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One Sentence Summary 

 

The exposome is a major mortality determinant irrespective of genetic disease risk via 

shaping distinct biological and multimorbidity patterns. 

 

Abstract 

 

In this study, we aimed to quantify the relative roles of the genome and exposome in 

aging and mortality. We conducted an exposome-wide analysis in the UK Biobank (n=492,567) 

using independent discovery and replication sets to systematically identify exposures that are 

associated with mortality (median 12.5 follow-up years), 25 age-related diseases, 25 aging 

biomarkers, and 3 cardiometabolic risk factors. We identified 41 independent exposures that 

were associated with mortality, most of which were associated with consistent biological and 

multimorbidity signatures. Compared with a simple model composed of age and sex, polygenic 

risk scores for 22 major causes of death and aging phenotypes explained an additional 2% of 

mortality variation, whereas the exposome explained an additional 19% of variation. While 

genetics explained a high proportion of variation in dementias, breast, ovarian, and colorectal 

cancers, the exposome explained a high proportion of variation for diseases of the lung, heart, 

and liver. Our findings provide a comprehensive map of the relative contributions of environment 

and genetics to mortality and common age-related diseases, and suggest that environment-

focused interventions are likely to have the highest impact on ameliorating premature mortality.  
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Main Text 

 

Human aging is a complex process that initially manifests as sub-clinical and biological 

changes that begin to accumulate from mid-life onwards (1-3). These systemic biological 

changes are major drivers of common age-related diseases (4-6) and disease multimorbidity (7, 

8), which in turn are the major causes of premature mortality worldwide (9). While there have 

been major advancements in understanding the complex genetic etiology of age-related 

diseases, genetic studies show only a modest effect of the genome on lifespan (10, 11). 

Instead, the nearly twofold increase in global human lifespan during the past 200 years (12) has 

been largely attributed to changes in human environments (13). Epidemiological research has 

made progress in relating individual environmental and behavioral exposures to age-related 

diseases and mortality, however few studies have comprehensively examined the exposome 

(i.e., the total set of interrelated environmental exposures throughout the life course) in relation 

to these outcomes (14, 15). In the field of genetic epidemiology, the use of genome-wide 

approaches have greatly increased the positive predictive value (16) and reproducibility (17) of 

findings. Transitioning from studies of single environmental exposures to exposome-wide 

studies will provide similar advancements.  

Building upon the framework of genomic research on complex diseases, we conducted 

an exposome-wide analysis using data from the UK Biobank (n=492,567) to systematically 

identify exposures associated with mortality and multiple stages of the aging process, as 

captured by multimorbidity of common age-related disorders and their risk factors. We first 

systematically identified exposures that reliably associate with the most critical outcome of all 

age-related diseases – mortality. We then tested exposures associated with mortality in relation 

to: (i) incidence of age-related diseases that are either major causes of death or highly prevalent 

in aging populations (25 total); (ii) cross-sectional patterns of all age-related blood biomarkers 

available in the UK Biobank (25 total); and (iii) prevalence of three major cardiometabolic risk 
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factors (obesity, hypertension, dyslipidemia). We then examined the genetic and environmental 

architecture of mortality and age-related diseases to quantity the relative contribution of the 

exposome vs. polygenic risk to explaining variation in each outcome.  

 

Mortality and age-related disease rates 

 

The final study sample included 492,567 UK Biobank participants (Fig. 1). Exposome-

wide association study (XWAS), aging biomarker, and chronic disease analyses were carried 

out using UK Biobank participants recruited in England (n=436,891). Participants recruited in 

Scotland/Wales (n=55,676) were held out as a validation set used only to validate final 

multivariable disease models. There were 31,716 deaths from all causes among English 

participants after a median 12.5 years of follow up (Table S1). The majority (74.5%) of deaths 

were premature deaths (i.e., occurring before 75 years of age; Fig. 2a) and 75% of deaths 

occurred in those who were overweight or obese with a body mass index (BMI) ≥ 25 kg/m2 (Fig. 

2b). Women had a lower rate of all-cause mortality compared with men (5.4% in women vs 

9.4% in men; Table S1). Among Scottish/Welsh participants, there were 5,267 deaths from all 

causes after a median 13.7 years of follow up (Table S3). Mortality by cause of death for 

participants recruited both in England and Scotland/Wales is given in Tables S4-S5. 

The number incident cases for all age-related diseases studied in English participants 

ranged from 856 (brain cancer) to 45,879 (osteoarthritis), as shown in Fig. 2c and Table S6; 

summary statistics for all cross-sectional outcomes (3 cardiometabolic risk factors, 25 baseline 

aging biomarkers) are given in Tables S6-S7. Key demographic prevalence rates for English 

participants are shown in Fig. 2d. 
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Exposome-wide analysis of mortality 

 

XWAS of all-cause mortality were conducted by serially testing each exposure in relation 

to mortality via Cox proportional hazards models using independent discovery and replication 

subsets of the UK Biobank study population (Fig. 1). No significant differences were observed in 

XWAS regression betas when calculated separately in women and men (Fig. 3a). In a final 

mortality XWAS using pooled data from both women and men, 110/164 exposures (67.1%) 

were significantly replicated (Fig. 3b). Smoking, renting public housing (compared with home 

ownership), Townsend deprivation index, and living with a partner were the exposures most 

strongly associated with mortality. Sensitivity analyses excluding participants who died within 

the first 4 years of follow up and testing interactions between each exposure and a baseline 

poor health indicator suggested that largely there is no strong statistical evidence for reverse 

causation bias in our XWAS results (Fig. S1-S2), with only 15 exposures identified whose 

associations with mortality were likely completely explained by prevalent disease status (Fig. 

S1). These exposures were discarded, leaving 95/110 (86.4%) exposures whose associations 

with mortality were not likely explained by pre-existing morbidity. Summary statistics from all 

mortality XWAS analyses are given in Supplementary Files SF3-SF7. 

 

PheWAS of replicated exposures  

 

Each exposure replicated in the mortality XWAS and passing the above sensitivity 

analyses was checked for possible collinearity with other exposures and mismeasurement by 

conducting a phenome-wide association study (PheWAS) where the replicated exposure was 

treated as the outcome variable and regressed against all baseline phenotypes present in the 

UK Biobank using either logistic or linear regression (Supplementary Information). Using this 

method, we detected a further 10 exposures that associated extremely strongly with either: (i) 
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disease, frailty, or disability phenotypes; or (ii) another exposure such that it likely does not 

represent new information. For example, we found that never eating sugar was very strongly 

associated with having a diabetes diagnosis (OR: 4.2, p< 3.5x10-154) and insulin medication 

intake (OR: 5.43, p< 6.3x10-127), indicating that this exposure is mostly capturing diabetes and 

disability-related dietary restriction (Fig. S4). We also found that the number of vehicles in a 

participant’s household was very strongly associated with household income (Beta: 1.05, p < 

8.1x10-12), while inversely associated with living in council housing vs. home ownership (Beta: -

0.98, p < 5.01x10-56) and being unemployed due to a disability (Beta: -0.62, p < 1.4x10-245). 

These findings indicate that this exposure is mostly capturing socioeconomic and disability 

status (Fig. S5). Exposures showing mismeasurement from PheWAS were discarded and not 

carried forward to further analyses, leaving 86 remaining exposures. Summary statistics from all 

PheWAS are given in Supplementary Files SF62-SF108 and interactive volcano plots for each 

are shown in the Online Materials. 

 

Cluster architecture of the exposome 

 

We observed high degrees of correlation between exposures replicated in the XWAS 

(90% of variable pairs had a significant Bonferroni-corrected correlation p-value below 0.001), 

indicating that some mortality associations observed in the XWAS may be confounded due to 

this correlation structure. To address this, we used hierarchical clustering to organize replicated 

exposures that passed all sensitivity analyses into 9 unique clusters (Fig. 3c). We first 

conducted multivariable mortality Cox models within each cluster by adding all exposures from 

the cluster into a single Cox model (Fig. S11a). We discarded exposures that did not pass 

multicollinearity tests or were not significant in this within-cluster model. We then grouped the 

remaining significant cluster exposures into two large superclusters (clusters 1-5 and 6-9) and 

conducted a Cox mortality model within each of these superclusters to also account for long-
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range correlation confounding. Using this method, we identified 41 exposures that remained 

significant in these cluster multivariable models (Fig. S11b). 

We found that multiple dimensions of physical activity (general physical activity [IPAQ]; 

leisure time physical activity [LTPA]; total sedentary time) all exhibit significant, independent 

effects on mortality, even when included in the same model and adjusted for a wide number of 

other correlated variables. To further interrogate the robustness of this result, we also tested the 

association between total physical activity and all-cause mortality using accelerometer data 

available for a subset of participants (n=85,520; Supplementary Information). Self-reported 

physical activity variables underestimated the effect of accelerometer average on mortality by 

only 3% as measured by R2 (Table S13).  

 

Patterns of age-related multimorbidity and biological mechanisms 

 

To test whether the 41 identified exposures were associated with not just mortality but 

multiple stages of the aging process, we tested each exposure individually in relation to 

incidence of 25 age-related diseases via Cox proportional hazards models (8-15 years of follow-

up), as well as to cross-sectional patterns of 25 age-related biomarkers and 3 cardiometabolic 

risk factors (hypertension, obesity, dyslipidemia) via linear and logistic regression. Each of the 

41 exposures independently associated with mortality was associated with a wide range of 

aging biomarkers that span diverse organ systems and mechanisms (Fig. 4a). On average, 

each exposure was associated with 21.9 biomarkers (out of 25). Four exposures were 

associated with all 25 biomarkers (Townsend deprivation index, smoking status, hours of sleep, 

ethnicity) and nine with 24/25 biomarkers in total (unenthusiasm frequency, total sedentary time, 

home ownership, taking multivitamin supplements, LTPA, household income, years of 

education, relative body size at 10 years old, alcohol intake frequency). Summary statistics from 

all biomarker analyses are given in Supplementary Files SF8-SF32. Cardiometabolic risk factors 
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studied were cross-sectionally associated with nearly every exposure studied (Fig. 4b). Notably, 

hypertension was cross-sectionally associated with all exposures tested. 

Each of the 41 exposures independently associated with mortality was also 

prospectively associated with concurrent incidence of multiple chronic diseases (Fig. 4c), 

indicating that each exposure is a likely catalyst of disease multimorbidity. On average, each 

exposure was associated with 11.7 chronic diseases (out of 25). Smoking was associated with 

21 (current smoking status) and 20 diseases (pack years). Household income and home 

ownership were associated with 19/25 diseases, followed by tiredness frequency and Townsend 

deprivation index (18/25), and IPAQ physical activity group (17/25). Of note, we found no 

associations between any exposure and incidence of brain cancer. We generally observed 

prostate cancer associations in the opposite direction as other diseases for the same exposure, 

however we performed further sensitivity analyses (Supplementary Information) to rule out any 

detection bias underlying these results for key exposures such as smoking (Table S14). 

Summary statistics from all chronic disease and cardiometabolic risk factor analyses are given 

in Supplementary Files SF33-SF60. 

For approximately 75% of exposures, we found remarkable consistency in the direction 

of effect when comparing associations across mortality, aging biomarker, and disease analyses. 

For example, exposures associated with decreased mortality risk (employment, household 

income, education, living with a partner, IPAQ, LTPA, gym use, glucosamine and fish oil 

supplements, cereal fiber intake) were associated with decreased risk of nearly two thirds of all 

chronic diseases studied; decreased risk of obesity, dyslipidemia, and hypertension; increased 

levels of biomarkers indicating better health (vitamin D, HDL cholesterol, phosphate, albumin) or 

slower aging (LTL, IGF-1); and decreased levels of detrimental biomarkers (C-reactive protein, 

blood glucose, hbA1c, cystatin C, triglycerides). Exposures associated with increased mortality 

risk (smoking, lack of home ownership, being unemployed, deprivation, air pollution, maternal 

smoking around birth, sedentary lifestyle, poor mental health, poor sleep, processed and red 
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meat intake) were generally associated with opposite patterns of these same diseases, risk 

factors, and biological mechanisms. 

 

Environmental and genetic architectures of mortality and age-related diseases 

 

To determine the contribution of age and sex, exposome, and genetic risk in describing 

variation in mortality and each of the studied age-related diseases, we calculated stepwise 

multivariable Cox models beginning with just age and sex (model 1), then adding either 

polygenic risk information (model 2) or exposome (i.e., all exposures associated with the 

outcome; model 3), and finally adding both the exposome and PRS together (model 4). Models 

were first calculated among participants recruited in England (n=436,891) and then validated in 

the independent set of participants recruited in Scotland/Wales (n=55,676). 

Compared with a model containing age and sex, we found that adding polygenic risk 

scores (PRS) for 22 diseases that are either major causes of death or aging phenotypes only 

increased the total mortality model R2 by 2% (Fig. 5a; Tables S15-S16). By contrast, we found 

that adding all 41 exposures associated with mortality (i.e., exposome) to age and sex 

increased the total mortality model R2 by 17-19% (model 3 vs 1), and that adding the 41 

exposures to the model with age, sex, and all PRS increased the total mortality model R2 by 16-

17% (model 4 vs 2). While the combined effect of the exposome explained a large proportion of 

mortality variation, we found that individually most exposures only explained a small proportion 

of total mortality variation (Fig. 3d). Effect estimates for all 41 exposures in model 3 are shown 

in Fig. S11c. Variable importance plots for other diseases studied are shown in Fig. S11-S19. 

Effect estimates for all exposures in model 3 for all age-related diseases studied are shown in 

Fig. S20-44.  

Models including age and sex, exposome, and PRS captured >50% of variation in most 

outcomes studied, with the exception of colorectal cancer, pancreatic cancer, leukemia, breast 
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and ovarian cancers, and osteoarthritis (Fig. 5a). For all-cause mortality and all age-related 

diseases studied, the relative importance of age, sex, exposome, and PRS in the training 

multivariable models (English participants) are shown in Fig. 5b according to the proportions of 

the total model chi-squared (Χ2) that each variable category explained in model 4. The 

exposome explained the most amount of model variation for lung cancer, emphysema/COPD, 

chronic liver diseases, and rheumatoid arthritis. Certain outcomes seem to be more influenced 

by polygenic risk than the exposome, such as breast and prostate cancers, Alzheimer’s disease 

(AD), all-cause dementia, macular degeneration, and colorectal cancer. Of note, ovarian cancer 

and type 2 diabetes showed a smaller contribution of age and sex, with the exposome and PRS 

explaining the majority of variation in equal parts. Lastly, a number of outcomes showed age 

and sex as the most influential determinants, but also showed the exposome explaining the 

majority of the residual variation not explained by age and sex. These include all-cause 

mortality, esophageal cancer, ischemic heart disease, and cerebrovascular diseases.  

 

Discussion 

 

This study provides the first comprehensive assessment of the relative contributions of 

genetic and environmental influences to aging. We show that the exposome explains a large 

percentage of mortality variation beyond the contribution of age, sex, and polygenic disease 

risk. We further demonstrate that the exposome shapes mortality risk through influencing a wide 

range of aging biological mechanisms and multimorbidity. For most age-related disorders 

studied, we find that the effect of the exposome exceeds that of the genome. We also find that 

exposome risk is composed of many interrelated factors that individually may have small 

effects, but when combined additively explain a substantial amount of variation for mortality and 

certain age-related diseases such as emphysema/COPD, lung cancer, chronic liver diseases, 

and rheumatoid arthritis. 
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Our results provide critical insights to address gaps in knowledge about the 

environmental influences of biological aging mechanisms (2), and further demonstrate that 

many age-related diseases share a common environmental etiology that drives disease 

multimorbidity and ultimately premature mortality. We found that generally diseases fell into two 

large blocks. The first included cardiometabolic diseases, lung and kidney disease, dementia, 

vascular dementia, osteoporosis, osteoarthritis, and rheumatoid arthritis, all of which showed a 

shared environmental etiology involving the majority of exposures associated with mortality. The 

second block of disease included most common cancers and the common neurodegenerative 

disorders (AD, Parkinson’s disease, macular degeneration), which were associated with fewer 

environmental determinants but still showed similar direction of effects as seen in the first block. 

We found that the impact of the genome is relatively high for colorectal, breast, ovarian, 

and prostate cancers, as well as all-cause dementia and AD. Of note, although we saw 

associations between known determinants of colorectal cancer such as physical activity, 

smoking, and intakes of cereal fiber, processed meat, and red meats, we found that the 

contribution of these exposures to explaining colorectal cancer variation was limited compared 

to genetic risk. Conversely, we show the impact of the genome to be relatively low and the 

impact of the exposome to be high for lung cancer and emphysema/COPD, as well as chronic 

liver and kidney diseases, ischemic heart disease, cerebrovascular diseases, rheumatoid 

arthritis, osteoarthritis.  

Our study design improves substantially upon XWAS and exposome analyses published 

to date (see our systematic review in the Supplementary Information) by conducting cluster 

analyses to detect correlation confounding and PheWAS to detect mismeasurement in 

exposures. When compared with the only previously published “environment-wide” analysis of 

mortality (18) that focused on a narrower range of chemical and lifestyle exposures in a small 

sample (n=6,008), our study identified approximately 17x more factors associated with all-cause 

mortality and improved the final variance explained (mortality R2) by 31x from 2.1% in this 
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previous study to 66%. This demonstrates the importance of using large discovery datasets and 

testing as broad a range of exposures as possible in exposome research.  

Throughout our exposome analyses, measures of physical activity, smoking, and 

individual socioeconomic status (household income and home ownership) had the strongest 

effects on mortality and were associated with the greatest number of age-related diseases and 

aging biomarkers. While numerous previous studies have already documented the significant 

roles of smoking, physical activity, and socioeconomic inequality (e.g., income, employment, 

education) in shaping mortality risk (19-22), we provide a more complete picture of the myriad 

biological mechanisms and disease pathways associated with each of these exposures in the 

UK Biobank. 

A number of findings ask for further research. For example, we observed that while 

frequency of alcohol intake increased the risk of mortality, chronic liver disease, 

COPD/emphysema, breast and lung cancer, and osteoporosis, the association was in the 

opposite direction as expected for diabetes, ischemic heart disease, and chronic kidney 

disease. Previous research shows that UK Biobank participants are likely to misreport alcohol 

consumption as a function of higher disease burden (23), and that Mendelian randomization 

(MR) may be needed to properly estimate its association with specific diseases (24). We 

observed intake of glucosamine supplements to be an influential exposure in explaining 

mortality variation (Fig. 3d), and to be associated with decreased risk of many cardiometabolic 

diseases. Glucosamine supplementation was also cross-sectionally associated with many 

cardiometabolic disease mechanisms in our study (lower glucose, hbA1c, and triglycerides; 

higher HDL and total cholesterol), however previous clinical trials have reported no effect of oral 

glucosamine on blood pressure, glucose, and lipids (25). Further mechanistic or MR studies will 

be needed to disentangle whether glucosamine intake has a causal effect on these outcomes or 

instead whether our results reflect the fact that those who take glucosamine are also likely to 
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have higher socioeconomic status and less likely to be sick or disabled at baseline, as shown in 

the glucosamine PheWAS (Online Materials; Supplementary File SF85). 

There are several limitations to note for our analysis. First, despite our prospective study 

design, we are unable to make causal conclusions based on our findings. Although consistent 

association patterns observed across different layers of outcomes (mortality, biomarkers, 

cardiometabolic risk factors, incident diseases) suggest that many exposures may play early 

roles in shaping age-related disease and mortality risk, causality will need to be verified with 

further methods such as MR. Second, exposome influences are dynamic over time and our 

study design cannot capture this dynamic aspect of the exposome since all exposures were 

only measured at one time point in the full cohort. We also have not captured all exposome 

influences, as we were limited to the exposures available in the UK Biobank. Conspicuously 

absent from our analysis are specific chemical and toxicological exposures beyond air pollution. 

Furthermore, a great deal of the exposure variables come from self-reported questionnaire data, 

which introduces potential recall bias, mismeasurement, and uncertainty into the reliability and 

accuracy of the responses. Finally, the use of existing PRS as proxies for the inherited genetic 

component of each disease is somewhat preliminary, as these are still being updated and 

improved and do not include the component of rare variation in single genes such as BRCA1/2 

or the genes for familial hypercholesterolemia. 

Despite these limitations, we believe that our approach offers many advantages over 

traditional single exposure approaches in environmental epidemiology. Through the use of: (i) 

independent discovery, replication, and validation stages; (ii) exposome-wide significance 

thresholds; (iii) sensitivity analyses to test for reverse causation bias; (iv) a comprehensively 

phenotyped cohort in which we could systematically conduct PheWAS of replicated exposures 

to test for mismeasurement in self-report variables; and (v) within-cluster and exposome-wide 

multivariable models to test for correlation bias, our approach greatly increases the 

reproducibility and positive predictive value of findings.  
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Overall, our results indicate that environment-focused interventions are likely to have the 

highest impact on ameliorating premature mortality and most age-related morbidity. The group 

of diseases with a small observed impact of the exposome relative to the genome are 

neurodegenerative disorders (AD, Parkinson’s, macular degeneration) and some cancers 

(breast, prostate and colorectal). We argue that greater use of exposome study designs will 

significantly accelerate identification of high-priority population health targets for age-related 

morbidity and premature mortality. Our study also opens the door for further targeted proteomic, 

metabolomic, or other ‘omics studies to explore the biological effects of the exposures that we 

identified in our study. 
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Figures 

 

Fig. 1. Study overview. (a) After participant exclusions, UK Biobank participants were split into independent discovery, 
replication, and validation sets. Missing values were imputed separately within each group using random forest multiple 
imputation, resulting in 5 imputed datasets for each dataset. (b) Among UK Biobank participants recruited in England 
(n=436,891), an exposome-wide association study (XWAS) for all-cause mortality was conducted using the discovery and 
replication sets. The discovery and replication sets were then pooled, and further analyses were conducted in the full 
English sample to identify and remove replicated exposures that are sensitive to reverse causation (disease sensitivity), 
mismeasurement (PheWAS per exposure), and correlation bias (cluster analysis). (c) Exposures surviving all analyses in 
(b) were then tested in relation to 25 age-related biomarkers, 25 age-related diseases, and 3 cardiometabolic risk factors 
(hypertension, obesity, dyslipidemia). For mortality and each age-related disease, the relative contributions of age and 
sex, polygenic risk, and exposome were calculated via multivariable Cox proportional hazards models. Multivariable 
models were validated in participants recruited in Scotland/Wales (n=55,676), who were held out from all other analyses. 
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Fig. 2. Mortality and key exposure response rates among UK Biobank participants. (a) The number of deaths in 
women and men according to age at death (in years). (b) The number of deaths in women and men according to body 
mass index (BMI) at baseline. (c) Numbers of prevalent and incident cases for all age-related diseases studied. Note 
that diseases are put into two groups with different x-axis scales, since some diseases had far more cases than 
others. (d) Response rates for key exposures and covariates in both women and men. Percentages are for each sex 
separately and not across both sexes. All descriptive statistics are for UK Biobank participants recruited in England 
(n=436,891). 
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Fig. 3. Environmental architecture of mortality in the UK Biobank. (a) Correlation between betas for the association between each 
exposure and mortality calculated separately in women (n=237,637) and men (n=199,257). (b) Volcano plot of log-transformed p-values 
and fold change (calculated as log2 of the hazard ratio) for all mortality XWAS associations in the final pooled analysis. Each point 
represents the effect and p-value for the association between a single exposure and all-cause mortality from the XWAS discovery 
analysis (n=218,483). Exposures that were FDR significant in both the discovery and replication stages are colored, whereas associations 
that were not replicated are colored dark grey and grouped in the category “* Non-replicated.” The top 20 points according to strongest p-
value are labelled. (c) Cluster structure of exposures that were replicated in the mortality XWAS and not discarded during reverse 
causation and PheWAS sensitivity analyses. Heatmap along the cluster dendrogram shows the effect direction and significance of each 
exposure in the final cluster multivariable model, with exposures that were not significant at the level of p<0.05 in the cluster multivariate 
models colored grey. Note that while individual exposures are shown, exposures in clusters 1, 2, and the greenspace/natural environment 
exposures in cluster 9 were reduced to principal components for multivariable modeling due to extremely high correlation (> 0.90) among 
similar exposures. (d) Individual exposure importance from a multivariable model including age, sex, and all 41 exposures identified in 
cluster modeling (n=436,891). Variable importance was calculated using a Wald test from ANOVA, where the importance of each variable 
is the proportion of that variable’s Wald chi-squared (Χ2) relative to the total model Χ2. Note: the y-axis values were transformed by taking 
the square root to improve visualization. IPAQ: International Physical Activity Questionnaires; LTPA: leisure time physical activity; MH: 
mental health; OPA: occupational physical activity.
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Fig. 4. Environmental architectures of age-related biological mechanisms and diseases in the UK Biobank. (a) Associations between each mortality-associated 
exposure and aging biomarkers. (b) Associations between each mortality-associated exposure and cardiometabolic risk factors. (c) Associations between each 
mortality-associated exposure and age-related chronic diseases. Colors in the heatmaps represent betas for associations between exposures and 
biomarkers/diseases. A line annotation track is shown that counts the total number of FDR significant associations for each outcome. For heatmap (a), an addition 
annotation track shows the primary biological mechanism associated with each aging biomarker. Air pollution and greenspace are the first principal components 
combining all air pollution and greenspace variables, respectively. For nominal categorical variables with more than one response level, the association for the 
level with the strongest p-value is reported in this figure and the exposure’s label reflects the response category shown. COPD: chronic obstructive pulmonary 
diseases; IGF-1: insulin-like growth factor 1; LTL: leucocyte telomere length; LTPA: leisure time physical activity. 
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Fig. 5. Combined environmental and genetic architectures of mortality and age-related diseases. (a) R2 calculated 
across studied outcomes for several sequential multivariable models: model 1 containing age and sex (purple); model 
2 containing age, sex, and polygenic risk scores (PRS; yellow); and model 4 containing age, sex, PRS, and 
exposome (green). If a PRS was not available for a particular outcome, then the green R2 shows the results from 
model 3 (age, sex, exposome). R2 values are shown from the validation analyses in Scottish/Welsh validation set 
(n=55,676). (b) Variable importance for age, sex, polygenic risk, and exposome for all outcomes studied in model 4 
conducted among English UK Biobank participants (n=436,891). Variable importance is calculated as the proportional 
of the total model chi-squared (Χ2) that each variable category explains and is plotted as the relative contribution to 
the total model Χ2 for each category so that they sum to 1. In all analyses, PRS includes polygenic risk scores, as 
well as genetic principal components and genotyping batch. PRS used for mortality models includes PRS for all other 
diseases and phenotypes shown in this figure (22 total). Note: PRS information was not available for liver cancer or 
lymphoma and is not included in models. Ovarian, breast, and prostate cancer models were sex-specific and so sex 
was not included in model 4 for these outcomes. 
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Materials and methods summary 

 

Study design and participants 

 

The UK Biobank is a prospective cohort study with extensive genetic and phenotype 

data available for 502,505 individuals resident in the United Kingdom (26). The full UK Biobank 

protocol is available online.  

 

Exposures 

 

We considered as potential exposome-wide association study (XWAS) exposures all 

non-genetic variables available as of July 24, 2020 that were collected at baseline and were 

available for participants recruited across all assessment centers. After all exclusions, recoding, 

and quality control (Supplementary Information), 176 unique exposures remained that were 

available in the full cohort that were common to both women and men. All continuous exposure 

variables were centered and standardized before analysis, except for age at recruitment. All 

ordinal categorical variables were recoded to only test linear associations and other polynomial 

contrasts (e.g., quadratic or cubic associations) were not assessed. All nominal categorical 

exposures were analyzed with the most common category set as the reference. Detailed data 

dictionaries including all exposures used in imputation and XWAS steps are included in 

Supplementary Files SF1-SF2. 
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Outcomes 

 

Detailed information about the linkage procedure with national registries for mortality and 

cause of death information is available online. Mortality data were accessed from the UK 

Biobank data portal on May 4, 2022, with a censoring date of September 30, 2021 or October 

31, 2021 for participants recruited in England/Scotland or Wales, respectively (11-15 years of 

follow-up).  

Aging biomarkers (Table S8) were measured using baseline non-fasting blood serum 

samples as previously described (27). Data on leukocyte telomere length (LTL) was only 

available in a slightly smaller sample (n=472,506) than other biomarkers and was not imputed. 

Biomarkers were previously adjusted for technical variation by the UK Biobank, with sample 

processing and quality control procedures described on the UK Biobank website.  

Data used to define chronic diseases and cardiometabolic risk factors are outlined in 

Table S9. Incident chronic disease diagnoses were ascertained using ICD diagnosis codes and 

corresponding dates of diagnosis taken from linked hospital inpatient records and death register 

data. ICD data were accessed from the UK Biobank data portal on May 30, 2022, with a 

censoring date of September 30, 2021; July 31, 2021; or February 28, 2018 for participants 

recruited in England, Scotland, or Wales, respectively (8-15 years of follow-up).  

 

Missing data imputation 

 

UK Biobank participants recruited from England were randomly assigned to a discovery 

(n=218,446) or replication set (n=218,445) while maintaining the same proportion of mortality 

cases in each. We performed missing data imputation separately in the discovery, replication, 

and Scottish/Welsh validation (n=55,676) datasets using the R package missRanger (28), which 

combines random forest imputation with predictive mean matching (Supplementary 
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Information). We imputed 5 datasets, with a maximum of 10 iterations for each imputation. All 

subsequent study analyses were run independently in each of the five imputed datasets, and 

results were pooled using Rubin’s rule (29).  

 

Exposome-wide association study 

 

XWAS of all-cause mortality were initially carried out separately in women and men, and 

then a final XWAS was calculated in the pooled dataset with both women and men to increase 

power. Exposures in the final pooled XWAS were limited to those asked to both women and 

men, omitting sex-specific reproductive factors. In each XWAS, we serially assessed 

associations of each individual exposure with all-cause mortality using Cox proportional hazards 

models with age as the time scale; stratified by 5-year birth cohorts and sex (in the pooled 

analysis only); and adjusted for assessment center, years of education (7 years, 10 years, 13 

years, 15 years, 19 years, 20 years), and ethnicity (White, Asian, Black, Mixed, Other). Since it 

has been shown that UK Biobank participants are likely to misreport alcohol consumption as a 

function of higher disease burden (23), self-reported overall health status was added as an 

additional XWAS covariate for the self-reported alcohol intake exposure only. P-values in the 

discovery and replication analyses were corrected using the false discovery rate (FDR; 

Benjamini-Hochberg method(30)) with a significance threshold of FDR p < 0.05. After 

completing the mortality XWAS, discovery and replication sets were recombined into the full 

English sample (n= 436,891) to complete further sensitivity analyses (Supplementary 

Information).  
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Correlation and cluster analyses 

 

Correlation between all variables was calculated in the full English sample using the R 

package polycor (31) to create a heterogenous correlation matrix for each imputed dataset 

(Supplementary Information). We used hierarchical clustering via Euclidean distance to identify 

the cluster structure of exposures replicated in the pooled XWAS and not susceptible to reverse 

causation bias (plus education and ethnicity). Within-cluster Cox multivariable mortality models 

included all remaining variables in the cluster after removing collinear variables (Supplementary 

Information), with additional adjustment for assessment center, household income (Less than 

18,000, 18,000 to 30,999, 31,000 to 51,999, 52,000 to 100,000, Greater than 100,000), 

education, and ethnicity (if those variables were not already in the cluster). As in the XWAS, 

additional adjustment for self-reported overall health status was made in the cluster with self-

reported alcohol intake. The significance threshold used in cluster multivariable analyses was a 

nominal p < 0.05.  

 

Aging mechanisms and incident chronic disease analyses 

 

Aging biomarker variables were log transformed and then were age-adjusted by 

regressing each onto age at recruitment separately in women and men. Across exposures 

replicated in the XWAS and passing all sensitivity tests, we serially assessed associations 

between each exposure and age-adjusted biomarker using cross-sectional linear regression 

models with covariates for sex, 5-year birth cohort, assessment center, years of education, 

ethnicity, number of medications, smoking status (current, previous, never), and IPAQ physical 

activity level (low, moderate, high). IGF-1, LTL, and vitamin D models included additional 

covariates for standing height (in cm), leukocyte count (109 cells/Liter), and month of biomarker 

assessment (to control for seasonality of sun exposure), respectively.  
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For chronic disease analyses, we serially assessed associations between each 

exposure and incident disease using the Cox proportional hazards model, with all XWAS 

covariates plus household income, smoking status, and IPAQ physical activity group. Sex-

specific reproductive exposures (e.g., menopause) replicated in the female- and male-only 

XWAS analyses were also tested as exposures in analyses of sex-specific chronic disease 

outcomes (breast, ovarian, and prostate cancer).  

For cardiometabolic risk factors (obesity, hypertension, dyslipidemia), we serially 

assessed each exposure and risk factor pair using cross-sectional logistic regression models 

adjusted for age, sex, assessment center, household income, years of education, ethnicity, 

smoking status, and IPAQ physical activity level.  

Across all biomarker, chronic disease, and cardiometabolic risk factor analyses, p-values 

were corrected separately for each outcome using FDR.  

 

Exposome and polygenic risk multivariable models 

 

For each outcome, five multivariable models were calculated. The first only includes age 

(scaled) and sex in the model (model 1). Model 2 includes age, sex, and the polygenic risk 

score (PRS) for the outcome, if available (see below for more detail). Model 3 includes age, sex, 

and all exposures associated with the outcome (exposome). Model 4 includes age, sex, 

exposome, and PRS. If a PRS was not available for a particular outcome, then models 2 and 4 

were not calculated for that outcome. Each model was validated in the independent 

Scottish/Welsh dataset (n=55,676) by obtaining the linear predicted values from the models in 

the English dataset and measuring the C-index and R2 for these values in relation to the 

outcome rates in the Scottish/Welsh population.  

In all multivariable Cox models, the proportional hazards assumption was tested by 

examining the Schoenfeld residuals, and an interaction with time was added to any variable with 
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non-proportional hazards (Supplementary Information). Relative importance for each variable 

and category of variables within the multivariable models was calculated using Wald chi-

squared (Χ2) statistics via ANOVA, where the relative importance of each is the proportion of the 

variable/group Χ2 relative to the total model Χ2. 
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