
 
 
 
 
 

1 

Integrating the environmental and genetic architectures of mortality and aging 
 
 
Argentieri et al. 2023 
 
 
 
SUPPLEMENTARY INFORMATION 

 
1. Supplementary methods ........................................................................................................... 2 

1.1. Variable selection ........................................................................................................................ 2 

1.2. Chronic disease and biomarker outcome variables .................................................................... 5 

1.3. Variable coding ........................................................................................................................... 6 

1.4. Derived variables ........................................................................................................................ 9 

1.5. Variable quality control .............................................................................................................. 15 

1.6. Multiple imputation .................................................................................................................... 16 

1.7. Exposome-wide association study (XWAS) modeling .............................................................. 18 

1.8. Prevalent disease sensitivity ..................................................................................................... 22 

1.9. PheWAS of replicated exposures ............................................................................................. 24 

1.10. Correlation and cluster analyses ............................................................................................... 25 

1.11. Cluster multivariable modeling procedures ............................................................................... 27 

1.12. Aging mechanism and incident disease analysis ...................................................................... 29 

1.13. Final multivariable exposome modeling .................................................................................... 31 

1.14. Calculating polygenic risk scores .............................................................................................. 33 

1.15. Pooling R2, C-index, and Chi-squared values across imputed datasets ................................... 34 

1.16. Systematic review of exposome-wide health studies ................................................................ 35 

2. Sensitivity analyses ............................................................................................................ 36 
3. Supplementary discussion of study findings ....................................................................... 39 
4. Supplementary discussion on study limitations and strengths ........................................... 42 
5. References ......................................................................................................................... 45 
6. Supplementary figures ........................................................................................................ 51 
7. Supplementary tables ....................................................................................................... 110 
8. Supplementary file titles and summaries .......................................................................... 128 
 
 



 
 
 
 
 

2 

1. Supplementary methods 

 

1.1. Variable selection 

 

We considered for study inclusion all non-genetic variables that were collected at 

baseline in the UK Biobank via the touchscreen questionnaire, verbal interviews, physical 

measures, cognitive function assessment, blood sample assays, and urine assays that were 

available as of July 24, 2020. This included measures of the exposome, as well as variables on 

disease status, physical and biological measures (e.g., BMI, hand grip strength, blood/urine 

biomarkers), disease treatment (e.g., medications), and disability/frailty (e.g., disability 

allowances, walking pace). These non-exposures are referred to collectively as disease 

morbidity and aging phenotype variables. Exposures were included for use in our exposome-

wide association study (XWAS) of all-cause mortality, whereas prevalent and incident diseases, 

morbidities, and aging phenotypes were included in our datasets both to improve the precision 

of the multiple imputation and to use later as covariates for analysis. 

For certain physical measures, such as vision and hearing tests and heel bone mineral 

density, only non-specialist summary variables were considered and the rest were excluded. 

Similarly, the “best measure” variable for both forced vital capacity (FVC) and forced expiratory 

volume in 1-second (FEV1) were used and the raw readings for each individual blow attempt 

were not analyzed. Baseline ECG during fitness variables were excluded because no summary 

measures are currently available. Responses on hormone replacement therapy or oral 

contraceptives from field ID 6153 were not considered, as more detailed information on these 

was available in the female-specific reproduction variables. Where multiple variables exist for 

the same trait, the most complete variable with the least amount of missing data was selected 
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for analysis (e.g., standard measures of weight and BMI were used instead of impedance 

measures). Variables marked as pilot variables, or related to metrics for collecting other 

variables, device IDs, or other procedural metrics were also excluded. 

Further deprivation variables derived from participants’ post codes at baseline were also 

considered for inclusion. Townsend deprivation index is calculated for each participant based on 

the national census output areas from the national census immediately preceding their 

recruitment date into the UK Biobank.  

Baseline air pollution measures are available at several different time points preceding 

or concurrent with the baseline recruitment in the UK Biobank. Air pollution estimates for 

nitrogen oxides (NO), nitrogen dioxide (NO2), and particulate matter (PM2.5, PM10) in the years 

2005-2007 were derived from EU-wide air pollution maps (resolution 100m x 100m).1 Pollution 

concentration values were mapped to UK Biobank participants by overlaying the x-y 

geographical coordinates of UK Biobank participants with these maps (projected to British 

National Grid). The same air pollution measures were also estimated in 2010 for each 

participant’s address using a Land Use Regression (LUR) model developed as part of the 

European Study of Cohorts for Air Pollution Effects (ESCAPE).2  

Additionally, several other derived physical environment measures are available at 

baseline for UK Biobank participants. Traffic variables (e.g., distance to nearest major road, 

traffic intensity on nearest road) were calculated using LUR based on Eurostreets (vs 3.1) digital 

road network for the year 2008. Noise pollution for the year 2009 was modelled using a version 

of the CNOSSOS-EU noise model.3 Further information on derivation of the air pollution, noise 

pollution, and traffic variables is available on the UK Biobank website. Greenspace exposure 

and distance to the coast was mapped to participants based on home location grid references. 

Greenspace measures were created using the 2005 Generalised Land Use Database for 
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England.4 Coastal proximity was calculated for participants as a Euclidean distance raster from 

the coastline for a small grid cell size (50m), which was then mapped to UK Biobank participant 

coordinate locations. Further information is available on the UK Biobank website. Finally, urban 

and rural home area classification were mapped to UK Biobank participants by post code using 

the classifications created by the Office for National Statistics (ONS) as part of the ONS 

Postcode Directory (ONSPD). 

We also considered for inclusion five items administered in the UK Biobank from the 

Childhood Trauma Screener (CTS), which was developed as a short form of the Childhood 

Trauma Questionnaire for large epidemiological populations.5 CTS variables were collected in 

2016-17 through a mental health questionnaire administered to UK Biobank participants via 

online follow-up. All UK Biobank participants with a valid email address on record were invited to 

complete the questionnaire, of whom 158,835 completed the questionnaire. Valid responses for 

CTS questions were received for 157,348 participants. These variables were initially considered 

for inclusion in our analysis as baseline exposures because they were asked retrospective to 

childhood, however sensitivity analyses showed significant survival bias evident in associations 

with all-cause mortality using these variables in the general cohort. Although childhood abuse 

exposures were associated with increased risk of all-cause mortality in just the sub-population 

administered the mental health questionnaire, analyses in the entire cohort study population 

(after imputing missing values for childhood trauma for the whole cohort) showed these same 

exposures to be associated with significantly decreased risk of mortality. This is because these 

variables were only asked to a subset of the cohort that survived all the way from baseline until 

2017, and thus represent responses from a healthier and longer living sub-population compared 

with the full baseline cohort.  
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After creating binary dummy variables from any “mark all that apply” questions (this 

process is described below in the “Variable coding” section), we arrived at a total of 769 

potential variables to include in our dataset for imputation. From this list of 769 potential 

variables, we first excluded all variables missing in more than 80% of our final male and female 

datasets. Furthermore, we also excluded all nested variables (e.g., a question asking 

respondents to indicate the number of years since diagnosis that was only asked to participants 

who responded yes to having a previous cancer diagnosis) except for those that could be 

recoded to avoid improper missing data imputation (see “Derived variables”, below).  

After all variable exclusions, including further variable deletions during the pre-XWAS 

quality control stage (see section “Variable quality control”, below), we were left with a final total 

of 185 and 179 exposures in women and men, respectively, to be included in the XWAS 

analysis. We were also left with a total of 239 variables in both women and men representing 

disease morbidity and aging phenotypes. Exposures common to both men and women were 

176 in total. Two variables (accommodation type [field ID 670] and diet change over the past 5 

years [field ID 1538]) are included in both domains of analysis, as some response levels of 

these variables were considered indicative of an exposome association (and only included in 

the XWAS), whereas other response levels were indicative of illness or disability (e.g., diet 

change in the past 5 years due to an illness, or reporting living in sheltered accommodation). 

 

1.2. Chronic disease and biomarker outcome variables 

 

Incidence of 25 chronic diseases and prevalence of three cardiometabolic risk factors 

(hypertension, obesity, dyslipidemia) was assessed in the full population studied in the mortality 

XWAS analyses (n=436,891). ICD codes used to define each disease are given in Table S8, 
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below. For all incident chronic disease and clinical risk factor analyses, participant follow-up 

started at recruitment into the UK Biobank study and ended on the censoring date or date of first 

disease diagnosis, for all participants, leaving a total of 8-15 years of total follow-up. We also 

searched death register data for participants with one of the diseases listed as a primary or 

contributory cause of death but no hospital inpatient diagnosis. In this case, the participant was 

listed as a case and the date of diagnosis used was the date of death. If any participants with no 

relevant diagnosis died before the censoring date, then date of death was used as the 

censoring date. 

For each disease, prevalent cases at baseline were identified using the baseline 

touchscreen data and baseline verbal interview codes listed in Table S8. We also used the ICD 

hospital diagnosis data to further identify any prevalent cases who had a corresponding first 

date of diagnosis before or on their date of recruitment into the UK Biobank. Prevalent cases 

were excluded from analysis of each disease in order to identify true incident cases. The 

incidence and prevalence rates of each disease and endophenotype studied are shown in Table 

S2. For any participant with multiple dates of diagnosis for a single disease, the first date of 

diagnosis was used. Breast, ovarian, and prostate cancer analyses were carried out as sex-

specific analyses in female (breast, ovarian) or male (prostate) participants. 

 
 
1.3. Variable coding 

 

The following variable recoding was carried out before multiple imputation. All variable 

responses of “Prefer not to answer”, “Do not know”, and “Not applicable” were recoded to NA. 

Following multiple imputation, any variable values where the participant responded “Prefer not 

to answer” in the original dataset were recoded to NA. All nominal categorical variables were 
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coded as unordered factors, with the reference level set as the most frequent response reported 

in the UK Biobank dataset. Ordered categorical variables were coded with the reference level 

set as the lowest response (e.g., “Never”, “Rarely”, or “None”). Dichotomous categorical 

variables were coded with the reference level set as “No.” All variables with “mark all that apply” 

response categories were converted into multiple dummy variables, with each unique response 

option used to create a yes/no dichotomous variable.  

For all numeric diet intake variables, participants who responded “less than one” were 

recoded as 0.5. For variables on number of hours spent watching TV, on the computer, and 

driving, participants who responded “less than one” were recoded as 0.5. 

To harmonize responses to the home area population density variable (field ID 20118) 

across different countries, this variable was recoded with a simpler classification of urban or 

rural home area population density. Participants who were classified in the original variable as 

"England/Wales - Urban – sparse," "England/Wales - Urban - less sparse," "Scotland - Large 

Urban Area," or "Scotland - Other Urban Area" were recoded to “Urban.” All other responses 

were recoded to “Rural,” with the exception of “Postcode not linkable.” Those with values of 

“Postcode not linkable” were set as NA after imputation.  

All nested variables were excluded from analysis, except for several variables where we 

could recode to account for nesting. Two variables were recoded in this way before imputation 

and then imputed normally. For smoking pack years (field ID 20161) and smoking pack years as 

a proportion of life span exposed to smoking (field ID 20162), missing values were recoded as 0 

if the respondent was coded as “No” in response to the derived ever smoked variable available 

in the UK Biobank (field ID 20160), but otherwise left as NA if respondents had ever smoked.  

We also recoded several nested variables after multiple imputation. For bread type, 

cereal type, and coffee type variables, all participants with a response of 0 for the bread, cereal, 
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and coffee intake questions were coded to “Never eat bread”, “Never eat cereal,” and “Never 

drink coffee,” respectively. After imputation, we also recoded the number of people living in your 

household variable to NA if a respondent reported living in a care home or sheltered 

accommodation, since that question was not asked to these participants and there were very 

few of them. We then recoded dummy variables created from field ID 6141 (how are you related 

to people in your household). Specifically, if the participant reported being the only person living 

in their household, then each dummy variable was set to “No.” Additionally, if the participant 

reported living in a care home or sheltered accommodation, then each dummy variable was set 

to NA. For example, for the yes/no dummy variable indicating whether the participant lives at 

home with parents, the response was recoded to “No” if that same participant reported living as 

the only person in their household and was set to NA if that same participant reported living in a 

care home or sheltered accommodation. 

Non-exposome response level recoding. For two nominal categorical variables, we 

removed a specific level as we deemed that it was capturing disability and not the exposome. 

The first was Type of accommodation lived in (field ID 670), where we recoded anyone reported 

living in “sheltered accommodation” to NA and removed that response level from the variable. 

The second was Major dietary changes in the last 5 years (field ID 1538), where we recoded 

anyone reported “Yes, because of illness” to NA and removed that response level from the 

variable. 

Diet variable recoding. Following previous research on diet in the UK Biobank,6 we 

recoded a number of diet variables. For processed meat (field ID 1349), poultry (field ID 1359), 

oily fish (field ID 1329), and non-oily fish (field ID 1339), we combined the top three frequencies 

to get four categories: never, < 1.0 time per week, 1.0 time per week, and ≥ 2.0 times per week. 

For cheese intake (field ID 1408), we combined the bottom two frequencies and the top two 
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frequencies to get four categories: < 1.0 time per week, 1.0 time per week, 2.0-4.9 times per 

week, and ≥ 5.0 times per week. For daily tea intake (field ID 1488), we grouped participants 

into the following categories: < 2.0 cups per day, 2.0-3.9 cups per day, 4.0-5.9 cups per day, 

and ≥ 6.0 cups per day. For daily coffee intake (field ID 1498), we grouped participants into the 

following categories: 0 cups/day, 0.5-1.9 cups per day, 2.0-2.9 cups per day, and ≥ 3.0 cups per 

day. Cereal (field ID 1458), bread (field ID 1448), and water (field ID 1528) intake were 

categorized into quartiles based on participants’ responses. Cereal was coded as < 2 

bowls/week, 2-4.9 bowls/week, 5-6.9 bowls/week, ≥ 7 bowls/week. Bread was coded as <8 

slices/week, 8-13.9 slices/week, 14-19.9 slices/week, ≥ 20 slices/week. Water was coded as <1 

glass/day, 1-1.9 glass/day, 2-2.9 glass/day, ≥ 3 glass/day. Finally, in line with previous large-

scale research on alcohol consumption,7 we restricted analyses of alcohol intake frequency 

(field ID 1558) to current drinkers only. For alcohol intake, all participants who responded as 

“Never” or “Previous” drinkers to the alcohol status variable (field ID 20117) were coded as NA. 

In addition, we coded participants who responded as drinking on “Special occasions only” as 

NA. The final variable was coded as a nominal variable with responses for “One to three times a 

month”, “Once or twice a week”, “Three or four times a week”, and “Daily or almost daily”, with 

“One to three times a month” set as the reference. 

 

1.4. Derived variables 

 

Several derived variables were calculated in our UK Biobank dataset. All derived 

variables were calculated after imputation, and the original variables used to create each of the 

derived variables were then excluded from the XWAS analysis (with the exception of diet 

variables used to construct the partial fiber score). 
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Ethnicity. Responses to the baseline UK Biobank self-reported ethnicity question (field 

ID 21000) were condensed into Black, Asian, white, mixed, and other response categories. This 

condensation largely follows previous research in the UK Biobank,8 although further collapses 

all reported Asian ethnic backgrounds into a single response category. Response categories 

were re-coded as follows: Black = "Black or Black British", "Caribbean”, "African", "Any other 

Black background"; White = "White", "British", "Irish”, "Any other white background"; Mixed = 

"Mixed”, "White and Black Caribbean", "White and Black African”, "White and Asian", "Any other 

mixed background"; Asian="Asian or Asian British", "Chinese", "Indian", "Pakistani, 

"Bangladeshi", "Any other Asian background"; Other = "Other ethnic group”. 

Sleep. We created a categorical variable for hours of sleep using the UK Biobank hours 

of sleep continuous measure (field ID 1160). In line with recommendations from the American 

Academy of Sleep Medicine and Sleep Research Society,9 category levels used for hours of 

sleep were <7 hours, 7-9 hours, and >9 hours, with the reference set as 7-9 hours.  

Education. Following previous research on education in the UK Biobank,10-12 an 

education years variable was created by converting the responses from the education 

qualifications variable (field ID 6138) into the equivalent years of education. Response 

categories were mapped onto years of education using the International Standard Classification 

of Education (ISCED) scale as follows: 7 years = “none of the above (no qualifications)”; 10 

years = “CSEs or equivalent” or “O levels/GCSEs or equivalent”; 13 years = “A levels/AS levels 

or equivalent”; 15 years = “other professional qualification”; 19 years = “NVQ or HNC or 

equivalent”; 20 years = “college or university degree.” Where participants marked multiple 

educational qualifications, the qualification with the highest corresponding years of education 

was used for that participant. 
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Standardized lung function. Standardized FEV1 and FVC variables were created by 

dividing the FEV1 (field ID 20150) and FVC (field ID 20151) best measure variables by standing 

height squared (field ID 50). This was done to ensure that values for these variables were not 

strongly determined by body size.13,14 

Normalized hand grip strength. Hand grip strength variables (field IDs 46-47) were 

normalized to body mass by dividing by weight.15,16  

Partial fiber score. Following a method previously reported in the UK Biobank,17 we 

created a daily partial fiber score using baseline self-report data on intake of fresh fruit, dried 

fruit, raw vegetables, and cooked vegetables; bread type and bread intake; and breakfast cereal 

type and breakfast cereal intake. Intake of fresh fruit, dried fruit, raw vegetables, and cooked 

vegetables was measured as a numeric response corresponding to portions consumed per day, 

and these portions were multiplied by the estimated fiber content per portion for each food 

group (Table S9). Bread and cereal intake were measured as a numeric response 

corresponding to portions consumed per week. Bread and cereal intake were divided by 7 to get 

an estimate of daily intake, and this daily intake was multiplied by the estimated fiber content for 

the specific type of bread and cereal that each participant reported to mainly eat. Participants 

who indicated “less than one” in response to the weekly bread and cereal intake questions were 

recoded as 0.5.    

We then summed the fiber intakes from each type of food to get a daily estimated partial 

fiber intake. We demonstrated lower average fiber intake in our sample (12.4 g in all 

participants, 13 g in women, 11.6 g in men) compared with the previous publication on creation 

of the fiber score (14.3 g in all participants, 14.6 g in women,14.0 g in men), as our analyses 

were conducted in the full baseline cohort whereas the previous publication was only conducted 

in a subsample of the UK Biobank population (n=20,348) who were healthy enough to survive to 
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the follow up assessment of 24-hour recall diet 4 years after recruitment. This sub-population 

would be a healthier population than the full baseline cohort and understandably would 

therefore show improved healthy habits and behaviors such as fiber consumption. We 

converted our continuous fiber score into quintiles and analyzed partial fiber as an ordinal 

variable. After creating the partial fiber score, consumption of the individual food components of 

the score were retained in analyses to test whether each of the food groups contributed to 

mortality beyond their fiber content. 

Total red meat consumption. We created a new total red meat consumption variable by 

summing the frequencies for beef (field ID 1369), pork (field ID 1389), and lamb/mutton (field ID 

1379), using the following coding: ‘Never’ = 0, ‘Less than once a week’ = 0.5, ‘Once a week’ = 1, 

‘2-4 times a week’ = 3, ‘5-6 times a week’ = 5.5, ‘Once or more daily’ = 7. These values were 

then summed across the three variables and participants were coded into 4 categories of total 

red meat consumption: <1 time per week, 1.0-1.9 times per week, 2.0-2.9 times per week, and 

≥3.0 times per week. 

Total fruit consumption. Participants were asked to enter the number of pieces of fresh 

fruit (field ID 1309) and dried fruit (field ID 1319) they eat per day. One piece of fresh fruit, and 

two ‘pieces’ of dried fruit were counted as a serving. We then summed the number of total 

servings consumed per day and grouped participants into the following categories: < 2.0 

servings per day, 2.0-2.9 servings per day, 3.0-3.9 servings per day, and ≥ 4.0 servings per day. 

Total vegetable consumption. Participants were asked to enter the number of heaped 

tablespoons of cooked vegetables (field ID 1289) and salad/raw vegetables (field ID 1299) they 

eat per day. Two heaped tablespoons of either type of vegetables were counted as a serving. 

We then summed the number of total servings consumed per day and grouped participants into 
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the following categories: < 2.0 servings per day, 2.0-2.9 servings per day, 3.0-3.9 servings per 

day, and ≥ 4.0 servings per day. 

Total dairy milk intake. We derived an estimate of total dairy milk intake using the 

questions on type of milk (field ID 1418), bowls of breakfast cereal (field ID 1458), cups of tea 

(field ID 1488), and cups of coffee (field ID 1498). For participants who selected one of ‘Full 

cream’, ‘Semi-skimmed’ or ‘Skimmed’ milk intake, we calculated their total daily dairy milk 

consumption by summing 100 mL of milk for each bowl of breakfast cereal, 35 mL of milk for 

each cup of tea, and 25 mL of milk for each cup of coffee. Participants were then divided into 

three categories: those that consumed < 150 mL of milk, 150-299 mL of milk, and ≥ 300 mL of 

milk daily. Participants who answered ‘Never/rarely have milk’ to the question on type of milk 

consumed were assigned to the first category. This derivation of totally daily dairy milk intake 

was previously shown in the UK Biobank to discriminate well between those who had low and 

high dairy milk intakes according to the more detailed 24-hour dietary assessment variables.6  

Leisure time physical activity. As has been done previously,18 we used responses from a 

mark all that apply question (field ID 6164) asking participants about types of physical activity 

they have undertaken in the past 4 weeks to create a summary leisure time physical activity 

(LTPA) score. For each type of activity, if the participant reported undertaking that activity in the 

past 4 weeks then they were asked how many times in the past 4 weeks and the how long they 

spent on the activity each time. Those responses were used to determine the number of 

days/week for each activity and the number of minutes for each activity. These values were 

multiplied and divided by 7 to get the mins/day for each activity, which was multiplied by the 

metabolic equivalent of task (MET) for each activity (Table S10). We then summed these values 

across all variables to get a total LTPA MET value for each participant. Participants were 

categorized into three groups of LTPA using the IPAQ scoring system (https://www.physio-
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pedia.com/images/c/c7/Quidelines_for_interpreting_the_IPAQ.pdf): (1) high activity: 3,000 MET-

mins per week or greater; (2) moderate: 600-3,000 MET-mins per week; and (3) low: less than 

600 MET-mins per week.  

Occupational physical activity. As has been done previously,18 we used responses on 

whether participants’ work involves heavy manual or physical work (field ID 816) or involves 

mainly walking or standing (field ID 806) to create a summary occupational physical activity 

(OPA) score. For both variables, participants reported how often they performed each type of 

work by choosing from the following categories: “Never/rarely”, “Sometimes,” “Usually,” or 

“Always.” To estimate minutes spent per week in each of these types of work, we first multiplied 

the hours of employment per week (field ID 767) by 60 to get the total minutes per week that 

each participant spent at work. Values of mins of employment per week were set to 0 for all 

participants who did not indicate that they were in paid employment or self-employed (field ID 

6142). We then calculated the number of minutes spent specifically in each type of heavy 

manual and walking/standing work by adjusting the total minutes of work per week according to 

participants responses to how frequently they engage in heavy manual or walking/standing 

work. Specifically, for both variables we multiplied the minutes spent working per week by: 0 if 

the participant replied “Never/rarely”; 1/3 if the participant replied “Sometimes”; 2/3 if the 

participant replied “Usually”; and 1 if the participant replied “Always.” In this way, we calculated 

the approximate minutes per week that each participant spent in both heavy manual and 

walking/standing work. The mins per week for both types of work were then multiplied by the 

metabolic equivalent of task (MET) for each activity (Table S10) and these values were summed 

across both variables to get a total OPA MET value for each participant. We used the same 

MET thresholds per week as the LTPA variable to categorize participants into low, moderate, 

and high OPA. 
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Total sedentary time. Total sedentary time was measured according to a previously 

reported method in the UK Biobank,19 using measures on self-reported hours spent on a typical 

day watching television (field ID 1070), using the computer (field ID 1080), and driving (field ID 

1090). Values for each variable greater than 24 hours per day were excluded, and those 

reporting over 16 hours were re-coded to 16 hours. Tertiles were used to categorize sedentary 

time into low (0-4 hours), medium (5-6 hours), and high (>6 hours) levels of sedentary behavior, 

with 0-4 hours set as the reference and the variable was classed as an unordered factor. 

 

1.5. Variable quality control 

 

As a final quality control (QC) step conducted after imputation but before running the 

sex-specific XWAS, we systematically examined the crosstabs between each potential 

categorical exposure variable and the mortality binary indicator in both women and men. Any 

categorical variable with less than 10 mortality cases for a single response level was then 

flagged for further inspection. Three possible quality control actions were then undertaken:  

(1) Binary categorical variables with less than 10 mortality cases for one of the response 

levels were completely excluded from the XWAS.  

(2) We collapsed the “All of the time” and “Often” response levels for the narcolepsy 

variable, and we also collapsed the “Yes” and “I am completely deaf” response levels for the 

variable “Do you have any difficulty with your hearing?”  

(3) For nominal categorical variables, any response levels with too few mortality cases 

(n=5) were set to NA and therefore not analyzed in the XWAS. The only variable that this 

affected was the “What type of accommodation do you live in?” variable, where the response 
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level indicating that participants were living in a care home was set to NA and not analyzed in 

the XWAS because too few participants endorsed that response.  

In order to improve the interpretability of our results, all responses of “none of the above” 

or “other” for nominal variables were set to NA and not analyzed. The response level of “None 

of the above” was also set to NA for the usual walking pace variable, and the resulting response 

levels of "Brisk pace", "Steady average pace", and "Slow pace" were recoded to be an ordinal 

variable with slow pace as the highest response level. Usual walking pace was only used as an 

exposure in phenome-wide association study analyses and not in the XWAS. 

As a final pre-XWAS coding step, we also set all responses to the alcohol intake 

frequency variable (field ID 1558) as NA if the participant reported being a previous drinker and 

not a current or never drinker in a separate alcohol consumption status variable (Field ID 

20117). Previous research has shown that including previous drinkers and never drinkers 

together in measures of current alcohol intake frequency leads to substantial confounding in 

mortality analyses due to the fact that many previous drinkers are those that stopped drinking 

due to some health issue or disability.20,21 With our coding scheme, those who responded 

“Never” in the alcohol frequency variable are true never drinkers and not those who used to 

drink but have since stopped. 

 

1.6. Multiple imputation 

 

The average percentages of missing data across all final variables included in our UK 

Biobank analysis datasets were 11% in women (range: 0-79%) and 10.9% in men (range: 0-

77%). As shown in Fig. S3, the rates of missing data for the subset of 41 exposures identified as 

independently associated with premature mortality was lower, with the majority of variables 
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missing < 5% of responses and all but one variable missing < 20% of responses. Because of 

the large heterogeneity in number of missing responses across exposure variables included in 

our analyses, we created multiple imputed datasets instead of producing a single imputed 

dataset. Creating a single imputed dataset does not account for the uncertainty caused by the 

missing data and tends to inflate the significance of p-values, artificially narrow confidence 

intervals, and represent variables as more strongly associated than they really are.22 Studies 

using simulation data alongside ALSPAC cohort data have shown that multiple imputation, even 

when used on datasets with large proportions of missing data (up to 90%), can still produce 

unbiased regression results so long as the imputation model is properly specified and the data 

are missing at random.23 Indeed, it has been shown that multiple imputation is often more 

efficient than complete case analyses for estimating the coefficient of a regression variable 

when other model covariates are incomplete (i.e., have missing data).24,25 

Missing data were imputed separately for the discovery, replication, and validation 

datasets (Fig. 1). We used the R package missRanger26 to perform multiple imputation, which 

combines random forest imputation with predictive mean matching. Together, these methods 

offer a robust approach to imputed missing data in heterogeneous datasets (i.e., datasets 

containing both continuous and categorical data). Random forest imputation is a non-parametric 

method that is particularly appropriate when a normal distribution for all variables cannot be 

assumed, as it will preserve any skewness in the original data, and has also been shown to 

have the least imputation error and greatest accuracy when compared with other leading 

methods such as multiple imputation by chained equations (MICE).27,28 Furthermore, random 

forest imputation is able to handle collinearity between variables well during imputation, 

whereas multiple imputation carried out from predictive mean matching alone does not perform 

well in the presence of collinearity. In fact, early attempts at performing multiple imputation via 
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predictive mean matching using the mice29 package in R with our dataset would not even run 

successfully because of the high collinearity present between various index of multiple 

deprivation variables, as well as among air pollution variables. 

We imputed 5 datasets, with a maximum of 10 iterations specified for each imputation. 

Each imputation was also weighted by degree of missing data for each participant, such that the 

contribution of data from participants with higher proportions of missingness were weighted 

down in the imputation. We set the maximum number of trees for the random forest to 200, but 

left all other random forest hyperparameters at their default. The imputation datasets included 

all exposures, in addition to all baseline disease and aging phenotype variables to be used in 

later analyses. The imputation procedure considered all variables as predictors to impute 

missing values in all other variables. In addition, the Nelson-Aalen estimate of cumulative 

hazard and the all-cause mortality event indicator were also used to predict imputation values, 

as it has been shown that imputation incorporating the Nelson-Aalen estimate of cumulative 

hazard to the survival time H0(T) and the event indicator as predictors improves the imputations 

for survival analyses.25 The average out-of-bag (OOB) error rate for multiple imputation across 

all imputed datasets was 0.077 in women (range: 0 – 0.75) and 0.076 in men (range: 0 – 0.68).  

 

1.7. Exposome-wide association study (XWAS) modeling 

 

For both the discovery and replication XWAS, we serially assessed associations of each 

individual exposure variable with all-cause mortality using Cox proportional hazards models. A 

discussion and rationale for each of the covariates in the final XWAS model are given below. 

Mortality risk varies significantly with age. To account for this, Cox models in both the 

discovery and replication XWAS were calculated using age-at-risk as the time scale for the 
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survival analysis instead of follow-up time in the study (i.e., number of years between date of 

recruitment into the study and date of censoring). It has been previously shown that using 

follow-up time in study as the time scale, while merely adding age as a covariate, does not 

adequately reduce age-related bias in survival analyses for outcomes that are age-related.30,31 

Using age-at-risk as the time scale has been shown to adequately mitigate this bias in survival 

analysis because it puts similar subjects in a risk set together and allows for a non-parametric 

age effect. Using age-at-risk as the time scale in a survival model is performed using three 

variables to calculate the survival outcome: age at recruitment, age at censoring, and the event 

indicator. The difference between these two approaches is demonstrated in the two R formulas 

below: 

coxph(Surv(f,d) ~ e + x, data) (1) 

coxph(Surv(e,a,d) ~ x, data) (2) 

where formula 1 is a more common survival formula using follow up time in study (f) and the 

event indicator (d) to calculate the survival outcome, with age at recruitment (e) entered as a 

covariate (ideally centered to the mean) alongside other exposures and covariates of interest 

(x). Formula 2 is an age-at-risk survival formula using age at recruitment (e), age at censoring 

(a), and the event indicator (d) to calculate the survival outcome. Note that age at recruitment 

and age at censoring are not centered or standardized in the age-at-risk analysis, and a 

separate covariate for age is not needed in the model. 

Geographic location has been shown to significantly influence mortality and life 

expectancy in the UK, even after accounting for differences in deprivation between areas.32 

Accordingly, UK Biobank assessment center (as a proxy for geographic location) was added to 

our XWAS model as a covariate. In a meta-analysis of 48 prospective cohort studies 

(n=1,700,000), socioeconomic status was shown to associate significantly with premature 
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mortality, contributing the third highest population attributable fraction for mortality compared 

with conventional risk factors (behind smoking and physical activity).33 We therefore considered 

education years as potential covariates, as measures of socioeconomic status. Ethnicity was 

also considered as a covariate, as this has also been used in multivariable adjustment from a 

previous XWAS of all-cause mortality.34  

Each XWAS model was also stratified by two variables: 5-year birth cohort and sex. 

Adding strata for 5-year birth cohorts adjusts for cohort effects, as cohort effect patterns have 

been demonstrated for many age-related diseases and in mortality patterns across multiple 

European countries (including England) for both sexes and almost all causes of death.35,36 

Participants were assigned to one of seven birth cohort categories (in 5-year intervals from 1935 

until 1970) using their year of birth. XWAS models were also stratified by sex since mortality 

rates were much lower in women compared to men in our dataset (5% vs. 8.7%), and thus we 

could not assume a common baseline mortality hazard between men and women. When 

conducting preliminary model selection analyses in our UKB dataset, a model using a strata 

term for sex resulted in a much better model fit according to AIC compared with an identical 

model using a fixed effect covariate for sex instead of a strata term. 

The Cox proportional hazards model used in the final XWAS was composed with age-at-

risk as the time scale; included covariates for UK Biobank assessment center, years of 

education, and ethnicity; and was stratified by 5-year birth cohorts and sex. XWAS Cox models 

were analyzed with the survival37 package in R using the following formula:  

coxph(Surv(e,a,d) ~ strata(b,s) + t + g + r + x, data) (3) 

where e is age at recruitment, a is age at censoring, d is the event indicator (mortality = 1, no 

mortality or censored = 0), b is 5-year birth cohort, s is sex (female/male), t is UKB assessment 

center, g is years of education, r is ethnicity, and x is the individual exposure being tested. 
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Adding a stratification variable in a Cox proportional hazards model allows for separate baseline 

hazard functions to be fitted within each of the strata, while keeping other covariates 

constant. In our model, baseline hazards were thus calculated separately within each 

combination of sex and 5-year birth cohorts (14 total strata), and the resultant regression 

coefficients returned in the model results are optimized across all strata. Early sex-specific 

XWAS runs used an identical model, but omitted the strata term for sex. 

 Since it has been shown that UK Biobank participants are likely to misreport alcohol 

consumption as a function of higher disease burden,38 self-reported overall health status was 

added as an additional XWAS covariate for self-reported alcohol intake. Indeed, when testing 

the association between self-reported alcohol intake mortality without adjustment for self-

reported overall health status, we observed that all levels of alcohol intake showed decreased 

risk of mortality compared with the lowest level of intake, which is counter to well established 

results from previous large meta-analyses7,21 and a Mendelian randomization study in the UK 

Biobank.39 

 Exposures in the final pooled XWAS were limited to those asked to both women and 

men, omitting sex-specific reproductive factors. Sex-specific XWAS variables showing 

significant associations with all-cause mortality included having had a cervical smear test, 

having gone through menopause, and number of children in women; and puberty timing 

(relative age of voice breaking and gaining facial hair) in men. These results are shown in 

Tables SF3-SF4. These variables were not tested in further disease sensitivity or correlation-

based multivariable analysis, however replicated sex-specific factors from the sex-specific 

XWAS analyses were added to analyses of sex-specific disease outcomes (breast, ovarian, and 

prostate cancer).  
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 The covariates for education and ethnicity were assumed to be related to mortality 

based on previous literature and were not tested independently as exposures in the XWAS. 

Replication XWAS analyses only tested those variables significant in the discovery, and both 

discovery and replication XWAS results were FDR corrected. 

 

1.8. Prevalent disease sensitivity 

 

A sensitivity analysis was conducted to test whether exposures replicated in the full 

cohort XWAS were susceptible to reverse causation due to prevalent disease at baseline. We 

conducted two analyses. The first was conducted in the full sample of English participants 

(n=436,891) where we individually tested every exposure replicated in the pooled mortality 

XWAS again in relation to mortality using the pooled XWAS formula and covariates, but now 

adding an interaction term between each exposure and an indicator of baseline disease or poor 

health (see definition below):  

coxph(Surv(e,a,d) ~ strata(b,s) + t + g + p + r + x*i, data) (4) 

where e is age at recruitment, a is age at censoring, d is the event indicator (mortality = 1, no 

mortality or censored = 0), b is 5-year birth cohort, s is sex (female/male), t is UK Biobank 

assessment center, g is years of education, r is ethnicity, x is the individual exposure being 

tested, and i is the baseline poor health indicator. The interaction terms used returned estimates 

for the direct effect of the exposure x and poor health indicator i, as well as the interaction x*i. 

We flagged any exposure that no longer had a significant direct effect in this model (p < 0.05) 

but its interaction with the baseline poor health indicator was significant (p < 0.05). This 

retrieved 12 variables whose associations with premature mortality are likely completely 
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explained by poor health status at baseline in this dataset (labelled in Fig. S2), and these 

variables were removed from any further analysis.  

 To further confirm the robustness of our pooled mortality XWAS results to reverse 

causation, we also performed the pooled XWAS a second time in the subset of participants with 

no disease at baseline (testing only those exposures that were replicated in the pooled XWAS in 

the full sample). Betas for each exposure from each of these two XWAS were then plotted 

against each and the correlation between them was calculated. As shown in Fig. S2, the 

correlation between the mortality betas in these two populations is extremely strong (Pearson’s 

R = 0.96), indicating that the effect estimates from the pooled XWAS in the full sample are 

largely not biased due to reverse causation. The 12 variables flagged in the interaction analysis 

described above captures all of the variables whose effect estimates change direction in the two 

populations or whose point diverges more considerably from the best fit line in Fig. S2. 

The baseline disease/poor health indicator was created for all participants, in which 

participants were coded as having disease or poor health at baseline if they: (1) had a linked 

hospital inpatient ICD diagnosis for any of the chronic illnesses or cardiometabolic risk factors 

studied in our analysis (including hypertension, dyslipidemia, and obesity) with a diagnosis date 

before or on their date of recruitment to the UK Biobank; (2) were assigned a diagnosis code for 

any of the chronic diseases or cardiometabolic risk factors studied in our analysis during the 

baseline clinical interview (field IDs 20001, 20002; Table S8); (3) self-reported a physician 

diagnosis of heart attack (field ID 6150), angina (field ID 6150), stroke (field ID 6150), high blood 

pressure (field ID 6150), bronchitis/emphysema (field ID 6152), diabetes (field ID 2443), or 

cancer (field ID 2453); (4) self-reported a number of cancer diagnoses ≥ 1 (field ID 134); (5) 

self-reported taking insulin medication (field ID 6153, 6177), cholesterol lowering medication 
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(field ID 6153, 6177), or blood pressure medication (field ID 6153, 6177); or (6) self-reported 

their overall health status as “poor” (field ID 2178). 

 

1.9. PheWAS of replicated exposures 

 

For all exposures replicated in the XWAS and not removed during the above-described 

disease sensitivity analyses, a phenome-wide association study (PheWAS) was conducted. In 

each PheWAS, the exposure was used as the outcome variable (hereafter referred to in this 

section as the exposure-outcome) and was tested against the full set of baseline phenotypes 

available in the UK Biobank (see Supplementary File SF61 for full list of phenotypes tested). 

Each PheWAS was conducted as a linear or logistic regression, depending on whether the 

exposure-outcome was continuous or categorical, with covariates for age at recruitment and 

sex. All ordinal exposures exposure-outcomes were tested as continuous variables. Nominal 

categorical exposures were recoded into dummy variables for each response category vs. the 

reference. All continuous phenotype exposures were scaled and centered to the mean before 

running the PheWAS. Volcano plots were created from PheWAS results and were inspected 

visually for phenotypes with strong effect estimates for their association with the exposure-

outcome. Example volcano plots are shown in Fig. S4-S5. Interactive volcano plots from all 

PheWAS are shown in the Online Materials. Summary statistics from all PheWAS are available 

in Supplementary Files SF62-SF108. Using this method, a further 10 variables were excluded 

that likely suffer from mismeasurement error and either capture disease/disability status or 

seem to be capturing redundant information to another exposure: living at home with parents, 

living at home with siblings, using a mobile phone, length of mobile phone use, difference in 

mobile phone use now vs. 2 years ago, frequency of driving fast on the motorway, number of 
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vehicles in household, facial aging, number of sexual partners, and age when first had sexual 

intercourse.  

 

1.10. Correlation and cluster analyses 

 

Correlation between all variables was calculated among all UK Biobank participants 

recruited in England (n=436,891) using the R package polycor40 to create a heterogenous 

correlation matrix for each imputed dataset, consisting of Pearson correlations between 

continuous variables, polyserial correlations between continuous and ordinal variables, and 

polychoric correlations between ordinal variables. Correlation coefficients were first calculated 

within each imputed dataset, then transformed to a normally distributed z-score via Fisher’s z 

transformation, pooled via Rubin’s rule, and then re-transformed back to the original r-scale 

coefficient after pooling. This was done to create a normally distributed sampling distribution for 

the correlation coefficients, which is required for pooling via Rubin’s rule. P-values for the 

significance of each pooled correlation coefficient were calculated using the pooled z-

transformed correlation coefficient and the standard error based on sample size.  

Our exposome dataset exhibited a densely intercorrelated structure among variables 

replicated in the mortality XWAS. As has been observed previously in environment data,41,42 

despite a very low percentage of observed inter-variable correlations with a coefficient of 

correlation above 0.50 or below -0.50 (4.08%), a very large percentage of inter-variable 

correlations were significant according to p-values for the correlations. Specifically, 90% of inter-

variable correlations between exposures replicated in the mortality XWAS exhibited a significant 

Bonferroni-corrected correlation p-value below 0.001 (mean absolute value of significant 
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correlation coefficients: 0.09). Only 7.01% of correlation coefficients had an absolute value of 

0.30 or above.  

Exposures replicated in the mortality XWAS and not confounded by baseline disease 

status were considered for clustering analysis, using the correlation coefficients between these 

variables. We used both k-means and hierarchical clustering to determine an adequate cluster 

structure for the data. To get an initial approximation of the number of clusters that fit the data, 

we used both AIC and the total within-cluster sum of squares (WSS). 

For AIC analyses, we first computed the k-means clustering of the exposures for different 

numbers of clusters (k) ranging from 1-100. k-means clustering is a machine learning algorithm 

that determines a pre-specified number of centroids (means) in the correlation coefficient values 

and then partitions the variables in the dataset into unique clusters based on the distance of 

their correlation coefficients from the centroids. For each k, we then calculate the AIC of the 

cluster model as the WSS + 2(k*number of total variables).43 We then plotted the AIC as a 

function of the number of clusters k and examined the plot visually to try to find the elbow in the 

plot (Fig. S6). An elbow in the plot could not be determined visually, and was thus calculated as 

the maximum absolute second derivative of the curve of AIC values for k, resulting in 9 clusters.  

For WSS analyses, we first computed the hierarchical clustering of exposures for different 

numbers of clusters (k) ranging from 1-100. For each k, we then calculated the WSS, which is a 

measure of the variability of the observations within each cluster. A cluster with a small WSS is 

more compact and has lower variability of observations within a cluster than a cluster that has a 

large WSS. We plotted the WSS as a function of the number of clusters k, and examined the 

plot visually to find the elbow in the plot (Fig. S7). This point represents the number of clusters k 

where adding another cluster doesn’t greatly improve (i.e., lower) the total WSS. The WSS plot 

was created using the fviz_nbclust function in the package factoextra.44 
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AIC analysis using k-means clustering initially returned 11 clusters as the optimal 

solution, however when plotting the k-means clustering according to 11 clusters, this cluster 

solution did not adequately break up clusters into discrete groupings. We therefore iteratively 

plotted lower numbers of k-means clusters starting from 10 until the variables were grouped 

discretely. This brought us to a total of 6 k-means clusters (Fig. S8). We determined however 

that a 9-cluster solution was a better approximation of the elbow in the WSS curve, 

preferentially using the WSS plot information since our final cluster structure would be based on 

hierarchical clustering. When visually inspecting the dendrogram of hierarchical correlation, 9 

clusters separate the variables very well in terms of breaking variables into discrete groups with 

large distances/heights between clusters (Fig. 3c).   

 

1.11. Cluster multivariable modeling procedures 

 

As single multivariable model containing all exposures replicated in the XWAS across all 

clusters was not carried out as the final step in identifying relevant exposures to mortality 

because certain domains represented in different clusters are mediators of others in the 

pathway towards mortality. Therefore, adopting this approach would lead to many true 

determinants of mortality adjusting out of the model due to these other mediating variables in 

the model. Our own initial analysis using this approach showed this to be the case, and it has 

also been documented in the literature, where a previous XWAS of all-cause mortality in a small 

sample from the NHANES cohort put all exposure significant in their XWAS in a single model in 

which smoking, one of the strongest known factors affecting disease and mortality, adjusted out 

of the model.34 
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We therefore carried out multivariable mortality models within each of the clusters 

described above as a final step to identify correlation confounding in exposures. As described 

above, our clustering analysis retrieved 9 independent clusters of exposures replicated in the 

mortality XWAS. We further conducted multivariable modeling within each of these 9 clusters 

using the following procedure: (1) All exposures in the cluster were run in a single multivariable 

mortality Cox model to check for multicollinearity using the variance inflation factor (VIF). VIF 

analysis was carried out using the car package in R.45 Exposures with a GVIF^(1/(2*Df)) > 1.6 

were flagged for collinearity and removed. GVIF^(1/(2*Df)) is similar to GVIF, but takes into 

account degrees of freedom for categorical variables. (2) After any collinear variables are 

removed, all remaining exposures in the cluster were tested together in a single multivariable 

mortality Cox model using age as the timescale, stratified by 5-year birth cohorts and sex, and 

adjusted for UK Biobank assessment center, household income, education, and ethnicity (if 

those variables were not already in the cluster). As in the XWAS, additional adjustment for self-

reported overall health status was made in the cluster with self-reported alcohol intake. This 

process led to a number of variables adjusting out that were confounded by short-range 

correlation between other similar exposures (Fig. S11a). 

To account for confounding due to longer-range confounding between exposures, we 

also combined variables from neighboring clusters. We then took all variables significant in 

clusters 1-5 and put them in the same multivariable mortality Cox model. Separately, we took all 

variables significant in clusters 6-9 and put them in the same multivariable mortality Cox model. 

Variables from clusters 1-5 and 6-9 were not put together into a single model for the reasons 

described above. These models used the same covariates as the previous stage of cluster 

modeling. At the end of this process, we were left with 41 exposures that are less likely to be 
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susceptible to confounding from other correlated exposures. Significance in all the cluster 

multivariable models was determined by a nominal p < 0.05. 

Air pollution, greenspace, noise pollution, and traffic variables contained multiple, 

redundant variables that were too correlated and collinear to be used in conjunction with one 

another in the same model (correlation coefficient > 0.97). This would have required arbitrarily 

selecting a single air pollution variable to test while discarding the rest, which was undesirable. 

Instead, we ran separate principal component analyses (PCA) among the nine air pollution 

variables (NO [2010], NO2 [2005, 2006 ,2007, 2010], PM2.5 [2010], PM2.5 absorbance [2010], 

and PM10 [2007, 2010]), four greenspace variables (greenspace buffer 1000m, greenspace 

buffer 300m, natural environment buffer 1000m, natural environment buffer 300m), four noise 

pollution variables (average daytime noise pollution, average evening noise pollution, average 

night noise pollution, average 16 hour noise pollution, and average 24 hour noise pollution), and 

two traffic variables (sum of road length of major roads within 100m, total traffic load on major 

roads) that were all significant after the pooled XWAS and disease sensitivity analysis. Three 

PCs were retrieved that captured >90% of the variation in the air pollution variables, two PCs 

captured >96% of the variation in greenspace variables, one PC captured >99% of the variation 

in noise pollution variables, and one PC captured > 91% of the variation in traffic variables. 

Plots of principal component loadings are shown in Fig. S9 (English participants) and Fig. S10 

(Scottish/Welsh participants). These PCs were used in all cluster models described above 

instead of the individual variables.  

 

 

 

1.12. Aging mechanism and incident disease analysis 
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All exposures replicated in the mortality XWAS that survived the disease sensitivity and 

cluster modeling states were tested in relation to 25 age-related blood biomarkers (Table S7). 

Aging biomarker analyses were cross-sectional, with analyses of leukocyte telomere length 

(LTL) in a smaller sample since it was only released for a subset of participants (n=410,877). 

Serum biomarker variables were log transformed and then age-adjusted by regressing each 

onto recruitment age separately in women and men and then adding the residuals and the 

intercept to make an age-adjusted variable. All aging mechanisms were tested in linear 

regression models with covariates for sex, 5-year birth cohort, assessment center, years of 

education, ethnicity, number of medications, smoking status, and IPAQ physical activity level. 

IGF-1, LTL, and vitamin D models included additional covariates for standing height, leukocyte 

count, and month of biomarker assessment (to control for seasonality of vitamin D sun 

exposure), respectively.  

All exposures replicated in the mortality XWAS that survived the disease sensitivity and 

cluster modeling states were also tested in relation to 8-15 year incidence of 25 chronic disease 

categories (Table S8), as well as three clinical risk factors (obesity, hypertension, dyslipidemia). 

This included all diseases in the top 20 causes of death in the UK Biobank as of July 28, 2022 

(except for causes related to accidents/external injury and infectious disease) as well as other 

conditions that are highly prevalent in aging populations. We serially assessed each exposure 

and disease pair using Cox models that used age-at-risk as the timescale, were stratified by 5-

year birth cohort and sex, and were adjusted for the following covariates: UK Biobank 

assessment center, years of education, ethnicity, smoking status, and IPAQ physical activity 

level. Each set of biomarker and disease analyses was corrected separately for multiple testing 
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using FDR. Heatmaps and annotation tracks for biomarker and incident disease analyses 

shown in Fig. 7 were created using the ComplexHeatmap package in R.46 

 

1.13. Final multivariable exposome modeling 

 

As a final analysis step, all exposures independently associated with premature mortality 

and surviving the disease sensitivity and cluster modeling steps were assessed in a single 

model with premature mortality as the outcome. The aim was to determine that amount of 

variation in mortality that the entire aging exposome explains. Similar multivariable models were 

calculated for each of the chronic disease outcomes studied, with the subset of exposures used 

in the models that were individually associated with that disease in previous analysis steps. For 

sex-specific outcomes (breast, ovarian, and prostate cancers), we also included in the 

exposome all sex-specific exposures that were replicated in the female- and male-only mortality 

XWAS. Across all models for all outcomes, we excluded UK Biobank assessment center, as its 

responses are location-specific and do not generalize to other populations. Furthermore, the 

response levels are different between the English dataset and the Scottish/Welsh validation 

dataset and therefore the effects from one population do not carry over into the other. Ordinal 

categorical variables were allowed all polynomial contrasts for these final multivariable models. 

The Cox proportional hazards models used for these multivariable models different slightly from 

those used in previous analyses, instead using time in study as the timescale, using recruitment 

age and sex as fixed covariates, and removing birth cohort from the model given its collinearity 

with age. This is represented in the below R formula: 

coxph(Surv(f,d) ~ e + s + x, data) (5) 



 
 
 
 
 

32 

where f is survival time for the outcome, d is the event indicator, e is age at recruitment (scaled), 

s is sex, and x is a vector of all exposures associated with the outcome in previous analysis 

steps.  

 Because different variables in our dataset had small amounts of NA values after our 

recoding procedures (see above), adding more and more variables to a single model increases 

the number of participants that are dropped from regression due to an NA response across any 

variable. To ensure that model performance would not be affected by this and to avoid 

overfitting, we systematically calculated crosstabs between each categorical exposure and the 

event indicator for each outcome. Datasets used for this crosstab procedure included only the 

subsets of participants with no missing values across any exposures or PRS variables for that 

outcome, as well as excluding any prevalent outcome cases. Any categorical exposure with less 

than 10 outcome cases for one of the response levels was completely excluded from all 

exposome models for that specific outcome. The only exception was the variable on type of 

accommodation lived in, where instead we recoded all responses of "Mobile or temporary 

structure (i.e. caravan)" to NA and removed that as a response level from the variable (since 

only a few hundred people endorsed this response level in the subset of participants in the 

multivariable models).  

 For each outcome, four versions of the model were calculated. The first only includes 

age (scaled) and sex in the model. The second is the full exposome model (shown in formula 5, 

above). The third takes all variables from model 2 and also includes the polygenic risk score 

(PRS) for the outcome, if available (see below for more detail). The fourth model was calculated 

including all variables from model 3 plus additional known clinical risk factors for each outcome 

(Table S14). Each model was validated in the independent Scottish/Welsh dataset by obtaining 

the linear predicted values from the models in the English dataset and measuring the C-index 
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and R2 for these values in relation to the outcome rates in the Scottish/Welsh population. Effect 

estimates from the full exposome multivariable model for all chronic diseases studied are shown 

in Figs. S35-58. 

 For each Cox model, the proportional hazards assumption was tested by examining the 

Schoenfeld residuals using the cox.zph function in the Survival package. For each model, if any 

variable that showed a p-value lower than 0.0001 in the cox.zph output, then the Schoenfeld 

residuals were plotted to inspect the residuals distribution. Variables were deemed to violate the 

proportional hazards assumption based on visual inspection of the Schoenfeld residuals to 

detect non-conformity of the residuals over time. For these variables, a new model was 

calculated with an interaction with time. Survival time splitting to use for time interactions in 

these models was performed using the timeSplitter function from the Greg R package,47 using 

two years as the interval for time splitting.  

 

1.14. Calculating polygenic risk scores 

 

Where possible, we used multi-ancestry PRS that were previously made available by the 

UK Biobank (Table S11). Methods for deriving these PRS are described elsewhere.48 For 

cancer outcomes where no PRS were provided by the UK Biobank, we identified recent PRS 

from the PGS Catalog,49 selecting scores derived in predominantly European populations that 

did not overlap with the UK Biobank cohort (as no multi-ancestry scores were available). We 

calculated these PRS as weighted sums, ∑(no. risk alleles*effect size) in the UK Biobank v3 

imputed genotype data. PGS catalog entries used to calculate PRS were as follows: leukemia 

(PGS000077) by Graff et al. (2021),50 lung cancer (PGS000078) by Graff et al. (2021),50 

pancreas cancer (PGS000083) by Graff et al. (2021),50 esophageal cancer (PGS002298) by 
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Choi et al. (2020),51 COPD score (PGS001788) by Wang et al. (2021),52 chronic kidney disease 

(PGS000859) by Mansour Aly et al. (2021),53 non-alcoholic fatty liver disease (PGS002282) by 

Schnurr et al. (2022),54 liver cirrhosis (PGS000726) by Emdin et al. (2020),55 and knee 

osteoarthritis (PGS002729) by Sedaghati-Khayat et al. (2022).56 All variants in these scores met 

our quality control criteria of imputation information > 0.4 and minor allele frequency (MAF) > 

0.005 in the UK Biobank data. Although these new PRS were mostly developed in European 

populations, we calculated the PRS for our full multi-ancestry sample and accepted the 

limitation that the PRS may be slightly mis-specified in non-European participants. Nonetheless, 

initial testing of the PRS showed that they performed well in our full sample including all 

ethnicities, with a strong, dose-response association across quintiles of genetic risk for all PRS 

except esophageal cancer, which showed weaker associations between the PRS and cancer 

outcome. This is consistent with the association results obtained from the original publication on 

the creation of this PRS.51 

All PRS were coded as quintiles for use in our multivariable models. In all multivariable 

models including PRS variables, we also added an additional covariate for genotype array 

(BiLEVE vs. Axiom; field ID 22000) as well as the first four genetic principal components 

published by the UK Biobank (field ID 22009). 

 

1.15. Pooling R2, C-index, and Chi-squared values across imputed datasets 

 

R2 values for each model were calculated using the CoxR2 package57 as a measure of 

explained randomness based on the partial likelihood ratio statistic under the Cox Proportional 

Hazard model,58 which has been shown in simulation studies to perform better for survival 

analysis than traditional or pseudo R2 metrics.59 Following previous guidance,60 R2 values were 
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first calculated separately within each imputed dataset, converted to r-scale coefficients by 

taking the square root, and then converted to the z-scale using Fisher’s z transformation. Z-

transformed R2 values were then averaged across all five imputed datasets. These averaged 

values were then re-transformed back to the r-scale using inverse z transformation and then 

squared to return a pooled R2 value. C-index values were also pooled using the same method. 

In variable importance analyses, Wald chi-squared (Χ2) values were obtained for each variable 

exposure by running ANOVA on each multivariable cox model separately in each imputed 

dataset using the rms package in R.61 To obtain the pooled proportion of the total model Χ2 that 

each variable and variable category explained, the sum of Χ2 values for the same 

variable/category across all imputed dataset was divided by the sum of the total model Χ2 values 

across all imputed datasets. Exposure importance according to total model Χ2 for key diseases 

in exposome multivariable Cox models are shown in Figs. S12-S34.  

 

1.16.  Systematic review of exposome-wide health studies 

 

To better situate our research in relation to the landscape of published exposome-wide 

or environment-wide analyses, we conducted a systematic review to identify all exposome 

studies published to date on any health outcomes in humans. We searched PubMed on March 

28, 2022 using the following search string: Exposom* OR Exposome-wide OR Environment-

wide OR "Environment-wide association study" OR "ExWAS" OR "Ex-WAS". Eligibility criteria 

included peer-reviewed, original research articles containing an exposome- or environment-wide 

analysis of biological, health, or behavioral outcomes in humans, with no limit for year of 

publication. Exclusion criteria included duplicates; non-English publications; research not carried 

out in humans; reviews, commentaries, or methods articles; corrigendum or response articles; 
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and preprints. Paper abstracts were screened independently for eligibility by two separate 

reviewers, with any discrepancies in inclusion/exclusion decisions reconciled to arrive at the 

final list of papers to include. Studies were reviewed for inclusion using Rayyan software.62 

Protocol for the systematic review was pre-registered on the Open Science Framework (OSF) 

(doi: 10.17605/OSF.IO/N3DCV; https://osf.io/n3dcv/).  

1,472 studies were retrieved via our search, of which 73 were deemed appropriate to 

include. After retrieving all published exposome analyses to date, only one paper was identified 

with an “environment-wide” analysis of mortality.34 No exposome papers were published with 

aging as an outcome. 

 

2. Sensitivity analyses 

 

Accelerometer data and self-reported physical activity. We also calculated mortality 

multivariable models using the accelerometer data available in the UK Biobank. The aim of this 

analysis was to compare the explanatory power of the baseline self-reported physical activity 

variables versus an objective measure of physical activity. Data collection for accelerometer 

data occurred from 2013-2015 in a subsample of 103,672 UK Biobank participants. Mortality 

survival times were re-calculated using the date from the start time of the accelerometer wear 

period (field ID 90010) as the start date of follow up for each participant. We used the overall 

acceleration average variable (field ID 90012) as our measure of objective physical activity. 

Description of the development of this variable has been described previously.63 Before 

analysis, we carried out several quality control steps to refine the overall acceleration average 

variable by excluding participants: (1) whose data could not be calibrated (field ID 90016); (2) 

who did not wear the device long enough to get a stable measure of their physical activity status 
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(field ID 90015); (3) with >1% clipped values before or after calibration (field IDs 90183, 90185) 

out of the total data readings (field ID 90187); or (4) who had an unrealistically high overall 

acceleration average of 100 milli-gravity or greater. This process excluded 6,189 participants, 

leaving a total sample of n=85,520 for the accelerometer analyses. 

Two models were tested: the first included all self-reported baseline physical activity 

measures (IPAQ, LTPA, OPA, sedentary time) in the full sample of UK Biobank participants 

recruited in England (n=436,891), the second only included overall acceleration average in the 

subsample of participants with accelerometer data (n=85,520). Both models were run as Cox 

proportional hazards models with mortality survival time as the timescale with additional 

covariates for age at time of activity measurement, sex, UK Biobank assessment center, years 

of education, household income, ethnicity, smoking status, and Townsend deprivation index. All 

polynomial contrasts were allowed for all ordinal variables. When putting all self-reported 

baseline physical activity measures in the same model there was no collinearity according to 

VIF. The pooled R2 from the all-cause mortality model using overall acceleration average was 

0.59, whereas the pooled R2 from the model using self-reported baseline physical activity 

measures was 0.56 (Table S12). Objective physical activity explained a greater amount of the 

mortality variation in our UK Biobank sample by 3%, indicating that our overall estimate of the 

variation of mortality explained by baseline self-reported physical activity measures 

underrepresents the total influence of the objectively measured physical activity on mortality by 

only approximately 3%.  

Prostate cancer. After conducting analyses between all validated exposures and incident 

prostate cancer, we observed that many significant associations were in the opposite direction 

as expected. Notably, we observed all smoking variables showed an association with decreased 

risk of incident prostate cancer. This inverse association has been well documented in previous 
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studies.64-66 It has been posited that those who do not smoke may be more likely to undergo a 

prostate specific antigen (PSA) test and receive a diagnosis whereas those who smoke may be 

less likely to undergo testing and therefore would be undiagnosed or not diagnosed until a much 

later stage. We attempted to test this by stratifying the sample population by those who had 

ever received a PSA test at baseline (field ID 2365; n=137,598 for those with no PSA test, 

n=58,425 for those with a PSA test), as well as conducting a model in the full sample of men 

recruited in England (n=196,113) with PSA test as a fixed covariate. All Cox models included 

age as the timescale, were stratified by 5-year birth cohorts, and were adjusted for UK Biobank 

assessment center, household income, ethnicity, years of education, and IPAQ activity group. 

All polynomial contrasts were allowed for all ordinal variables.   

The inverse association between smoking and incident prostate cancer remained in both 

those who had and had not received a PSA test (Table S13). Furthermore, adding in ever 

having taken a PSA test as a covariate to the model in the full sample also did not alter the 

inverse association observed between smoking and prostate cancer. Together, these results 

seem to rule out any detection bias explaining the associations between smoking and prostate 

cancer. Previous research has also demonstrated that increased insulin-like growth factor 1 

(IGF-1) levels are associated with increased risk of prostate cancer67 and it has been posited 

that smoking may reduce the risk of prostate cancer through decreasing IGF-1.66 Our analysis 

did show a significant association between smoking and decreased IGF-1 levels (Fig. 5), which 

may support this hypothesis. 
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3. Supplementary discussion of study findings 

 

Cluster multivariable models returned robust, significant associations for many 

exposures that are unstudied or understudied in the context of premature mortality, including 

several aspects of physical activity (components of the leisure time physical activity variable, 

including: pleasure walks; light and heavy DIY activities like watering the lawn, digging, 

carpentry; swimming; and strenuous sport activity), type of accommodation lived in (apartment 

vs. house), and certain measures of household composition such as number of people living 

within your household and living with parents or siblings. Although frequency of confiding in 

others has previously been associated with all-cause mortality in the UK Biobank as part of a 

composite measure including loneliness,68 we also demonstrate that it has explanatory power 

for mortality on its own. 

In line with previous research,7 we observed that frequency of alcohol intake showed a 

U-shaped association with mortality unless modelled in current drinkers only. When modeling 

using current drinkers, we found a J-shaped association between alcohol intake and mortality, 

where only the highest amount of alcohol intake was associated with increased risk of mortality 

compared with the lowest intake level. Previous large meta-analyses21 and a Mendelian 

randomization study39 in the UK Biobank have demonstrated increasing risk of mortality with 

each increase in alcohol consumption, however we could not replicate this linear dose-response 

association in our analyses. Of note, we also only observed an increase in mortality risk for the 

highest level of alcohol intake in the more parsimonious XWAS model when adding further 

adjustment for self-reported overall health status. This lends further support to the idea that self-

reported alcohol status can be severely biased by health status at recruitment, including recent 

research from the UK Biobank found that participants are likely to misreport behavioral traits 
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such as alcohol consumption, often as a function of higher disease burden.38 It may be that the 

true direction of the association between self-reported alcohol intake and mortality may only be 

possible to detect via Mendelian Randomization. We also observed the same associations 

between alcohol intake and mortality in our unimputed data, and are therefore confident that our 

observed association is not somehow an artefact of our multiple imputation procedure.  

Furthermore, our analysis replicates a previous finding from the Million Women Study 

showing that despite many previously reported associations between happiness and mortality, 

happiness has no effect on all-cause mortality when proper covariate adjustment is made.69  

Interestingly, our research indicates that risk of premature mortality is lower for Black, 

Asian, and “Other” ethnicities compared with whites in the UK Biobank, even after adjustment 

for a large suite of sociodemographic and deprivation factors. This mirrors previous research 

using national UK census and death registration data showing that life expectancy is lower for 

whites compared with all other ethnic groups in the UK.70 However, these same non-white 

ethnic groups also tend to live in higher deprivation areas, report poorer self-rated health, and 

report poorer experiences of using health services in the UK.71 More research is required to 

understand how these opposite forces interact in different ways to produce lower mortality risk 

for UK minorities. While the relationship between geographic location, area disadvantage, and 

mortality is well established in the UK,32 further research is also needed on how this relationship 

applies across ethnic groups.  

Overall, cluster multivariable analyses showed robust associations across multiple, 

similar exposures that all have a concurrent effect on premature mortality while in the same 

model (e.g., multiple measures of physical activity: walking for pleasure, swimming and cycling, 

home DIY, general activity levels). This demonstrates that the environmental architecture of 

human aging is comprised of a complex network of interrelated factors that cannot be reduced 
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to the effect of a single variable for entire conceptual categories like social integration, physical 

activity, and diet/lifestyle. Analyses that focus on a single measure for any of these domains 

may fail to capture the total effect on aging captured by these domains. For example, our results 

add to the growing body of evidence that multiple dimensions of physical activity have 

independent, additive influences on mortality risk,72,73 and that even promotion of leisure time 

physical activities such as walking for pleasure, gardening, and home DIY will have positive 

benefits in reducing mortality burden. Our results add to this body of literature by further 

mapping the biological mechanisms and disease pathways through which these dimensions of 

physical activity influence mortality. 

Interestingly, we found that a variable for years of education does not remain 

significantly associated with mortality when put in a model with all 41 exposures identified in the 

cluster models. This may indicate that the effect of education on mortality is completely 

mediated by the other exposures identified in our analysis and does not have an independent 

effect on mortality outside of these mediators, although this interpretation needs further testing. 

Other socioeconomic exposures, such as household income, home ownership, and employment 

all remain significant in this full exposome model and seem to have independent effects on 

mortality.  

Food supplements such glucosamine, folate, fish oil supplement, multivitamins emerge 

as protective across many age-related diseases, with the exception of folate, which has been 

associated previously with increased risk of all-cause mortality and cardiovascular disease,74 as 

well as cancer incidence,75,76 as is found in our study. 
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4. Supplementary discussion on study limitations and strengths 

 

Principal strengths and limitations to this work are discussed in the main paper 

manuscript. Further to our discussion of self-report bias from the main article, it is important to 

note that a great deal of the questionnaire measures used in the UK Biobank for self-reported 

traits (e.g., diet) often vary from those used in other cohort study populations, which introduces 

the potential for variability or “vibration”80 between effects observed in the UK Biobank and 

those observed in other cohorts and consortia. Another limitation to note is that the UK Biobank 

population is not perfectly representative of the larger UK population, as it has been shown that 

the main UK Biobank population is healthier and more affluent than the general population and 

suffered from a low recruitment rate (5.5%).8 Therefore, extrapolations to the entire UK 

population based on the results of our analyses should not be undertaken. Finally, a limitation of 

our approach is that we only systematically tested for linear associations in our mortality XWAS, 

biomarker, and disease analyses. It is likely that certain exposures have non-linear relationships 

with these outcomes, and we are developing future exposome-wide analysis methods that can 

more systematically test for non-linear relationships. 

Despite these limitations, our study possesses many unique strengths that contribute 

greatly to the robustness of our findings. First, the scope and diversity of exposures used in our 

analysis is greatly expanded beyond what has normally been tested in previous XWAS and 

exposome studies. This has allowed us to identify associations for understudied variables in the 

context of aging and premature mortality. Furthermore, we are afforded relatively higher 

confidence in exposures we identified as related to aging in our study based on our many steps 

of variable filtering, disease sensitivity, and triangulation through biomarker and disease testing. 

Previous epidemiological studies on environmental variables in relation to all-cause mortality, 
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including large scale cohort studies81 and previous exposome studies,34 have not taken these 

precautions. Our study design allows for a more fine-grained approach to systematically 

addressing bias in exposome-wide studies that greatly improves our ability to minimize risk of 

these biases.  

 Furthermore, our systematic review (described in section 1.16, above) revealed that all 

previous exposome- and environment-wide analyses of age-related diseases and 

cardiometabolic risk factors (type 2 diabetes 82 cardiometabolic traits,83 lung cancer mortality,84 

chronic kidney disease,85 peripheral artery disease,86 hypertension,87 and blood pressure88) 

have only added age as a fixed effect covariate to their model and have either been cross 

sectional or, if longitudinal, have not used age-at-risk as the timescale for analysis. These 

existing exposome studies are likely to suffer from residual confounding due to age-varying risk 

or cohort effects, even where longitudinal methods are used. Our robust approach to modeling 

age-varying risk with added adjustment for 5-year birth cohorts diminishes the potential of 

confounding from age that is widespread in existing exposome research and improves 

confidence in our associations reported. 

We believe that exposome-wide studies using robust, multi-stage approaches such as 

ours not only offers the opportunity to discover new environmental influences on aging, but can 

help to address the preponderance of false positives and non-replicated associations evident in 

observational epidemiology in a manner similar to the transition to genome-wide association 

studies (GWAS) in genomics research.89,90 Through using large, well-characterized study 

samples with adequate power; use of stringent exposome-wide significance thresholds; 

performing concurrent replication analyses in independent populations; and undertaking an 

agnostic analysis of all exposome features available in a given dataset and documenting results 
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from all tests (both significant and null) without selective reporting, exposome science will be 

crucial in increasing the reproducibility of significant associations in observational epidemiology.  
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6. Supplementary figures 

 

Figure S1. Correlation between mortality XWAS betas calculated in the full pooled sample including women and men (x-axis) and the subset of participants with no 
disease or poor health (y-axis). Pearson’s R for the correlation between betas is shown, as is the p-value for the correlation. A best fit line is fitted by regressing 
the betas from the y-axis onto the betas from the x-axis. Labelled points are those variables that were flagged during the disease indicator interaction analysis.  
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Figure S2. Correlation between mortality XWAS betas calculated in the full pooled sample (x-axis) and the subset of participants excluding those who died within 
the first 4 years of follow up (y-axis). Pearson’s R for the correlation between betas is shown, as is the p-value for the correlation. A best fit line is fitted by 
regressing the betas from the y-axis onto the betas from the x-axis.  
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Figure S3. Rates of missing information among the 41 exposures replicated in the mortality XWAS and that survived 
the disease sensitivity and cluster modeling steps. Derived variables are not shown (they were only created after 
multiple imputation) and instead all component variables that make up derived variables are shown
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Figure S4. Volcano plot of log-transformed p-values and fold change (calculated as log2 of the odds ratio) from a PheWAS of never eating sugar in English 
participants (n=436,891). Each point represents the effect and p-value for the association between a single exposure and never eating sugar. Exposures that were 
FDR significant are colored, whereas associations that were not significant are colored dark grey and grouped in the category “* Non-significant.”  
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Figure S5. Volcano plot of log-transformed p-values and fold change (calculated as log2 of the odds ratio) from a PheWAS of number of household vehicles in 
English participants (n=436,891). Each point represents the effect and p-value for the association between a single exposure and number of household vehicles. 
Exposures that were FDR significant are colored, whereas associations that were not significant are colored dark grey and grouped in the category “* Non-
significant.”  
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Figure S6. AIC for the cluster model (y-axis) according to the number of k-means clusters (y-axis) for exposures replicated in the pooled mortality 
XWAS. The black dotted line at 11 shows the number of clusters detected with an optimal AIC according to k-means. 
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Figure S7. Total within-cluster sum of squares (WSS; y-axis) according to the number of hierarchical clusters (y-axis) for exposures replicated in 
the pooled mortality XWAS. The red dotted line at 9 shows the number of clusters selected by AIC. 
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Figure S8. K-means clustering of exposures replicated in the pooled mortality XWAS using a 6-cluster 
solution. Each dot represents an individual exposure, with the larger dot being the centroid of each k-
means cluster. X- and y-axes are the first two principal components taking the correlation matrix of all the 
exposures as an input. 
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Fig. S9. Principal component (PC) loadings for highly correlated physical environment variables among 
English UK Biobank participants (n=436,891). Since all air pollution levels loaded inversely onto the first 
air pollution PC, the first PC was multiplied by -1 before analysis in order to reflect increasing levels of air 
pollution in line with the original direction of the component variables. 
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Fig. S10. Principal component loadings for highly correlated physical environment variables among 
Scottish/Welsh UK Biobank participants (n=55,676). Principal components were only made for categories 
of variables that were significant in the cluster multivariable modeling carried out in English participants 
(n=436,891). Since all air pollution levels loaded inversely onto the first air pollution PC, the first PC was 
multiplied by -1 before analysis in order to reflect increasing levels of air pollution in line with the original 
direction of the component variables.
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Figure S11. Forest plot of exposome associations with all-cause mortality (n= 436,891) in (a) multivariable models within each individual cluster, 
(b) multivariable models within grouped neighboring clusters, and (c) final exposome-wide model used for C-index and R2 calculations. Only 
variables significant at p < 0.05 were carried forward to the next model. Models in (a) and (b) were Cox models calculated using age as the 
timescale, stratified by 5-year birth cohorts and sex, and adjusted for UK Biobank assessment center, years of education, household income, and 
ethnicity (only if the covariate was not already in the cluster model). The full exposome R2 model (c) uses a single Cox model with mortality 
survival time as the timescale and adding age (scaled) and sex as fixed covariates (estimates not shown for age and sex in the forest plot). 
Multiple estimates are shown for nominal categorical variables, with estimate points for each response level in the same row. Estimates not 
significant at p < 0.05 are shown as hollow points. IPAQ: International Physical Activity Questionnaires; LTPA: leisure time physical activity; MH: 
mental health; OPA: occupational physical activity; PC: principal component 
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Figure S12. Variable importance according to proportion of total model chi-squared (Χ2) for each exposure in the final multivariable all-cause 
dementia exposome Cox model. 
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Figure S13. Variable importance according to proportion of total model chi-squared (Χ2) for each exposure in the final multivariable Alzheimer’s 
disease exposome Cox model. 
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Figure S14. Variable importance according to proportion of total model chi-squared (Χ2) for each exposure in the final multivariable Breast cancer 
exposome Cox model. 
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Figure S15. Variable importance according to proportion of total model chi-squared (Χ2) for each exposure in the final multivariable 
cerebrovascular diseases exposome Cox model. 
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Figure S16. Variable importance according to proportion of total model chi-squared (Χ2) for each exposure in the final multivariable chronic kidney 
diseases exposome Cox model. 
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Figure S17. Variable importance according to proportion of total model chi-squared (Χ2) for each exposure in the final multivariable chronic liver 
diseases exposome Cox model. 
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Figure S18. Variable importance according to proportion of total model chi-squared (Χ2) for each exposure in the final multivariable colorectal 
cancer exposome Cox model. 
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Figure S19. Variable importance according to proportion of total model chi-squared (Χ2) for each exposure in the final multivariable emphysema, 
COPD exposome Cox model. 
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Figure S20. Variable importance according to proportion of total model chi-squared (Χ2) for each exposure in the final multivariable esophageal 
cancer exposome Cox model. 
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Figure S21. Variable importance according to proportion of total model chi-squared (Χ2) for each exposure in the final multivariable ischemic heart 
disease exposome Cox model. 
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Figure S22. Variable importance according to proportion of total model chi-squared (Χ2) for each exposure in the final multivariable leukemia 
exposome Cox model. 
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Figure S23. Variable importance according to proportion of total model chi-squared (Χ2) for each exposure in the final multivariable liver cancer 
exposome Cox model. 
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Figure S24. Variable importance according to proportion of total model chi-squared (Χ2) for each exposure in the final multivariable lung cancer 
exposome Cox model. 
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Figure S25. Variable importance according to proportion of total model chi-squared (Χ2) for each exposure in the final multivariable lymphoma 
exposome Cox model. 
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Figure S26. Variable importance according to proportion of total model chi-squared (Χ2) for each exposure in the final multivariable macular 
degeneration exposome Cox model. 
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Figure S27. Variable importance according to proportion of total model chi-squared (Χ2) for each exposure in the final multivariable osteoarthritis 
exposome Cox model. 

 



 
 
 
 
 

79 

 
 

Figure S28. Variable importance according to proportion of total model chi-squared (Χ2) for each exposure in the final multivariable osteoporosis 
exposome Cox model. 
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Figure S29. Variable importance according to proportion of total model chi-squared (Χ2) for each exposure in the final multivariable ovarian cancer 
exposome Cox model. 
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Figure S30. Variable importance according to proportion of total model chi-squared (Χ2) for each exposure in the final multivariable pancreatic 
cancer exposome Cox model. 
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Figure S31. Variable importance according to proportion of total model chi-squared (Χ2) for each exposure in the final multivariable prostate cancer 
exposome Cox model. 
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Figure S32. Variable importance according to proportion of total model chi-squared (Χ2) for each exposure in the final multivariable rheumatoid 
arthritis exposome Cox model. 
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Figure S33. Variable importance according to proportion of total model chi-squared (Χ2) for each exposure in the final multivariable type II diabetes 
exposome Cox model. 
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Figure S34. Variable importance according to proportion of total model chi-squared (Χ2) for each exposure in the final multivariable vascular 
dementia exposome Cox model.
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Figure S35. Effect estimates from the full exposome multivariable Cox model for All-cause dementia in 
UK Biobank English participants (n=436,891).  
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Figure S36. Effect estimates from the full exposome multivariable Cox model for Alzheimer’s disease in 
UK Biobank English participants (n=436,891). 
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Figure S37. Effect estimates from the full exposome multivariable Cox model for breast cancer in UK 
Biobank women recruited in England (n=237,634).  
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Figure S38. Effect estimates from the full exposome multivariable Cox model for cerebrovascular 
diseases in UK Biobank English participants (n=436,891).  
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Figure S39. Effect estimates from the full exposome multivariable Cox model for chronic kidney diseases 
in UK Biobank English participants (n=436,891).  
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Figure S40. Effect estimates from the full exposome multivariable Cox model for chronic liver diseases in 
UK Biobank English participants (n=436,891). 
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Figure S41. Effect estimates from the full exposome multivariable Cox model for colorectal cancer in UK 
Biobank English participants (n=436,891).  
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Figure S42. Effect estimates from the full exposome multivariable Cox model for emphysema, COPD in 
UK Biobank English participants (n=436,891). 
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Figure S43. Effect estimates from the full exposome multivariable Cox model for esophageal cancer in UK 
Biobank English participants (n=436,891).  
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Figure S44. Effect estimates from the full exposome multivariable Cox model for ischemic heart disease 
in UK Biobank English participants (n=436,891).  
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Figure S45. Effect estimates from the full exposome multivariable Cox model for leukemia in UK Biobank 
English participants (n=436,891). 
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Figure S46. Effect estimates from the full exposome multivariable Cox model for liver cancer in UK 
Biobank English participants (n=436,891).  
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Figure S47. Effect estimates from the full exposome multivariable Cox model for lung cancer in UK 
Biobank English participants (n=436,891). 
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Figure S48. Effect estimates from the full exposome multivariable Cox model for lymphoma in UK 
Biobank English participants (n=436,891).  
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Figure S49. Effect estimates from the full exposome multivariable Cox model for macular degeneration in 
UK Biobank English participants (n=436,891).  
  



 
 
 
 
 

101 

 

Figure S50. Effect estimates from the full exposome multivariable Cox model for osteoarthritis in UK 
Biobank English participants (n=436,891).  
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Figure S51. Effect estimates from the full exposome multivariable Cox model for osteoporosis in UK 
Biobank English participants (n=436,891).  
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Figure S52. Effect estimates from the full exposome multivariable Cox model for ovarian cancer in UK 
Biobank women recruited in England (n=237,634).  
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Figure S53. Effect estimates from the full exposome multivariable Cox model for pancreatic cancer in UK 
Biobank English participants (n=436,891). Model also included covariates for age and sex. 
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Figure S54. Effect estimates from the full exposome multivariable Cox model for Parkinson’s disease in 
UK Biobank English participants (n=436,891). 
  



 
 
 
 
 

106 

 

Figure S55. Effect estimates from the full exposome multivariable Cox model for prostate cancer in UK 
Biobank men recruited in England (n=199,257).  
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Figure S56. Effect estimates from the full exposome multivariable Cox model for Rheumatoid arthritis in 
UK Biobank English participants (n=436,891).  
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Figure S57. Effect estimates from the full exposome multivariable Cox model for type 2 diabetes in UK 
Biobank English participants (n=436,891). 
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Figure S58. Effect estimates from the full exposome multivariable Cox model for vascular dementia in UK 
Biobank English participants (n=436,891).   
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7. Supplementary tables 
  
Table S1. Baseline descriptive statistics - UK Biobank participants recruited in England 

  Female 
(N=237,634) 

Male 
(N=199,257) 

Total 
(N=436,891) 

Age    
  Mean (SD) 56 (8.0) 57 (8.2) 57 (8.1) 
Household income    
  Less than 18,000 52,139 (21.9%) 38,416 (19.3%) 90,555 (20.7%) 
  18,000 to 30,999 58,496 (24.6%) 45,827 (23.0%) 104,323 (23.9%) 
  31,000 to 51,999 52,229 (22.0%) 48,178 (24.2%) 100,407 (23.0%) 
  52,000 to 100,000 37,443 (15.8%) 39,514 (19.8%) 76,957 (17.6%) 
  Greater than 100,000 9,742 (4.1%) 10,884 (5.5%) 20,626 (4.7%) 
Education years    
  7 years 39,642 (16.7%) 33,716 (16.9%) 73,358 (16.8%) 
  10 years 46,951 (19.8%) 27,632 (13.9%) 74,583 (17.1%) 
  13 years 13,922 (5.9%) 10,134 (5.1%) 24,056 (5.5%) 
  15 years 31,779 (13.4%) 20,463 (10.3%) 52,242 (12.0%) 
  19 years 30,058 (12.6%) 38,388 (19.3%) 68,446 (15.7%) 
  20 years 72,867 (30.7%) 66,742 (33.5%) 139,609 (32.0%) 
Ethnicity    
  White 223,428 (94.0%) 187,256 (94.0%) 410,684 (94.0%) 
  Asian 5,172 (2.2%) 5,344 (2.7%) 10,516 (2.4%) 
  Black 4,452 (1.9%) 3,210 (1.6%) 7,662 (1.8%) 
  Mixed 1,610 (0.7%) 938 (0.5%) 2,548 (0.6%) 
  Other 2,388 (1.0%) 1,737 (0.9%) 4,125 (0.9%) 
BMI    
  Mean (SD) 27 (5.2) 28 (4.2) 27 (4.8) 
Smoking status    
  Never 141,414 (59.5%) 97,119 (48.7%) 238,533 (54.6%) 
  Previous 74,753 (31.5%) 77,122 (38.7%) 151,875 (34.8%) 
  Current 20,591 (8.7%) 24,223 (12.2%) 44,814 (10.3%) 
Home area population density    
  Urban 203,583 (85.7%) 171,299 (86.0%) 374,882 (85.8%) 
  Rural 34,051 (14.3%) 27,958 (14.0%) 62,009 (14.2%) 
Mortality    
  Alive 224,740 (94.6%) 180,435 (90.6%) 405,175 (92.7%) 
  Dead 12,894 (5.4%) 18,822 (9.4%) 31,716 (7.3%) 

Mortality rates are for the 11-15 year study follow up period. Descriptive statistics are calculated using the first imputed analysis 
dataset and are not pooled across imputed datasets. BMI: body mass index; SD: standard deviation. 
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Table S2. Baseline descriptive statistics - UK Biobank participants with no prevalent disease	

		 Female 
(N=163,415)	

Male 
(N=137,905)	

Total 
(N=301,320)	

Age	 	 	 	
		Mean (SD)	 55 (8.0)	 55 (8.2)	 55 (8.1)	
Household income	 	 	 	
		Less than 18,000	 29,254 (17.9%)	 20,104 (14.6%)	 49,358 (16.4%)	
		18,000 to 30,999	 39,009 (23.9%)	 30,209 (21.9%)	 69,218 (23.0%)	
		31,000 to 51,999	 39,122 (23.9%)	 36,101 (26.2%)	 75,223 (25.0%)	
		52,000 to 100,000	 30,113 (18.4%)	 31,891 (23.1%)	 62,004 (20.6%)	
		Greater than 100,000	 7,984 (4.9%)	 9,057 (6.6%)	 17,041 (5.7%)	
Education years	 	 	 	
		7 years	 21,857 (13.4%)	 18,072 (13.1%)	 39,929 (13.3%)	
		10 years	 32,872 (20.1%)	 19,198 (13.9%)	 52,070 (17.3%)	
		13 years	 10,116 (6.2%)	 7,321 (5.3%)	 17,437 (5.8%)	
		15 years	 21,435 (13.1%)	 13,934 (10.1%)	 35,369 (11.7%)	
		19 years	 21,210 (13.0%)	 27,055 (19.6%)	 48,265 (16.0%)	
		20 years	 54,466 (33.3%)	 51,046 (37.0%)	 105,512 (35.0%)	
Ethnicity	 	 	 	
		White	 153,607 (94.0%)	 129,698 (94.0%)	 283,305 (94.0%)	
		Asian	 3,481 (2.1%)	 3,416 (2.5%)	 6,897 (2.3%)	
		Black	 3,095 (1.9%)	 2,343 (1.7%)	 5,438 (1.8%)	
		Mixed	 1,185 (0.7%)	 696 (0.5%)	 1,881 (0.6%)	
		Other	 1,647 (1.0%)	 1,245 (0.9%)	 2,892 (1.0%)	
BMI	 	 	 	
		Mean (SD)	 26 (4.8)	 27 (3.9)	 27 (4.4)	
Smoking status	 	 	 	
		Never	 100,764 (61.7%)	 72,787 (52.8%)	 173,551 (57.6%)	
		Previous	 48,831 (29.9%)	 48,644 (35.3%)	 97,475 (32.3%)	
		Current	 13,300 (8.1%)	 16,046 (11.6%)	 29,346 (9.7%)	
Home area population density	 	 	 	
		Urban	 139,489 (85.4%)	 117,969 (85.5%)	 257,458 (85.4%)	
		Rural	 23,926 (14.6%)	 19,936 (14.5%)	 43,862 (14.6%)	
Mortality	 	 	 	
		Alive	 157,783 (96.6%)	 129,820 (94.1%)	 287,603 (95.4%)	
		Dead	 5,632 (3.4%)	 8,085 (5.9%)	 13,717 (4.6%)	

Baseline descriptive statistics for the subsample of UK Biobank participants with no disease at baseline (used for disease sensitivity 
analyses). Mortality rates are for the 11-15 year study follow up period. Descriptive statistics are calculated using the first imputed 
analysis dataset and are not pooled across imputed datasets. SD: standard deviation. 



 
 
 
 
 

112 

Table S3. Baseline descriptive statistics - UK Biobank participants recruited in Scotland/Wales	

		 Female 
(N=30,707)	

Male 
(N=24,969)	

Total 
(N=55,676)	

Age	 	 	 	
		Mean (SD)	 56 (8.0)	 57 (8.1)	 56 (8.0)	
Household income	 	 	 	
		Less than 18,000	 7,454 (24.3%)	 4,843 (19.4%)	 12,297 (22.1%)	
		18,000 to 30,999	 7,060 (23.0%)	 5,571 (22.3%)	 12,631 (22.7%)	
		31,000 to 51,999	 7,018 (22.9%)	 6,370 (25.5%)	 13,388 (24.0%)	
		52,000 to 100,000	 5,037 (16.4%)	 5,258 (21.1%)	 10,295 (18.5%)	
		Greater than 100,000	 1,127 (3.7%)	 1,307 (5.2%)	 2,434 (4.4%)	
Education years	 	 	 	
		7 years	 5,571 (18.1%)	 4,669 (18.7%)	 10,240 (18.4%)	
		10 years	 5,000 (16.3%)	 2,828 (11.3%)	 7,828 (14.1%)	
		13 years	 1,893 (6.2%)	 1,391 (5.6%)	 3,284 (5.9%)	
		15 years	 3,520 (11.5%)	 2,453 (9.8%)	 5,973 (10.7%)	
		19 years	 3,466 (11.3%)	 4,289 (17.2%)	 7,755 (13.9%)	
		20 years	 10,966 (35.7%)	 9,104 (36.5%)	 20,070 (36.0%)	
Ethnicity	 	 	 	
		White	 30,101 (98.0%)	 24,383 (97.7%)	 54,484 (97.9%)	
		Asian	 247 (0.8%)	 266 (1.1%)	 513 (0.9%)	
		Black	 73 (0.2%)	 72 (0.3%)	 145 (0.3%)	
		Mixed	 125 (0.4%)	 86 (0.3%)	 211 (0.4%)	
		Other	 114 (0.4%)	 104 (0.4%)	 218 (0.4%)	
BMI	 	 	 	
		Mean (SD)	 27 (5.3)	 28 (4.3)	 28 (4.9)	
Smoking status	 	 	 	
		Never	 18,264 (59.5%)	 12,575 (50.4%)	 30,839 (55.4%)	
		Previous	 9,221 (30.0%)	 8,845 (35.4%)	 18,066 (32.4%)	
		Current	 3,128 (10.2%)	 3,476 (13.9%)	 6,604 (11.9%)	
Home area population density	 	 	 	
		Urban	 27,481 (89.5%)	 22,310 (89.4%)	 49,791 (89.4%)	
		Rural	 3,219 (10.5%)	 2,648 (10.6%)	 5,867 (10.5%)	
Mortality	 	 	 	
		Alive	 28,518 (92.9%)	 21,891 (87.7%)	 50,409 (90.5%)	
		Dead	 2,189 (7.1%)	 3,078 (12.3%)	 5,267 (9.5%)	

Mortality rates are for the 11-15 year study follow up period. Descriptive statistics are calculated using the first imputed analysis 
dataset and are not pooled across imputed datasets. SD: standard deviation. 
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Table S4. Mortality by cause of death - UK Biobank 
participants recruited in England 

  Total deaths 
(N=31,716) 

  All diseases* 22,201 (70.0%) 
  Ischemic heart disease 5,320 (16.8%) 
  Lung cancer 2,845 (9.0%) 
  Cerebrovascular diseases 2,349 (7.4%) 
  Emphysema, COPD 2,266 (7.1%) 
  Colorectal cancer 1,624 (5.1%) 
  Breast cancer 1,404 (4.4%) 
  Type II diabetes 1,394 (4.4%) 
  All-cause dementia 1,281 (4.0%) 
  Pancreatic cancer 1,228 (3.9%) 
  Prostate cancer 1,216 (3.8%) 
  Chronic kidney diseases 1,160 (3.7%) 
  Esophageal cancer 816 (2.6%) 
  Lymphoma 764 (2.4%) 
  Parkinson's disease 722 (2.3%) 
  Chronic liver diseases 776 (2.4%) 
  Alzheimer's disease 661 (2.1%) 
  Leukemia 656 (2.1%) 
  Ovarian cancer 590 (1.9%) 
  Liver cancer 580 (1.8%) 
  Vascular dementia 362 (1.1%) 
  Rheumatoid arthritis 193 (0.6%) 
  Osteoporosis 63 (0.2%) 
  Osteoarthritis 36 (0.1%) 
  Macular degeneration 1 (0.0%) 

 

Table S5. Mortality by cause of death - UK Biobank 
participants recruited in Scotland/Wales 

  Total deaths 
(N=5,267) 

  All diseases* 3,762 (71.4%) 
  Ischemic heart disease 936 (17.8%) 
  Lung cancer 558 (10.6%) 
  Cerebrovascular diseases 434 (8.2%) 
  Emphysema, COPD 400 (7.6%) 
  Type II diabetes 323 (6.1%) 
  Colorectal cancer 276 (5.2%) 
  All-cause dementia 251 (4.8%) 
  Breast cancer 216 (4.1%) 
  Pancreatic cancer 195 (3.7%) 
  Alzheimer's disease 181 (3.4%) 
  Chronic kidney diseases 178 (3.4%) 
  Prostate cancer 163 (3.1%) 
  Esophageal cancer 122 (2.3%) 
  Chronic liver diseases 129 (2.4%) 
  Lymphoma 112 (2.1%) 
  Parkinson's disease 106 (2.0%) 
  Liver cancer 103 (2.0%) 
  Ovarian cancer 97 (1.8%) 
  Vascular dementia 94 (1.8%) 
  Leukemia 91 (1.7%) 
  Rheumatoid arthritis 46 (0.9%) 
  Osteoporosis 12 (0.2%) 
  Osteoarthritis 3 (0.1%) 
  Macular degeneration 0 (0%) 

Numbers and percentages represent the number of deaths for which each disease was listed as either the primary or contributory cause of death. Only 
diseases that were associated with at least one exposure are listed.  

*All diseases encompasses only those diseases listed in this table and is an indicator of the number of participants with any of the diseases in this table listed 
as a primary or contributory cause of death
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Table S6. Chronic disease and clinical risk factor diagnosis rates - UK Biobank participants recruited in England 

  Female 
(N=237,634) 

Male 
(N=199,257) 

Total 
(N=436,891) 

Colorectal cancer    
  No diagnosis 233,700 (98.3%) 194,334 (97.5%) 428,034 (98.0%) 
  Incident diagnosis 2,834 (1.2%) 3,516 (1.8%) 6,350 (1.5%) 
  Prevalent diagnosis 1,100 (0.5%) 1,407 (0.7%) 2,507 (0.6%) 
Lung cancer    
  No diagnosis 235,068 (98.9%) 196,424 (98.6%) 431,492 (98.8%) 
  Incident diagnosis 2,305 (1.0%) 2,423 (1.2%) 4,728 (1.1%) 
  Prevalent diagnosis 261 (0.1%) 410 (0.2%) 671 (0.2%) 
Esophageal cancer    
  No diagnosis 237,210 (99.8%) 198,099 (99.4%) 435,309 (99.6%) 
  Incident diagnosis 373 (0.2%) 986 (0.5%) 1,359 (0.3%) 
  Prevalent diagnosis 51 (0.0%) 172 (0.1%) 223 (0.1%) 
Liver cancer    
  No diagnosis 237,178 (99.8%) 198,576 (99.7%) 435,754 (99.7%) 
  Incident diagnosis 382 (0.2%) 570 (0.3%) 952 (0.2%) 
  Prevalent diagnosis 74 (0.0%) 111 (0.1%) 185 (0.0%) 
Pancreatic cancer    
  No diagnosis 236,855 (99.7%) 198,358 (99.5%) 435,213 (99.6%) 
  Incident diagnosis 736 (0.3%) 843 (0.4%) 1,579 (0.4%) 
  Prevalent diagnosis 43 (0.0%) 56 (0.0%) 99 (0.0%) 
Brain cancer    
  No diagnosis 237,133 (99.8%) 198,668 (99.7%) 435,801 (99.8%) 
  Incident diagnosis 379 (0.2%) 477 (0.2%) 856 (0.2%) 
  Prevalent diagnosis 122 (0.1%) 112 (0.1%) 234 (0.1%) 
Leukemia    
  No diagnosis 236,728 (99.6%) 197,946 (99.3%) 434,674 (99.5%) 
  Incident diagnosis 692 (0.3%) 1,020 (0.5%) 1,712 (0.4%) 
  Prevalent diagnosis 214 (0.1%) 291 (0.1%) 505 (0.1%) 
Lymphoma    
  No diagnosis 235,985 (99.3%) 197,254 (99.0%) 433,239 (99.2%) 
  Incident diagnosis 1,201 (0.5%) 1,429 (0.7%) 2,630 (0.6%) 
  Prevalent diagnosis 448 (0.2%) 574 (0.3%) 1,022 (0.2%) 
Breast cancer    
  No diagnosis 218,845 (92.1%) 199,105 (99.9%) 417,950 (95.7%) 
  Incident diagnosis 8,843 (3.7%) 90 (0.0%) 8,933 (2.0%) 
  Prevalent diagnosis 9,946 (4.2%) 62 (0.0%) 10,008 (2.3%) 
Ovarian cancer    
  No diagnosis 235,622 (99.2%) 199,254 (100.0%) 434,876 (99.5%) 
  Incident diagnosis 1,190 (0.5%) 3 (0.0%) 1,193 (0.3%) 
  Prevalent diagnosis 822 (0.3%) 0 (0%) 822 (0.2%) 
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Table S6. Chronic disease and clinical risk factor diagnosis rates - UK Biobank participants recruited in England 

  Female 
(N=237,634) 

Male 
(N=199,257) 

Total 
(N=436,891) 

Prostate cancer    
  No diagnosis 237,626 (100.0%) 186,308 (93.5%) 423,934 (97.0%) 
  Incident diagnosis 5 (0.0%) 9,805 (4.9%) 9,810 (2.2%) 
  Prevalent diagnosis 3 (0.0%) 3,144 (1.6%) 3,147 (0.7%) 
Type II diabetes    
  No diagnosis 220,185 (92.7%) 174,531 (87.6%) 394,716 (90.3%) 
  Incident diagnosis 6,838 (2.9%) 8,592 (4.3%) 15,430 (3.5%) 
  Prevalent diagnosis 10,611 (4.5%) 16,134 (8.1%) 26,745 (6.1%) 
Ischemic heart disease    
  No diagnosis 218,285 (91.9%) 163,606 (82.1%) 381,891 (87.4%) 
  Incident diagnosis 11,852 (5.0%) 19,369 (9.7%) 31,221 (7.1%) 
  Prevalent diagnosis 7,497 (3.2%) 16,282 (8.2%) 23,779 (5.4%) 
Cerebrovascular diseases    
  No diagnosis 227,488 (95.7%) 186,034 (93.4%) 413,522 (94.7%) 
  Incident diagnosis 6,765 (2.8%) 8,640 (4.3%) 15,405 (3.5%) 
  Prevalent diagnosis 3,381 (1.4%) 4,583 (2.3%) 7,964 (1.8%) 
Emphysema, COPD    
  No diagnosis 226,215 (95.2%) 186,023 (93.4%) 412,238 (94.4%) 
  Incident diagnosis 6,970 (2.9%) 8,485 (4.3%) 15,455 (3.5%) 
  Prevalent diagnosis 4,449 (1.9%) 4,749 (2.4%) 9,198 (2.1%) 
Chronic liver diseases    
  No diagnosis 233,239 (98.2%) 194,463 (97.6%) 427,702 (97.9%) 
  Incident diagnosis 3,621 (1.5%) 3,793 (1.9%) 7,414 (1.7%) 
  Prevalent diagnosis 774 (0.3%) 1,001 (0.5%) 1,775 (0.4%) 
Chronic kidney diseases    
  No diagnosis 228,299 (96.1%) 189,208 (95.0%) 417,507 (95.6%) 
  Incident diagnosis 8,858 (3.7%) 9,381 (4.7%) 18,239 (4.2%) 
  Prevalent diagnosis 477 (0.2%) 668 (0.3%) 1,145 (0.3%) 
All-cause dementia    
  No diagnosis 234,741 (98.8%) 195,953 (98.3%) 430,694 (98.6%) 
  Incident diagnosis 2,819 (1.2%) 3,214 (1.6%) 6,033 (1.4%) 
  Prevalent diagnosis 74 (0.0%) 90 (0.0%) 164 (0.0%) 
Vascular dementia    
  No diagnosis 236,967 (99.7%) 198,308 (99.5%) 435,275 (99.6%) 
  Incident diagnosis 614 (0.3%) 884 (0.4%) 1,498 (0.3%) 
  Prevalent diagnosis 53 (0.0%) 65 (0.0%) 118 (0.0%) 
Alzheimer's    
  No diagnosis 236,139 (99.4%) 197,823 (99.3%) 433,962 (99.3%) 
  Incident diagnosis 1,441 (0.6%) 1,368 (0.7%) 2,809 (0.6%) 
  Prevalent diagnosis 54 (0.0%) 66 (0.0%) 120 (0.0%) 



 
 
 
 
 

116 

Table S6. Chronic disease and clinical risk factor diagnosis rates - UK Biobank participants recruited in England 

  Female 
(N=237,634) 

Male 
(N=199,257) 

Total 
(N=436,891) 

Parkinson's    
  No diagnosis 236,302 (99.4%) 197,026 (98.9%) 433,328 (99.2%) 
  Incident diagnosis 1,035 (0.4%) 1,719 (0.9%) 2,754 (0.6%) 
  Prevalent diagnosis 297 (0.1%) 512 (0.3%) 809 (0.2%) 
Rheumatoid arthritis    
  No diagnosis 231,489 (97.4%) 196,363 (98.5%) 427,852 (97.9%) 
  Incident diagnosis 2,668 (1.1%) 1,362 (0.7%) 4,030 (0.9%) 
  Prevalent diagnosis 3,477 (1.5%) 1,532 (0.8%) 5,009 (1.1%) 
Macular degeneration    
  No diagnosis 232,478 (97.8%) 195,968 (98.3%) 428,446 (98.1%) 
  Incident diagnosis 4,625 (1.9%) 2,973 (1.5%) 7,598 (1.7%) 
  Prevalent diagnosis 531 (0.2%) 316 (0.2%) 847 (0.2%) 
Osteoporosis    
  No diagnosis 222,980 (93.8%) 196,689 (98.7%) 419,669 (96.1%) 
  Incident diagnosis 8,307 (3.5%) 1,686 (0.8%) 9,993 (2.3%) 
  Prevalent diagnosis 6,347 (2.7%) 882 (0.4%) 7,229 (1.7%) 
Osteoarthritis    
  No diagnosis 183,497 (77.2%) 162,615 (81.6%) 346,112 (79.2%) 
  Incident diagnosis 26,469 (11.1%) 19,410 (9.7%) 45,879 (10.5%) 
  Prevalent diagnosis 27,668 (11.6%) 17,232 (8.6%) 44,900 (10.3%) 
Hypertension    
  No diagnosis 45,992 (19.4%) 28,391 (14.2%) 74,383 (17.0%) 
  Prevalent diagnosis 191,642 (80.6%) 170,866 (85.8%) 362,508 (83.0%) 
Obesity    
  No diagnosis 181,877 (76.5%) 148,720 (74.6%) 330,597 (75.7%) 
  Prevalent diagnosis 55,757 (23.5%) 50,537 (25.4%) 106,294 (24.3%) 
Dyslipidemia    
  No diagnosis 108,118 (45.5%) 67,006 (33.6%) 175,124 (40.1%) 
  Prevalent diagnosis 129,516 (54.5%) 132,251 (66.4%) 261,767 (59.9%) 

Prevalent chronic disease rates are calculated as those with a corresponding ICD diagnosis date before or on the date of 
recruitment into the UK Biobank cohort. Additionally, those who self-reported a physician diagnosis of cancer, diabetes, heart attack, 
stroke, or bronchitis/emphysema during the baseline verbal interview were also used to count prevalent cases for cancer, diabetes, 
heart disease, cerebrovascular disease, and chronic lower respiratory diseases, respectively. Incident disease rates are for the 11-
14 year study follow up period and exclude those with prevalent disease at baseline. Descriptive statistics are calculated using the 
first imputed analysis dataset and are not pooled across imputed datasets. 
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Table S7. Biomarker summary statistics by sex - UK Biobank participants recruited in England	

		 Female 
(N=237,634)	

Male 
(N=199,257)	

Total 
(N=436,891)	

Alanine Aminotransferase (U/L)	 20 (12)	 27 (15)	 23 (14)	
Albumin (g/L)	 45 (2.6)	 46 (2.6)	 45 (2.6)	
Alkaline phosphatase (U/L)	 85 (27)	 82 (25)	 84 (26)	
Apolipoprotein A (g/L)	 1.6 (0.27)	 1.4 (0.23)	 1.5 (0.28)	
Apolipoprotein B (g/L)	 1.0 (0.24)	 1.0 (0.24)	 1.0 (0.24)	
Aspartate aminotransferase (U/L)	 24 (9.4)	 28 (12)	 26 (11)	
C-reactive protein (mg/L)	 2.7 (4.4)	 2.5 (4.4)	 2.6 (4.4)	
Cholesterol (mmol/L)	 5.9 (1.1)	 5.5 (1.1)	 5.7 (1.1)	
Creatinine (umol/L)	 64 (14)	 82 (19)	 72 (19)	
Cystatin C (mg/L)	 0.88 (0.16)	 0.94 (0.18)	 0.91 (0.18)	
Direct bilirubin (umol/L)	 1.5 (0.64)	 2.0 (0.93)	 1.7 (0.82)	
Gamma glutamyltransferase (U/L)	 30 (34)	 46 (50)	 37 (42)	
Glucose (mmol/L)	 5.1 (1.1)	 5.2 (1.4)	 5.1 (1.2)	
Glycated haemoglobin (HbA1c) (mmol/mol)	 36 (5.9)	 37 (7.6)	 36 (6.7)	
HDL cholesterol	 1.6 (0.38)	 1.3 (0.31)	 1.5 (0.39)	
Insulin-like growth factor 1 (IGF-1) (nmol/L)	 21 (5.8)	 22 (5.6)	 21 (5.7)	
LDL direct (mmol/L)	 3.6 (0.87)	 3.5 (0.86)	 3.6 (0.87)	
Leukocyte telomere length (T/S ratio)	 0.84 (0.13)	 0.82 (0.13)	 0.83 (0.13)	
Lipoprotein(a) (nmol/L)	 45 (50)	 44 (49)	 45 (49)	
Phosphate (mmol/L)	 1.2 (0.15)	 1.1 (0.16)	 1.2 (0.16)	
Total bilirubin (umol/L)	 8.1 (3.7)	 10 (4.9)	 9.1 (4.4)	
Triglycerides (mmol/L)	 1.5 (0.85)	 2.0 (1.2)	 1.7 (1.0)	
Urate (umol/L)	 270 (66)	 360 (72)	 310 (81)	
Urea (mmol/L)	 5.2 (1.3)	 5.6 (1.5)	 5.4 (1.4)	
Vitamin D (nmol/L)	 49 (21)	 49 (21)	 49 (21)	
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Table S8. Variables used for biomarker analyses 
Biomarker UK Biobank field ID 
Alanine aminotransferase 30620 
Albumin 30600 
Alkaline phosphatase 30610 
Apolipoprotein A 30630 
Apolipoprotein B 30640 
Aspartate aminotransferase 30650 
High sensitivity C-reactive protein 30710 
Cholesterol 30690 
Creatinine 30700 
Cystatin C 30720 
Direct bilirubin 30660 
Total bilirubin 30840 
Gamma glutamyltransferase 30730 
Glucose 30740 
Glycated hemoglobin (hbA1c) 30750 
HDL cholesterol 30760 
Insulin-like growth factor 1 (IGF-1) 30770 
LDL direct 30780 
Lipoprotein A 30790 
Phosphate 30810 
Triglycerides 30870 
Urate 30880 
Urea 30670 
Vitamin D 30890 
Leukocyte telomere length (LTL) 22192 
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Table S9. Variables used to calculate prevalence and incidence of chronic diseases and clinical risk factors  

Chronic disease Baseline measures (field ID) 
Baseline verbal 
interview diagnosis 
codes 

ICD-10 codes ICD-9 codes 

Colorectal cancer - 1022, 1023 C18-C20 153, 154 

Lung cancer - 1001, 1027, 1028, 1080 C33, C34 162 

Esophageal cancer - 1017 C15 150 

Liver cancer - 1024 C22 155 

Pancreatic cancer - 1026 C25 157 

Brain cancer - 1032 C71 191 

Leukemia - 1048 C91-C95 204-208 

Lymphoma - 1047 C81-C86, C88 201-203 

Breast cancer - 1002 C50 174-175 

Ovarian cancer - 1039 C56 183 

Prostate cancer - 1044 C61 185 

Type 2 diabetes              

Taking insulin medication (6153, 6177) 
Diabetes diagnosed by physician (2443) 
Non-fasting blood hbA1c ³ 48 mmol/mol (30750) 
Non-fasting blood glucose ³ 11.1 mmol/L (30740) 

1223 E11 250 

Ischemic heart disease 
Heart attack diagnosis by physician (6150) 
Angina diagnosis by physician (6150) 

1074, 1075 I20-I25 410-414 

Cerebrovascular diseases Stroke diagnosis by physician (6150) 1081, 1086, 1491, 1583 I60-I69 430-438 

Emphysema, COPD Bronchitis/emphysema diagnosis by physician (6152) 1112, 1472 J43-J44 492 

Chronic liver diseases - 1157, 1158, 1604 K70, K73-K74, 
K75.8, K76.0 571 

Chronic kidney diseases - 1192, 1193, 1194 N18 585 
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All-cause dementia - 1263 
A81.0, F00-F03, 
F05.1, F10.6, 
G30-G31, I67.3 

331.0, 290.4, 331.1, 
290.2, 290.3, 291.2, 
294.1, 331.2, 331.5 

Vascular dementia - 1263 F01, I67.3 290.4 

Alzheimer’s disease - 1263 F00, G30 331.0 

Parkinson’s disease and 
parkinsonism - 1262 G20-G22 332 

Rheumatoid arthritis - 1464 M05-M06 714 

Macular degeneration - 1528 H35.3 362.5 

Osteoporosis - 1309 M80-M81 733.0 

Osteoarthritis - 1465 M15-M19 715 

Clinical risk factors Baseline measures (field ID) 
Baseline verbal 
interview diagnosis 
codes 

ICD-10 codes ICD-9 codes 

Hypertension 
High blood pressure diagnosis by physician (6150) 
Taking medication for high blood pressure (6153, 6177) 
Blood pressure SBP/DBP ³ 140/90 mmHg (4079, 4080) 

1065, 1072 I10-I15 401-405 

Obesity BMI ³ 30 kg/m2 (21001) - E66 278.0 

Dyslipidemia 

Taking cholesterol lowering medication (6153, 6177) 
Blood cholesterol ³ 240 / 38.67 (30690) 
Blood LDL ³ 160 / 38.67 (30780) 
Blood HDL < 40 / 38.67 (30760) 
Blood triglycerides ³ 200 / 88.57 (30870) 

- E78 272 

Verbal interview diagnosis codes are contained in the cancer (field ID 20001) and non-cancer illness (field ID 20002) variables. Field IDs for ICD variables: ICD-10 
summary diagnoses (41270) and date of diagnosis (41280); ICD-9 summary diagnoses (41271) and date of diagnosis (41281). Incident disease cases were also 
identified using ICD-10 codes from cause of death information from linked death register data. Baseline prevalence for all diseases and clinical risk factors was 
calculated for all participants using baseline measures (including verbal interview diagnosis codes) + those with an ICD diagnosis before or on the date of 
recruitment into the UK Biobank. Incident cases are defined as those with an ICD date of diagnosis after the date of recruitment who do not have any prevalent 
diagnosis. Unless specific ICD subcategories are already given with dot separators, all ICD codes listed also include all subcategories (e.g., J44 includes J44, 
J44.0, J44.1, J44.8, J44.9). COPD: chronic obstructive pulmonary disease; BMI: body mass index: SBP: systolic blood pressure; DBP: diastolic blood pressure.
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Table S10. Components and calculation of the daily partial fiber score 

Food variable  
(UK Biobank field ID) 

Portion specified in 
touchscreen question Portion size Estimated fiber 

content/portion (g) 

Fresh fruit (1309) Pieces (e.g., 1 apple, 1 
banana, 10 grapes)  2.0 

Dried fruit (1319) Pieces (e.g., 1 apricot, 1 
prune, 10 raisins)  0.5 

Cooked vegetables (1289) Heaped tablespoons  1.0 

Raw vegetables (1299) Heaped tablespoons  1.0 

Bread intake (1438) 
Bread type (1448)              Slices 

White bread: 36 g 0.68 
Brown bread: 36 g 1.26 
Wholemeal bread: 36 g 1.80 
Other type of bread: 36 g 1.25 

Breakfast cereal intake (1458) 
Breakfast cereal type (1468)  Bowls 

Bran cereal: 40 g 7.16 
Biscuit cereal: 40 g 2.92 
Oat cereal: 160 g 1.92 
Muesli: 55 g 4.18 
Other (e.g., cornflakes): 30 g 0.54 

Estimated fiber content/portion take from Bradbury et al. (2018).17 
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Table S11. Components and calculation of the LTPA and OPA scores 
LTPA (field ID) METs 

Walking for pleasure (6164, 981, 971) 3.3 METs * mins/week 

Strenuous sports (6164, 1001, 991) 8.0 METs * mins/week 

Other exercises (6164, 3647, 3637) 4.5 METs * mins/week 

Light DIY (6164, 1021, 1011) 2.25 METs * mins/week 

Heavy DIY (6164, 2634, 2624) 4.5 METs * mins/week 

OPA (field ID)  

Heavy physical work (816, 767) 4.5 METs * mins/week 

Walking/standing work (806, 767) 2.25 METs * mins/week 
LTPA: leisure-time physical activity; OPA: occupational physical activity; MET: metabolic equivalent of task; DIY: do-
it-yourself;. METs used for each type of activity were taken from Pearce et al. (2020).18 
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Table S12. Variables used for calculation of polygenic risk scores (PRS). 

Outcome UK Biobank derived PRS measure(s) used (field ID) 

All-cause mortality 

Bowel cancer (26218); breast cancer (26220); ovarian cancer (26232); prostate 
cancer (26267); type 2 diabetes (26285); cardiovascular disease (26223); coronary 
artery disease (26227); ischemic stroke (26248); Alzheimer’s disease (26206); 
Parkinson’s (26260); rheumatoid arthritis (26273); macular degeneration (26204); 
osteoporosis (26258); lung cancer; esophageal cancer; pancreatic cancer; 
leukemia; emphysema/COPD 

Colorectal cancer Bowel cancer (26218) 

Lung cancer Calculated ourselves (see Methods) 

Esophageal cancer Calculated ourselves (see Methods) 

Liver cancer None 

Pancreatic cancer Calculated ourselves (see Methods) 

Brain cancer None 

Leukemia Calculated ourselves (see Methods) 

Lymphoma None 

Breast cancer Breast cancer (26220) 

Ovarian cancer Ovarian cancer (26232) 

Prostate cancer Prostate cancer (26267) 

Type 2 diabetes              Type 2 diabetes (26285) 

Ischemic heart disease Cardiovascular disease (26223); coronary artery disease (26227) 

Cerebrovascular diseases Ischemic stroke (26248) 

Emphysema, COPD Calculated ourselves (see Methods) 

Chronic liver diseases 
Non-alcoholic fatty liver disease - calculated ourselves (see Methods) 
Liver cirrhosis - calculated ourselves (see Methods) 

Chronic kidney diseases Calculated ourselves (see Methods) 

All-cause dementia Alzheimer’s disease (26206) 

Vascular dementia Alzheimer’s disease (26206) 

Alzheimer’s disease Alzheimer’s disease (26206) 

Parkinson’s disease and 
parkinsonism Parkinson’s (26260) 

Rheumatoid arthritis Rheumatoid arthritis (26273) 

Macular degeneration Macular degeneration (26204) 

Osteoporosis Osteoporosis (26258) 

Osteoarthritis Knee osteoarthritis - calculated ourselves (see Methods) 
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Table S13. Accelerometer vs. self-reported physical activity measures in relation to mortality	

 	 Hazard Ratio 
[95% CI]	 p-value	 Hazard Ratio 

[95% CI] 	 p-value 	

Overall acceleration average (milli-gravity)	 0.95 [0.94, 0.95]	 < 0.001	 	 	

IPAQ physical activity group	 	 	 0.82 [0.80, 0.84]	 < 0.001	

Leisure time physical activity (LTPA)	 	 	 0.85 [0.82, 0.88]	 < 0.001	

Occupational physical activity (OPA)	 	 	 0.87 [0.84, 0.90]	 < 0.001	

Total sedentary time	 	 	 1.10 [1.08, 1.13]	 < 0.001	

R2	 0.59	 	 0.56	 	
Both models include covariates for age, sex, UK Biobank assessment center, household income, years of education, 
ethnicity, smoking status, and Townsend deprivation index.  
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Table S14. Smoking associations with prostate cancer according to PSA test	

 	 No PSA test	 Has PSA test	 PSA test as covariate	

 	 Hazard Ratio 
[95% CI]	 p-value	 Hazard Ratio 

[95% CI] 	 p-value 	 Hazard Ratio 
[95% CI]  	 p-value  	

Never smoker (reference)	 -	 -	 -	 -	 -	 -	

Previous smoker	 0.97 [0.91, 1.03]	 0.31	 0.93 [0.87, 1.00]	 0.04	 0.95 [0.91, 1.00]	 0.04	

Current smoker	 0.90 [0.81, 0.99]	 0.02	 0.86 [0.75, 0.98]	 0.02	 0.88 [0.81, 0.95]	 < 0.001	
 

All models are Cox models with age as the timescale, stratified by 5-year birth cohorts, and with covariates for UK 
Biobank assessment center, household income, years of education, ethnicity, and IPAQ activity level. Sample sizes are 
n=137,598 for those with no PSA test, n=58,425 for those with a PSA test, and n=196,113 for final model not stratified by 
PSA test but including PSA test as a covariate. 
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Table S15. Explained variation and C-index across multivariable models in UK Biobank participants recruited in England 

Disease Model 1 
C-index 

Model 2 
C-index 

Model 3 
C-index 

Model 4 
C-index 

Model 1 
R² 

Model 2 
R² 

Model 3 
R² 

Model 4 
R² Cases Sample 

All-cause mortality 0.7070 0.7138 0.7557 0.7583 0.4300 0.4559 0.6043 0.6134 18,885 - 31,716 293,043 - 436,891 
Vascular dementia 0.8288 0.8472 0.8667 0.8779 0.7890 0.8371 0.8711 0.8983 1,102 - 1,498 358,524 - 436,773 
Emphysema, COPD 0.6841 0.7243 0.8432 0.8489 0.3469 0.4818 0.8449 0.8590 9,561 - 16,722 289,238 - 428,960 
Lung cancer 0.6959 0.7173 0.8313 0.8326 0.3885 0.4608 0.8332 0.8390 2,846 - 4,728 293,713 - 436,220 
All-cause dementia 0.8095 0.8334 0.8365 0.8552 0.7386 0.8097 0.8095 0.8611 3,284 - 6,033 293,615 - 436,727 
Alzheimer's disease 0.8191 0.8578 0.8343 0.8684 0.7620 0.8643 0.8020 0.8879 2,196 - 2,809 369,360 - 436,771 
Chronic kidney diseases 0.7301 0.7366 0.7793 0.7816 0.4954 0.5178 0.6623 0.6692 10,150 - 18,239 293,178 - 435,746 
Parkinson's disease 0.7638 0.7759 0.7813 0.7942 0.6054 0.6434 0.6617 0.6986 2,262 - 2,754 366,631 - 436,082 
Osteoporosis 0.7536 0.7662 0.7801 0.7912 0.5713 0.6135 0.6568 0.6902 5,684 - 9,993 291,882 - 429,662 
Esophageal cancer 0.7311 0.7390 0.7716 0.7738 0.4898 0.5199 0.6309 0.6406 1,139 - 1,359 368,104 - 436,668 
Macular degeneration 0.7521 0.7658 0.7612 0.7722 0.5703 0.6216 0.5977 0.6443 6,278 - 7,598 369,031 - 436,044 
Liver cancer 0.6943 - 0.7428 - 0.3798 - 0.5651 - 824 - 952 379,149 - 436,706 
Type II diabetes 0.6230 0.7044 0.7499 0.7812 0.1676 0.4126 0.5611 0.6599 8,487 - 15,430 279,155 - 410,146 
Cerebrovascular diseases 0.7096 0.7175 0.7408 0.7447 0.4319 0.4583 0.5367 0.5499 12,123 - 15,405 351,976 - 428,927 
Chronic liver diseases 0.5512 0.5948 0.7261 0.7370 0.0278 0.1036 0.4979 0.5374 4,295 - 7,414 293,473 - 435,116 
Rheumatoid arthritis 0.6356 0.6590 0.7254 0.7360 0.2057 0.2720 0.4929 0.5282 3,212 - 4,030 359,686 - 431,882 
Ischemic heart disease 0.6837 0.7045 0.7242 0.7392 0.3431 0.4118 0.4716 0.5192 21,815 - 35,125 281,867 - 417,016 
Pancreatic cancer 0.6931 0.7106 0.7087 0.7257 0.3798 0.4395 0.4359 0.4898 1,489 - 1,579 412,225 - 436,792 
Leukemia 0.6897 0.7010 0.7003 0.7098 0.3651 0.3997 0.4000 0.4309 1,658 - 1,712 422,026 - 436,386 
Prostate cancer 0.6774 0.7572 0.6863 0.7602 0.3307 0.5720 0.3573 0.5833 8,377 - 9,805 168,204 - 196,113 
Osteoarthritis 0.6410 0.6433 0.6803 0.6815 0.2206 0.2272 0.3366 0.3408 36,934 - 45,879 324,316 - 391,991 
Colorectal cancer 0.6677 0.6982 0.6757 0.7031 0.2927 0.3927 0.3220 0.4125 5,983 - 6,350 411,358 - 434,384 
Lymphoma 0.6547 - 0.6588 - 0.2520 - 0.2640 - 2,595 - 2,630 430,959 - 435,869 
Ovarian cancer 0.6061 0.6330 0.6441 0.6663 0.1246 0.1992 0.2334 0.3116 989 - 1,190 200,098 - 236,812 
Breast cancer 0.5416 0.6552 0.5676 0.6628 0.0202 0.2603 0.0549 0.2858 6,547 - 8,843 165,248 - 227,688 
Model 1: age, sex. Model 2: age, sex, polygenic risk scores (PRS; including genetic principal components, and genotyping batch). Model 3: age, sex, exposome. 
Model 4: age, sex, exposome, PRS. For diseases, the PRS for that specific disease was added. For all-cause mortality, all PRS for all other diseases in this table 
were added. If a PRS was not available for a particular outcome, then model 4 was not calculated for that outcome (and a dash is shown). Cases and sample 
sizes are shown as ranges due to varying levels of missing data across variables used in the different models. 
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Table S16. Explained variation and C-index across multivariable models in UK Biobank participants recruited in Scotland/Wales 

Disease Model 1 
C-index 

Model 2 
C-index 

Model 3 
C-index 

Model 4 
C-index 

Model 1 
R² 

Model 2 
R² 

Model 3 
R² 

Model 4 
R² Cases Sample 

All-cause mortality 0.7190 0.7258 0.7739 0.7741 0.4653 0.4891 0.6554 0.6581 5,267 55,676 
Vascular dementia 0.8619 0.8749 0.9016 0.9084 0.8467 0.8693 0.9154 0.9253 193 55,668 
Emphysema, COPD 0.7008 0.7471 0.8870 0.8920 0.3839 0.5510 0.9143 0.9238 1,281 54,556 
All-cause dementia 0.8243 0.8526 0.8637 0.8802 0.7738 0.8423 0.8677 0.9011 643 55,660 
Lung cancer 0.7036 0.7236 0.8473 0.8494 0.4090 0.4812 0.8612 0.8675 710 55,570 
Alzheimer's disease 0.8194 0.8581 0.8327 0.8640 0.7572 0.8531 0.7960 0.8714 329 55,666 
Chronic kidney diseases 0.7306 0.7381 0.8120 0.8106 0.5041 0.5260 0.7688 0.7619 966 55,505 
Esophageal cancer 0.7450 0.7547 0.7905 0.7954 0.5316 0.5696 0.6979 0.7094 186 55,650 
Parkinson's disease 0.7789 0.7981 0.7774 0.7964 0.6596 0.7152 0.6472 0.7022 197 55,580 
Type II diabetes 0.6440 0.7133 0.7737 0.8107 0.2176 0.4222 0.6360 0.7218 965 52,402 
Chronic liver diseases 0.6093 0.6208 0.7667 0.7762 0.1346 0.1846 0.6095 0.6368 477 55,413 
Osteoporosis 0.7457 0.7572 0.7647 0.7656 0.5557 0.5879 0.6072 0.6101 112 54,629 
Macular degeneration 0.7420 0.7495 0.7539 0.7574 0.5398 0.5654 0.5742 0.5926 414 55,614 
Liver cancer 0.7196 - 0.7537 - 0.4365 - 0.5678 - 143 55,648 
Cerebrovascular diseases 0.7114 0.7216 0.7480 0.7529 0.4466 0.4782 0.5618 0.5753 1,549 54,508 
Ischemic heart disease 0.6980 0.7256 0.7390 0.7614 0.3891 0.4827 0.5172 0.5904 3,428 52,827 
Rheumatoid arthritis 0.5751 0.6421 0.7161 0.7551 0.0855 0.2300 0.4677 0.5846 53 54,888 
Leukemia 0.7141 0.7074 0.7213 0.7144 0.4500 0.4447 0.4658 0.4563 176 55,609 
Prostate cancer 0.6985 0.7735 0.6981 0.7728 0.3827 0.6162 0.3803 0.6142 874 24,570 
Pancreatic cancer 0.6859 0.7070 0.6981 0.7177 0.3390 0.3863 0.3713 0.4159 226 55,657 
Colorectal cancer 0.6705 0.7015 0.6790 0.7072 0.2962 0.4036 0.3246 0.4215 760 55,315 
Osteoarthritis 0.6380 0.6373 0.6769 0.6764 0.2050 0.2022 0.3072 0.3053 2,941 50,525 
Ovarian cancer 0.6214 0.6755 0.6552 0.6951 0.1523 0.3034 0.2533 0.3833 154 30,590 
Lymphoma 0.6544 - 0.6499 - 0.2554 - 0.2509 - 288 55,528 
Breast cancer 0.5434 0.6447 0.5402 0.6447 0.0185 0.2233 0.0161 0.2225 1,042 29,447 

Model 1: age, sex. Model 2: age, sex, polygenic risk scores (PRS; including genetic principal components, and genotyping batch). Model 3: age, 
sex, exposome. Model 4: age, sex, exposome, PRS. For diseases, the PRS for that specific disease was added. For all-cause mortality, all PRS 
for all other diseases in this table were added. If a PRS was not available for a particular outcome, then model 4 was not calculated for that 
outcome (and a dash is shown). Results were calculated using linear predicted values based on model results from the English participants and 
outcome rates from the independent validation Scottish/Welsh sample. 



 
 
 
 
 

128 

8. Supplementary file titles and summaries  
 
 
Supplementary files can also be accessed and downloaded (alongside R scripts) on the 
project’s Github page: https://github.com/miargentieri/exposome-aging-UK-Biobank  
 
 
Supplementary File SF1. Data dictionary for all variables used in multiple imputation. 
Summary information about all baseline variables collected from the UK Biobank that were used 
in multiple imputation after variable exclusions. Information includes variable name used in 
analysis, UK Biobank field ID, original variable name in UK Biobank dataset provided to us, and 
URL link for each variable to the corresponding webpage on the UK Biobank showcase giving 
extensive detail for each variable.  
 
Supplementary File SF2. Data dictionary for exposures used in XWAS analyses. Summary 
information about all exposome analyzed in the mortality XWAS, including the sex-specific 
reproduction factors analyzed in the sex-specific XWAS only. Information includes variable 
name used in analysis, UK Biobank field ID, original variable name in UK Biobank dataset 
provided to us, and URL link for each variable to the corresponding webpage on the UK 
Biobank showcase giving extensive detail for each variable. 
 
Supplementary File SF3. Female XWAS output. We report all female-specific XWAS 
summary statistics. All effect estimates (hazard ratios, confidence intervals) shown are for 
analyses in the discovery set (n=118,815). FDR corrected p-values are given for both the 
discovery and replication analyses (FDR p-values will be NA for variables with an FDR p-value 
≥ 0.05 in the discovery analysis, as these variables would not have been tested in the 
replication stage). 
 
Supplementary File SF4. Male XWAS output. We report all male-specific XWAS summary 
statistics. All effect estimates (hazard ratios, confidence intervals) shown are for analyses in the 
discovery set (n=99,631). FDR corrected p-values are given for both the discovery and 
replication analyses (FDR p-values will be NA for variables with an FDR p-value ≥ 0.05 in the 
discovery analysis, as these variables would not have been tested in the replication stage). 
 
Supplementary File SF5. Pooled XWAS output. We report all XWAS summary statistics from 
the final pooled XWAS. All effect estimates (hazard ratios, confidence intervals) shown are for 
analyses in the discovery set (n=218,446). FDR corrected p-values are given for both the 
discovery and replication analyses (FDR p-values will be NA for variables with an FDR p-value 
≥ 0.05 in the discovery analysis, as these variables would not have been tested in the 
replication stage). 
 
Supplementary File SF6. Disease interaction sensitivity output. We report all summary 
statistics from the disease sensitivity analysis conducted among UK Biobank participants where 
an interaction term was added between each exposure and a binary indicator of poor health at 
baseline. All effect estimates (hazard ratios, confidence intervals) shown are for analyses in the 
pooled dataset (n=436,891).  
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Supplementary File SF7. XWAS survival time exclusion sensitivity output. We report all 
summary statistics from the sensitivity analysis wherein we conducted a mortality XWAS 
excluding all UK Biobank participants who died within 4 years of baseline (n=431,394). All effect 
estimates (hazard ratios, confidence intervals) shown are for analyses in the pooled dataset.  
 
Supplementary Files SF8-SF32. Aging biomarker analysis output. We report all summary 
statistics from the aging biomarker analysis testing associations between 25 blood biomarkers 
and exposures still significant after cluster multivariable and disease sensitivity analyses 
(n=436,891). 
 
Supplementary Files SF33-SF60. Incident disease and cardiometabolic risk factor 
analysis output. We report all summary statistics from the incident chronic disease and clinical 
risk factor analysis testing associations between all 28 diseases/risk factors and exposures still 
significant after cluster multivariable and disease sensitivity analyses (n=436,891). 
 
Supplementary Files SF61. Data dictionary of phenotypes used in phenome-wide 
association study (PheWAS) analyses. Summary information about all phenotypes analyzed 
in per-exposure PheWAS. Information includes variable name used in analysis, UK Biobank 
field ID, original variable name in UK Biobank dataset provided to us, and URL link for each 
variable to the corresponding webpage on the UK Biobank showcase giving extensive detail for 
each variable. 
 
Supplementary Files SF62-SF108. PheWAS output. We report all summary statistics from 
PheWAS testing associations between all exposures still significant after cluster multivariable 
and disease sensitivity analyses and all baseline phenotypes in the UK Biobank (n=436,891). 
 
 
 


