"Trends and spatiotemporal patterns of arboviral spread in Mexico and Central America": Supplementary Information

Supplementary Text 1

Retrospective on the arbovirus epidemics in the Americas and epidemiological surveillance in Mexico

Chikungunya virus (CHIKV)

The first locally acquired infections were reported in the Caribbean islands in 2013 ^{74,75}, with subsequent spread into Central and South America during 2014^{65,70,71}. The outbreaks in the Caribbean islands affected various territories over 2014⁹⁴, and reached high incidences in Guadeloupe (295.8 cases per 1000 inhabitants in November 2014), the French Guiana (112.41 cases per 1000 inhabitants in July 2014) and the Dominican Republic (over 142 000 new cases reported in July 2014). CHIKV reached South America and the USA by June 2014, followed by Mexico and various other countries in Central America by the end of that year ⁹⁵. Most of these outbreaks have been attributed to a single introduction of the Asian genotype into the Eastern Caribbean⁷², except for Brazil, where a secondary and independent introduction event of the Eastern/Central/South African (ECSA) virus genotype was identified⁶³. The ECSA genotype has since then spread across Brazil^{44,73}, and was recently introduced into Paraguay ⁹⁶. It is believed that the spread of CHIKV in the region was at least partially driven by international travel 69,97,98, whilst a successful virus establishment was likely aided by (i) the lack of prior immunity to the virus in the Americas, (ii) the presence of both Ae. aegypti and Ae. albopictus in the same geographical region, and (*iii*) and elevated volumes of travel across countries with high virus transmission ²⁸. CHIKV was detected in Mexico in 2014, with the highest number of cases reported during 2015, particularly within the southern and southwestern states of Guerrero, Michoacán and Yucatán³². From 2016 onwards, limited numbers of cases have been reported, although CHIKV incidence in southwestern states (such as Guerrero) is thought to be underestimated, represented by undiagnosed or non-hospitalized cases that do not make it to the SINAVE official case report list 99.

Dengue virus (DENV)

DENV is classified into four immunologically and genetically distinct serotypes: DENV-1, DENV-2, DENV-3 and DENV-4. Before the 1960s, DENV-2 was the only serotype detected in the Americas. Nonetheless, the other three serotypes were detected throughout the 1960s to the 1990s, including the characterization of multiple introductions of genetically distinct DENV-2 lineages ^{29,100}. Once established within a geographical region, DENV epidemics follow seasonal patterns (as observed in countries in the Americas) ^{10,48,101–103}, with particularl prominence in regions where the virus has become endemic (defined as where at least one virus serotype constantly circulates ¹⁰⁴) or hyperendemic (defined as where multiple virus serotypes constantly co-circulating). In these scenario, seasonal cycles are characterised by yearly periods where outbreaks are more frequent, driven in part by changing climatic conditions that favour vector breeding and increased vector-host interactions¹⁰⁵⁻¹⁰⁸. Furthermore, the co-circulation of different DENV serotypes can lead to dominance over specific season across multiple years^{78,79,109}. The processes driving t long-term dominance patterns are complex and involve climate, vector ecology, demographics and immunity of the host population factors^{11,110,111}. This can lead to seasonal patterns where large outbreaks vary in size and severity (for example, with higher number of cases for dengue haemorrhagic fever, DHF) across seasons through time^{10,48,101–103}.

Dengue has been under surveillance in Mexico since the 1980s, and became a health concern at a national level when the incidence of DHF increased during the 1990s, associated with the spread of *Aedes* mosquito populations in Mexico ³³. Since the 2000s, the geographical distribution of Dengue has marginally expanded into other locations closer to central Mexico, such as the state of Morelos and areas of higher altitude, like the state of Guerrero ^{77,82}. During the early 2010s, epidemiological hotspots for Dengue were identified in and around urban areas within the southern states, where transmission occurs year-round but peaks during the rainy season ⁸². The incidence of DENV serotypes has fluctuated over multiple years: during the early 2000s, DENV-1 and DENV-2 alternated as the dominant serotype in Mexico, with DENV-1 replacing the previously dominant DENV-2 between 2004 and 2007⁷⁷.

Figure S1. CHIKV epidemiological and genomic surveillance trends in the Americas

(A) Monthly number of CHIKV cases reported to the Pan-American Health Organisation (PAHO) between 2013 and 2017, grouped by country. (B) Comparison between monthly number of cases (reported to PAHO, upper panel) in countries that have generated CHIKV genome sequences, and publicly available complete CHIKV genome sequences (lower panel). Mexico sequences include those generated in this study.

Figure S2. Complete CHIKV genome sequences versus total cases reported to PAHO per country

Linear regression between the numbers of CHIKV sequences and cases per country over time, with 95% confidence interval (CI) shown in grey. A Spearman's Rho = 0.26, p = 0.15 denotes no correlation between the cumulative number of cases per country versus the number of viral genome sequences available per country.

Monthly cases for CHIKV reported under the SINAVE surveillance system (InDRE/Ministry of Health Mexico).

ML phylogenetic tree for CHIKV inferred from the complete genome sequences from the Americas included in our analysis, denoting an 'American' lineage (left panel). Tree tips are coloured according to the region/country of collection, whilst nodes are coloured according to branch support values (SH-aLRT). To the right, a timecalibrated MCC tree is displayed, showing a well-defined CCNA clade within the 'American' lineage. Tips and branches are coloured by the location of origin and circulation, inferred through a DTA phylogeographic analysis (see Methods section, main text).

Figure S5. DENV epidemiological trends across Mexico between 2016 and 2018

Monthly cases for DENV (aggregating both dengue fever and dengue haemorrhagic fever) reported under the SINAVE surveillance system (InDRE/Ministry of Health Mexico).

Figure S6. Serotyping representation for DENV across regions in Mexico

Total number of DENV cases reported by year (black line), compared to total number of DENV cases where the causal serotype has been identified and reported (grey line). Data corresponds to the period of time between 2013 and 2018, as reported under the SINAVE surveillance system (InDRE/Ministry of Health Mexico).

Figure S7. DENV serotyping efficacy across time in different Mexico regions

Percentage of serotyped samples per region per year between 2013 and 2018.

Figure S8. DENV-1 and DENV-2 case numbers across Mexico regions

Monthly numbers of cases identified as DENV-1 (purple) or DENV-2 (teal) between 2013 and 2018 across geographic regions in the country.

Figure S9. Phylogenetic analyses of DENV-1 and DENV-2 in the Americas

ML phylogenetic trees for DENV-1 (above) and for DENV-2 (below) inferred from the complete genome sequences from the Americas included in our analysis are shown to the left. Tree tips are coloured according to the country/region of collection, whilst nodes are coloured according to branch support values (SH-aLRT). To the right, the time-calibrated MCC trees are displayed, showing well-defined CCNA clades for each virus. Tips and branches are coloured by the location of origin and circulation, inferred through a DTA phylogeographic analysis (see Methods section, main text).

Figure S10. Bayesian Skyline plot of the CAM DENV-1 and DENV-2 lineages

Upper and lower panels show the Bayesian Skyline plots (BSPs) obtained from the time-scaled phylogenetic analyses of the DENV-1 and DENV-2 CCNA lineages. The middle panel shows the proportion of serotyped cases for each DENV serotype in Mexico over a comparable period of time. Shading in purple (for DENV-1) and green (for DENV-2) show periods of time where an increase in the virus effective population size over time was observed (as suggested by the BSP), highlighting the proportion of virus serotypes.

Table S1. Genome sequences generated in this study

Virus	Genotype	InDRE ID	Host	State	Collection date
	V	198cc	Human	Quintana Roo	2013-03-18
	V	112cc	Human	Veracruz	2013-01-09
	V	321cc	Human	Chiapas	2014-05-18
DENV-1	V	640cc	Mosquito	Morelos	
	V	1748	Human	Jalisco	2013-10-18
	V	3933	Mosquito	Jalisco	2017-11-22
	V	3761	Mosquito	Jalisco	
		1773	Human	Jalisco	2013-01-02
		1537cc	Mosquito	Morelos	2013-09-09
		649cc	Human	Quintana Roo	2013-07-05
		242	Human	Chiapas	2014-04-25
		1620	Human	Jalisco	2013-10-15
DENV-2		426cc	Human	Veracruz	2013-05-30
		237cc	Human	Jalisco	2013-04-04
		278	Human	Colimas	2013-04-22
		243	Human	Chiapas	2014-04-30
		320	Human	Chiapas	2014-05-19
		658cc	Human	Veracruz	2013-07-10
	Asian	5528	Human	Baja California	2015-12-01
	Asian	3601	Human	Ciudad de Mexico	2015-08-06
	Asian	169	Human	Guerrero	2015-01-20
	Asian	4818	Human	Guerrero	2015-09-18
	Asian	1118	Human	Mexico	2015-04-10
	Asian	2417	Human	Michoacan	2015-06-01
	Asian	1657	Human	Morelos	2015-05-07
	Asian	1479	Human	Nuevo Leon	2015-04-19
	Asian	2090	Human	Queretaro	2015-06-02
	Asian	3588	Human	Quintana Roo	2015-07-27
	Asian	2454	Human	Sinaloa	2015-06-16
	Asian	3584	Human	San Luis Potosi	2015-07-19
	Asian	2040	Human	Tabasco	2015-06-25
	Asian	741	Human	Tampico	2015-03-10
	Asian	4823	Human	Veracruz	2015-09-19
	Asian	2930	Human	Tucalan	2015-07-06
	Asian	3000	Human	Zacalecas	2015-06-05
	Asian	504	Human	Nuevo Leon	2015-01-29
СШКУ	Asian	511	Human	Michoacan	2015-02-27
Chinty	Asian	698	Human	Veracruz	2015-02-10
	Asian	809	Human	Jalisco	2015-03-05
	Asian	1441	Human	Jalisco	2015-04-22
	Asian	2870	Human	Oaxaca	2015-07-09
	Asian	3364	Human	Veracruz	2015-07-28
	Asian	4320	Human	Morelos	2015-08-23
	Asian	4823	Human	Veracruz	2015-09-19
	Asian	1449	Human	Chiapas	2015-04-13
	Asian	1309	Human	Chiapas	2015-04-09
	Asian	948	Human	Quintana Roo	2015-03-26
	Asian	1418	Human	Morelos	2015-04-14
	Asian	4124	Human	Chiapas	2015-08-12
	Asian	2135	Human	Veracruz	2015-06-08
	Asian	1825	Human	Veracruz	2015-05-16
	Asian	3430	Human	Quintana Roo	2015-07-23
	Asian	2007	Human	Michoacan	2015-05-13
	Asian	2430	Human	Michoacan	2015-06-05
	Asian	5439	Human	Guerrero	2015-11-20
	Asian	1343	Human	Guerrero	2015-04-10

Table S2. PAHO regions

PAHO region	Country		
North America	USA		
North America	Mexico		
North America	Canada		
North America	Bermuda		
Central America	Panama		
Central America	Nicaragua		
Central America	Honduras		
Central America	Guatemala		
Central America	El Salvador		
Central America	Costa Rica		
Central America	Belize		
Latin America	Saint Martin		
Latin America	Martinique		
Latin America	Guadeloupe		
Latin America	Puerto Rico		
Latin America	Haiti		
Latin America	Guyana		
Latin America	French Guyana		
Latin America	Dominican Republic		
Latin America	Cuba		
Andean	Venezuela		
Andean	Peru		
Andean	Ecuador		
Andean	Colombia		
Andean	Bolivia		
South Cone	Uruguay		
South Cone	Paraguay		
South Cone	Chile		
South Cone	Brazil		
South Cone	Argentina		
Non-Latin Caribbean	Saint Barthelemy		
Non-Latin Caribbean	Sint Maarten		
Non-Latin Caribbean	United States Virgin Islands		
Non-Latin Caribbean	Turks and Caicos Islands		
Non-Latin Caribbean	Trinidad and Tobago		
Non-Latin Caribbean	Suriname		
Non-Latin Caribbean	Saint Vincent and the Grenadines		
Non-Latin Caribbean	Saint Lucia		
Non-Latin Caribbean	Saint Kitts and Nevis		
Non-Latin Caribbean	Montserrat		
Non-Latin Caribbean	Jamaica		
Non-Latin Caribbean	Grenada		
Non-Latin Caribbean	Dominica		
Non-Latin Caribbean	Curacao		
Non-Latin Caribbean	Cayman Islands		
Non-Latin Caribbean	British Virgin Islands		
Non-Latin Caribbean	Bonaire Saint Eustatius and Saba		
Non-Latin Caribbean	Barbados		
Non-Latin Caribbean	Bahamas		
Non-Latin Caribbean	Aruba		
Non-Latin Caribbean	Antigua and Barbuda		
Non-Latin Caribbean	Anguilla		

Table S3. BSSVS results for CHIKV

FROM	то	BAYES_FACTOR	POSTERIOR PROBABILITY
Americas	Centre-north	86.20856163	0.922105978
Americas	Centre-south	0.191914894	0.025676635
Americas	East	0.743297742	0.092614881
Americas	Northeast	0.868885317	0.106595068
Americas	Northwest	0.177265425	0.023763232
Americas	Southwest	5236 520985	0.127333889
Americas	West	15 76167184	0.683979878
Centre-north	Centre-south	1.060829123	0.127148721
Centre-north	East	1.07975133	0.129123847
Centre-north	Northeast	1.438552475	0.164953862
Centre-north	Northwest	1.671856523	0.186711107
Centre-north	Southeast	0.989757074	0.119649415
Centre-north	Southwest	1.039937246	0.124957566
Centre-north	Foot	0.916946007	0.128846094
Centre-south	Northeast	8 62935726	0.100834839
Centre-south	Northwest	12.1567072	0.625374194
Centre-south	Southeast	0.796051295	0.098540259
Centre-south	Southwest	0.725594228	0.090608894
Centre-south	West	0.743024787	0.09258402
East	Northeast	2.684716558	0.269357776
East	Northwest	7.099083565	0.493627133
East	Southeast	1.128933359	0.134215968
East	Southwest	0.940751488	0.114402987
Northeast	Northwest	4 998184013	0.107891245
Northeast	Southeast	2 498801692	0.400000000
Northeast	Southwest	1.712473846	0.190383606
Northeast	West	0.956254924	0.1160695
Northwest	Southeast	1.257392275	0.147239453
Northwest	Southwest	1.40068558	0.161312224
Northwest	West	1.255847284	0.147085146
Southeast	Southwest	2.554663903	0.259698176
Southeast	West	1.126535435	0.133969077
Contro porth	Americas	193.0441201	0.963737926
Centre-south	Americas	21 97990965	0.100440233
East	Americas	1.081826155	0.129339876
Northeast	Americas	1.553499315	0.175817054
Northwest	Americas	2.00818265	0.216152825
Southeast	Americas	1.362512639	0.157608863
Southwest	Americas	1.233353924	0.144832269
West	Americas	0.939891896	0.114310403
Centre-south	Centre-north	17.4214616	0.70521248
Northoast	Centre north	1 367900054	0.107691245
Northwest	Centre-north	1 733093224	0.192235287
Southeast	Centre-north	1.121743685	0.133475295
Southwest	Centre-north	1.464737596	0.167453631
West	Centre-north	0.795221687	0.098447675
East	Centre-south	0.947634694	0.11514366
Northeast	Centre-south	1.27318317	0.148813381
Northwest	Centre-south	1.448232368	0.165879702
Southwoot	Centre-south	1.24843910/	0.146344474
West	Centre-south	26 55345456	0.362631236
Northeast	East	3.538504216	0.327006759
Northwest	East	1.238581511	0.145356911
Southeast	East	4.83050106	0.398790235
Southwest	East	7.167776439	0.496034318
West	East	38.72485751	0.841712187
Northwest	Northeast	1.565426269	0.176928062
Southwost	Northeast	5.62//328/2	0.435916427
West	Northeast	0.0021090 0.824016734	0.00000110 0.1017/0838
Southeast	Northwest	1.907953351	0.207604234
Southwest	Northwest	2.099045763	0.223744715
West	Northwest	0.754778625	0.093911058
Southwest	Southeast	32.14470707	0.81529488
West	Southeast	2.949647346	0.288275777
West	Southwest	0.916750669	0.111810635

Table S4. BSSVS results for DENV-2

FROM	то	BAYES_FACTOR	POSTERIOR PROBABILITY
Belize	Centre-south	0.967626508	0.133524069
Belize	East	0.953020166	0.131774117
Belize	Guatemala	0.957650717	0.132329658
Belize	Nicaragua	1.70136634	0.213188523
Belize	Southeast	0.930185929	0.129024194
Belize	Southwest	1.025702329	0.140412766
Belize	West	0.942161662	0.130468598
Centre-south	East	1.124996057	0.151940224
Centre-south	Guatemala	1.150059576	0.154801256
Centre-south	Nicaragua	1.410877431	0.183467126
Centre-south	Southeast	1.105886879	0.14974584
Centre-south	Southwest	1.234011655	0.164245438
Centre-south	West	1.001469487	0.137551735
East	Guatemala	1.130092361	0.152523541
East	Nicaragua	1.293408656	0.170800811
East	Southeast	1.210612198	0.161634399
East	Southwest	1.173818724	0.157495625
East	West	1.064144217	0.144912641
Guatemala	Nicaragua	1.391307134	0.18138385
Guatemala	Southeast	1.126936679	0.15216244
Guatemala	Southwest	1.159593991	0.155884559
Guatemala	West	1.146886867	0.154440154
Nicaragua	Southeast	0.338795477	0.051193022
Nicaragua	Southwest	1124.009198	0.994444599
Nicaragua	West	0.263140384	0.040221105
Southeast	Southwest	1.257557779	0.166856476
Southeast	West	1.201194161	0.160578873
Southwest	West	2929.534829	0.997861171
Centre-south	Belize	1.714064821	0.214438488
East	Belize	2.004936908	0.242021055
Guatemala	Belize	2.192768344	0.258826144
Nicaragua	Belize	4.066210204	0.393044638
Southeast	Belize	2.42268372	0.278408933
Southwest	Belize	3.166627625	0.335240688
West	Belize	1.245766298	0.165550957
East	Centre-south	1.082558193	0.147051471
Guatemala	Centre-south	1.105404382	0.149690286
Nicaragua	Centre-south	0.251233526	0.038471154
Southeast	Centre-south	1.132521639	0.152801311
Southwest	Centre-south	0.754762935	0.107302575
West	Centre-south	83.24858871	0.929863059
Guatemala	East	1.233262606	0.164162107
Nicaragua	East	0.27129225	0.041415516
Southeast	East	2.168390841	0.256687314
Southwest	East	56.08153389	0.899308353
West	East	0.749951141	0.106691481
Nicaragua	Guatemala	0.823495905	0.115941224
Southeast	Guatemala	1.282010601	0.169550846
Southwest	Guatemala	134.6545105	0.955445682
West	Guatemala	0.753668767	0.10716369
Southeast	Nicaragua	1.480033803	0.190744702
Southwest	Nicaragua	1.196246807	0.160023333
West	Nicaragua	0.800140535	0.113024638
Southwest	Southeast	1270.882832	0.99508347
West	Southeast	0.713638796	0.102052721
West	Southwest	0.753231195	0.107108136