is not stable, and 1 that the
clusters are identical in all repetitions. Between a resolution of 0.4 and 0.5, determined from the clustree plot (Supplementary Fig. 2). We
chose the resolution of 0.5 because it is also characterized by more stable clusters. Cluster 2 is found as an intermediate state between
cluster 0 and 1, and it is less stable than the other two.

resolution cluster 0 cluster 1 cluster 2
0.4 0.95 0.85 0.500.5 0.95 0.92 0.78

Supplementary Table 2. Cluster stability at end systole. Results from the analysis of the cluster stability for end systolic wall thickness
(ES WT) WT in 1000 subsets. The possible values range between 0 and 1, where 0 means that the cluster is not stable, and 1 that the
clusters are identical in all repetitions. Resolutions from 0.1 to 0.6 are determined from the clustree plot (Supplementary Fig. 3). The
resolution of 0.1 was chosen because it is the lowest value among those with more stable clusters.

resolution cluster 0 cluster 1
0.1 0.96 0.96
0.2 0.96 0.96
0.3 0.96 0.96
0.4 0.96 0.96
0.5 0.96 0.96
0.6 0.94 0.95

Supplementary Table 3. Pathogenic/likely pathogenic variant prediction from tree coordinates. Fitted parameters for the GAM
model used to predict individuals with P/LP variants using the 2 tree coordinates. 1OR, Odds ratio; CI, Confidence interval

ED ES
Characteristic log(OR)1 95% CI1 p-value log(OR)1 95% CI1 p-value
(Intercept) -1.1 -1.4, -0.93 <0.001 -1.2 -1.4, -0.96 <0.001
s(Z1) 0.008 0.013
s(Z2) 0.2 0.062
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Supplementary Table 4. Singaporean branch assignment. Singaporean HCM patients were assigned to the tree branches of their
nearest neighbours in the development tree. In both end diastole (ED) and end systole (ES), most of the individuals were assigned to
branches 1 and 4.

Branch ED ES
1 23 21
2 13 1
3 4 2
4 20 35
5 - 1

Supplementary Table 5. Participant characteristics and CMR-derived cardiac measurements in UK Biobank. BSA, body surface
area; concentricity, (left ventricular mass / left ventricular end-diastolic volume); CMR, cardiac magnetic resonance imaging; DBP, diastolic
blood pressure; EDV, end-diastolic volume; EF, ejection fraction; ESV, end-systolic volume; FD, fractal dimension; LV, left ventricular; LVM,
left ventricular mass; LVMI, left ventricular mass index (LVM/BMI); peak diastolic strain rate, PDSR; RA, right atrial; RV, right ventricular; SBP,
systolic blood pressure; WT, wall thickness. *Medication for cholesterol, blood pressure, diabetes.

Characteristic UKBB n=16,691
Female 8,775 (52.5)
Age at scan, y 55 ± 7.5
White 14,683 (87.9)
BSA, m2 1.9 ± 0.2
LVEDV, ml 148 ± 33.5
LVESV, ml 60.4 ± 19
LVEF, ml 59.6 ± 6
LVM, g 86 ± 22.1
LVMI, g/m2 45.8 ± 8.5
LV maximum WT, mm 9.4 ± 1.6
Mean apical FD 1.21 ± 0.05
Mean basal FD 1.19 ± 0.03
Mean global FD 1.17 ± 0.03
LV global radial strain, % 45 ± 8.3
LV global circumferential strain, % -22.3 ± 3.4
LV global longitudinal strain, % -18.5 ± 2.8
LV radial PDSR -5.7 ± 2
LV longitudinal PDSR 1.7 ± 0.6
LV concentricity, g/mL 0.58 ± 0.08
Heart rate, min 69.5 ± 11.6
Hypertension 4,857 (29)
On medication* 2,241 (13.4)
SBP, mmHg 137.5 ± 18.1
DBP, mmHg 78.6 ± 9.9
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Supplementary Figure 1. Phenotypic tree from 3D end-diastolic wall thickness. a. The projection of patients’ 3D end-diastolic (ED) wall thickness (WT) by the
DDRTree dimensionality reduction reveal the presence of four main branches that are associated to specific morphological changes of the myocardium. Each branch is
represented by the decimated ED atlas mesh, coloured accordingly to the beta coefficients resulting from testing the average difference between each branch individual
and the other subjects. The yellow contour denotes the areas with a beta significantly different from zero. b. The continuous and discrete phenotypic variables found to
be significantly associated to at least one branch. For left ventricular (LV) Gadolinium, labels are as follows: 1: None, 2: Minimal, 3: Moderate and 4: Severe. The
significance for the enrichment of discrete variables is reported within the bars. ACE, Angiotensin-converting enzyme inhibitors; Aff, affected; ARB, Angiotensin receptor
blockers; ASA, aspirin; Clopi, clopidogrel; LVOTO, Left ventricular outflow tract obstruction; SV, stroke volume. Only the significant pairs are reported with the symbols:
∗ 𝑃 ≤ 0.05; ∗∗ 𝑃 ≤ 0.01; ∗∗∗ 𝑃 ≤ 0.001; ∗∗∗∗ 𝑃 ≤ 0.0001, 𝑛 = 436.
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Supplementary Figure 2. Selection of optimal resolution for clustering of end diastolic wall thickness. The optimal resolution for the Louvain partitioning is found
by inspecting the clustree plot (c.). In this case, the value of 0.5 was chosen, corresponding to the resolution with stable branching before any assignment mixing
(diagonal arrows), and the largest bootstrapping stability (Supplementary Table 1). The UMAP projections in a. and b. show the parallelism between the clusters and the
genotypes. d. Genotype proportions by cluster.
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Supplementary Figure 3. Selection of optimal resolution for clustering of end systolic wall thickness. The optimal resolution for the Louvain partitioning is found
by inspecting the clustree plot (c.). In this case, the value of 0.1 was chosen, corresponding to the resolution with stable branching before any assignment mixing
(diagonal arrows), and the largest bootstrapping stability (Supplementary Table 2). The UMAP projections in a. and b. show the parallelism between the clusters and the
genotypes. d. Genotype proportions by cluster.
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Supplementary Figure 4. Co-occurrence between end diastolic and end systolic tree branches. The Jaccard index of the subjects membership for the branches in
the DDRTree from ED and ES WT shows that branches 1 to 4 have the largest co-occurrence and they can be considered capturing a similar phenotypic subpopulation.
Branch 5 in end systolic DDRTree is not found in the end diastolic DDRTree and consists of an average sub-type of the cohort.
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Supplementary Figure 5. Survival probability in end systolic branch 4. The more distal regions of branch 4 correspond to lower probability of survival at a
chronological age of 69 years. The OR between the distal and base points of the branch is 0.9773.
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Supplementary Figure 6. Predicted tree coordinates for the Singaporean cohort. The coordinates predicted by the two random forest models for the Singaporean
cohort follow the original spatial distribution of the development cohort, with few points falling outside the main structure of the tree, in both end diastole (a.) and end
systole (b.). Sing, Singaporean patients; RBH, Royal Brompton Hospital patients.
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Supplementary Figure 7. Similarity between nearest tree points. Spearman’s correlation between the adjusted wall thickness of the nearest RBH points in the tree
follow the same distribution of the nearest Singaporean and RBH points, in both end diastole (a.) and end systole (b.). Sing, Singaporean patients; RBH, Royal Brompton
Hospital patients.
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Supplementary Table 6. Characteristics of Singaporean HCM cohort. BSA, body surface area; SBP, systolic blood pressure.
Characteristic Singaporean HCM n=60
Female 11 (11.7)
Age at scan, y 58.9 ± 20
Chinese 52 (86.7)
BSA, m2 1.8 ± 0.2
SBP, mm Hg 137 ± 24.8
Genotype SARC-NEG 28 (46.7)
Genotype SARC-VUS 16 (26.7)
Genotype SARC-P/LP 16 (26.7)

Supplementary Table 7. Cumulative hazard model. All cause mortality in individuals with hypertrophic cardiomyopathy carrying
pathogenic or likely pathogenic sarcomeric variants (SARC-P/LP) compared to those without variants in genes that may cause or mimic
HCM (SARC-NEG) and those with variants of uncertain significance (SARC-VUS), adjusted for Age, Sex and Race. n = 436; P = 0.002. 1HR =
Hazard Ratio, CI = Confidence Interval

Full model Genotype only
Characteristic HR1 95% CI1 p-value HR1 95% CI1 p-value
P/LP
N — — — —
Y 2.63 1.43, 4.86 0.002 2.62 1.42, 4.84 0.002Race
White — —
Other 0.68 0.34, 1.37 0.3Sex
F — —
M 1.15 0.72, 1.85 0.6

Dimensionality reduction and unsupervised clustering of clinical features
Participant features comprised demographic data, clinical characteristics, CMR and echocardiographicmeasurements, and
reported interventions and medicines (Supplementary Table 9). Missing values were inferred with the mice package for
R.9 Numerical features were converted to categorical variables by clustering groups of values into bins with a K-means
algorithm.10 All categorical variables were then transformed into binary variables with one-hot encoding.

Dimensionality reduction was performed on this collection of binary variables with UMAP (uniform manifold approxi-
mation and projection)11 using the following parameters: Dice metric, 25 components, 8 neighbouring sample points and
a minimum distance between points of 10−6. Finally, unsupervised clustering was applied to the 25 resulting UMAP com-
ponents with a K-means algorithm, revealing three clusters (Supplementary Fig. 8A). Genotype status was found to be
significantly associated with the clusters, using a 𝜒2 test. A post-hoc exact Fisher test was then performed to find cluster-
specific enrichment. Adjustment for multiple testing was done with the Benjamini-Hochberg procedure, P < 0.05. Cluster
1 was significantly enriched with genotype-negative (NEG) subjects while cluster 3 was associated with genotype-positive
(P/LP) and genotype-indeterminate (VUS) individuals (Supplementary Fig. 8C). Feature importance from the initial set of
participant data was assessed by applying a Kruskal-Wallis test for numerical features and a 𝜒2 test for categorical features.
Significant associations (adjusted with the Benjamini-Hochberg method, P < 0.05) were further tested for cluster-specific
enrichment: a Dunn test was used to test each pair of numerical features (Supplementary Fig. 8D), while an exact Fisher
test looked for one-vs-rest differences in categorical features (Supplementary Fig. 8E).

The clustering revealed features characterising each group: 1) older female participants with lower body surface area
(BSA), lower left ventricular (LV) volume, higher ejection fraction, hypertension, low activity score and on beta blockers
and diuretic medications; 2) male participants with higher BSA, higher LV mass, higher LV maximum wall thickness, hy-
pertension, moderate activity score and onmedications for blood pressure (ACE/ARBs) and protective vascular (ASA/Clopi)
medications; 3) younger participantswith a family history of hypertrophic cardiomyopathy (HCM), no clinical cardiovascular
risk factor and a high activity score.
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Supplementary Table 8. Cumulative hazard model excluding SARC-VUS. All cause mortality in individuals with hypertrophic
cardiomyopathy carrying pathogenic or likely pathogenic sarcomeric variants (SARC-P/LP) compared to those without variants in genes
that may cause or mimic HCM (SARC-NEG), adjusted for Age, Sex and Race. N = 395; P = 0.003. 1HR = Hazard Ratio, CI = Confidence Interval

Full model Genotype only
Characteristic HR1 95% CI1 p-value HR1 95% CI1 p-value
P/LP
N — — — —
Y 2.66 1.43, 4.95 0.002 2.64 1.40, 4.98 0.003Race
White — —
Other 0.68 0.30, 1.54 0.4Sex
F — —
M 1.26 0.77, 2.06 0.4

Supplementary Table 9. Participant clinical features. MRI, magnetic resonance imaging; HCM, hypertrophic cardiomyopathy; SCD, sudden cardiac death CCS,
Canadian Cardiovascular Society12; NYHA, New York Heart Association13; LV, left ventricular; RV, right ventricular; ACE, angiotensin-converting enzyme; ARB, angiotensin
receptor blockers; ASA, acetylsalicylic acid.

Demographics Mean ± SD or n (%)
Age at time of MRI scan (years) 57.3 (± 14.4)
Sex, male 310 (71.1%)
Ethnicity
non-Finnish European 353 (81%)
South Asian 52 (11.9%)
African 16 (3.7 %)
Others 14 (3.2 %)
East Asian 1 (0.2 %)

Clinical characteristics
Body surface area (m2) 2 (± 0.3)
Diastolic blood pressure (mmHg) 76.2 (± 11.4)
Systolic blood pressure (mmHg) 133 (± 18.5)
Pulse rate (bpm) 70.1 (± 13.7)
Smoker 172 (39.4%)
Alcohol intake (units per week) 6.8 (± 12.3)
Activity score
0 64 (14.7%)
1 68 (15.6%)
2 252 (57.8%)
3 49 (11.2%)
4 3 (0.7%)

Hypertension 175 (40.1%)
Diabetes mellitus 47 (10.8%)
Coronary artery disease 46 (10.6%)
Myocardial infarction 21 (4.8%)
Family history of HCM 85 (19.5%)
Family history of SCD 70 (16.1%)
CCS Angina Grading Scale
0 57 (13.1%)
I 277 (63.5%)
II 88 (20.2%)
III 13 (3.0%)
IV 1 (0.2%)

NYHA Classification of Heart Failure
No heart failure 48 (11.0%)
I 177 (40.6%)
II 176 (40.4%)
III 31 (7.1%)
IV 4 (0.9%)

Measurements derived from MRIand echocardiogram Mean ± SD or n (%)
LV end-diastolic volume (mL) 137.6 (± 34.5)
LV end-systolic volume (mL) 37.3 (± 18.3)
LV stroke volume (mL) 100 (± 24.4)
LV ejection fraction 73.5 (± 8.5)
LV mass (mL) 189 (± 67)
LV maximum wall thickness (mm) 18.8 (± 4.5)
LV most affected segment
Anterior 43 (12.0%)
Inferior 8 (2.2%)
Lateral 11 (3.1%)
Septal 295 (82.6%)

LV most affected level
Base 210 (59.3%)
Mid 78 (22.0%)
Apex 66 (18.6%)

Mitral regurgitation
None 203 (54.9%)
Minimal 124 (33.5%)
Moderate 40 (10.8%)
Severe 3 (0.8%)

LV gadolinium
None 53 (14.0%)
Minimal 124 (32.7%)
Moderate 133 (35.1%)
Severe 69 (18.2%)

RV hypertrophy 45 (10.3%)
Coincident infarction 19 (4.4%)
LV outflow tract obstruction 120 (27.5%)
LV outflow peak velocity (m/s) 2.3 (± 0.7)
Interventions and medicines
ACE inhibitors and ARBs 145 (33.3%)
ASA/clopidrogel 184 (42.2%)
Beta blocker 210 (48.2%)
Diuretic 66 (15.1%)
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Supplementary Figure 8. Unsupervised clustering of clinical features and feature importance. a. Participant clinical features (Supplementary Table 9) segmented
in three clusters with a K-means algorithm projected in the 2-dimensional space of the first two UMAP components. b. Genotype status of participants in the 2-D UMAP
space. c. Distribution of genotype status by cluster. d. Significant pairs of associations between identified clusters and numerical features from the initial set of data. The
line represents the interquartile range and median value. e. Significant one-vs-rest associations between clusters and categorical features from the initial set of data
grouped by significance level. The height of the curved bars illustrates the significance level (−𝑙𝑜𝑔10𝑃 ). Only the significant pairs are reported with the symbols:
∗ 𝑃 ≤ 0.05; ∗∗ 𝑃 ≤ 0.01; ∗∗∗ 𝑃 ≤ 0.001; ∗∗∗∗ 𝑃 ≤ 0.0001, 𝑛 = 436.
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Supplementary Figure 9. Cumulative hazard plot. All cause mortality in individuals with hypertrophic cardiomyopathy (HCM) carrying pathogenic or likely pathogenic
sarcomeric variants (SARC-P/LP) compared to those without variants in genes that may cause or mimic HCM (SARC-NEG) (Hazard ratio 2.66; 95% CI: 1.42-4.96; P = 0.002).

Curran et al. 2023 | medR𝜒 iv | 12 of 14



Variant curation pipeline
This pipeline can be found on GitHub (https://github.com/ImperialCollegeLondon/HCM-taxonomy) and has been previously
published.14 All genetic data was annotated using Ensembl Variant Effect Predictor (VEP; version 105)15 with plugins for
NMD, SpliceAI (version 1.3.1),16 ClinVar (version 2022 01 15),17 gnomAD (version r2.1),18 and LOFTEE.18 The VEP output
was analysed using R (version 3.6.0).

Protein-altering variants, defined using MANE transcripts, that had a MAF of <0.1% in gnomAD for variants identified
in cases, and <0.1% in gnomAD and UK Biobank for variants identified in the UK Biobank, were included in the analy-
ses. Protein altering variants were specified as high or moderate impact by Sequence Ontology and Ensembl, with the
addition of splice region variants for further curation. The variants were filtered for genes and protein consequences
of interest,19 to include 8 definitive-evidence sarcomeric HCM genes (MYH7, MYBPC3, MYL2, MYL3, ACTC1, TNNI3, TNNT2,
TPM1), 3 medium-evidence HCM genes (CSRP3, TNNC1, JPH2), 2 intrinsic cardiomyopathy genes (ACTN2 (moderate classifi-
cation), PLN (definitive classification)), and 12 syndromic genes that can cause isolated left ventricular hypertrophy (FHL1,
TTR, FLNC, GLA, LAMP2, PRKAG2, PTPN11, RAF1, RIT1, ALPK3, CACNA1C, DES). FLNC, ALPK3, ABCC9, CRYAB, MYO6, and RIT1, were
not sequenced in cases, but were analysed in UK biobank. No protein-altering variants were identified in TNNC1 in the case
cohort.

Splice region variants (outside the canonical splice donor and acceptor sites) were assessed in two ways; i) via ClinVar
report: splice region variants found pathogenic with at least 2 star evidence for HCM in ClinVar and reported functional
evidence for splicing were termed “splice confirmed”; if the functional evidence was unclear the protein consequence
remained unchanged; if there was functional evidence of an alternative mechanism to splicing, the protein consequence
was renamed (e.g. missense variant); ii) via prediction threshold: of the splice region variants, they were excluded if they
did not meet the spliceAI threshold of >0.8, and these thresholds were used to identify potentially splice-causing variants
of those splice region variants identified with a non-synonymous consequence flag (e.g. intron variant).

The pipeline then consisted of three main filtering steps which resulted in an output of four columns of binary code
flagging genotype status (heterozygous, compound heterozygotes, and homozygotes, combined) as “1”: SARC-NEG – Indi-
viduals who do not harbor any rare non-synonymous variants in any of the 25 genes of interest. This was a stringent filter
to identify an unambiguous genotype-negative control group.

SARC-VUS – Individuals harboring rare variants in one or more of the 8 definitive HCM-associated sarcomere-encoding
genes. Rare variants were restricted to known disease-associated variant classes. This step separated the variants into
two subsets: i) Loss of function (LoF) alleles (group A), which contained only the gene MYBPC3, and filters for the protein
consequences of stop gained, splice acceptor variant, splice donor variant, frameshift variant, and splice region variant
(with additional in silico evidence of an effect on splicing). LOFTEE was incorporated in this step to exclude loss of function
(LoF) variants that were flagged as “low confidence” (LC) and other LOFTEE flags, such as “NAGNAG sit” requiring reannota-
tion to non-LoF variant status; ii) Protein altering (PAV) alleles (group B), which included all 8 sarcomeric genes, including
MYBPC3, and filters for the protein consequences of missense variant, inframe insertion, and inframe deletion.

Both groups included additional positional annotation (LoF variants found in the last exon or 55bp into the penulti-
mate exon or stop gained variants with a NMD flag using the NMD plugin), this included variants that introduce a protein-
truncating variant (PTC) and predicted to lead to nonsense-mediated decay (NMD). The variants flagged ‘coding sequence
variant’ and ‘protein altering variant’ were manually curated, as were ‘stop lost’ and ‘start lost’ which were examined via EN-
SEMBL sequence and UCSC Genome Browser to identify in-frame rescues nearby. To be included in the SARC VUS group,
the variants were required to meet a maximum gnomAD filter allele frequency (FAF) threshold for HCM (<0.00004) and
excluded variants deemed P/LP for DCM on ClinVar.

SARC-P/LP is as SARC-VUS, plus annotated as P/LP according to the ACMG guidelines.20 Variants were reviewed if re-
ported as P/LP for HCM by at least one submitter in ClinVar, or if flagged as P/LP by the CardioClassifier decision support
software.21 Variants that did not meet either of these criteria were not individually reviewed.
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