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Abstract 
 
Exposure to ultrafine particles (UFP) is increasingly linked to adverse health outcomes. While 

nation-wide air monitoring networks in the United States do not measure UFP, small-scale 

measurements have revealed persistent patterns in urban UFP. This project maps hyperlocal UFP 

in a 12 km2 study area of a health effects study in Louisville, KY, through mobile measurements 

to elucidate the relationship between the urban landscape and UFP exposures. We measured UFP 

number concentration along all drivable streets (~340 km) during daytime and nighttime on both 

weekdays and weekends. After deconvoluting UFP levels to isolate local signals from 

neighborhood and urban signals, we fitted a land-use regression (LUR) model to explain differences 

in local UFP as a function of characteristics of the built and natural environment. 

Median UFP in the study domain was 6,850 #/cm3, which is comparable to urban background 

measured or estimated for other U.S. cities. UFP was higher during the weekend than on weekdays, 

potentially due to changes in local activity (e.g. increased restaurant hours) apparent at fine spatial 

scales. The final LUR model explained 61% of the spatial heterogeneity in log(UFP). Leave-one- 

area-out cross validation revealed overprediction in regions farther from highways and 
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underprediction in regions with dense food service locations and major roads. This suggests that 

additional mobile measurements to capture longer-term, robust UFP may yield improved models. 

Introduction 
 

Note: “UFP concentration” refers to particle number concentrations unless specified otherwise. 

 
Recent epidemiological and toxicological studies have demonstrated increased health risks from 

exposure to ultrafine particles (UFP, particulate matter with aerodynamic diameter <100 nm) than 

those in higher size ranges (1). UFP can penetrate the most distal conductive pathways in the lungs, 

leading to systemic circulation and toxicity (2,3). Toxicological studies to date suggest that in 

addition to the cardiopulmonary effects associated with exposure to fine particulate matter, 

exposure to UFP is associated with increased markers of brain inflammation (4). Despite the 

absence of long-term epidemiological assessments of UFP exposure, evidence of enhanced toxicity 

compels characterizations of exposure. 

In most environments, motor vehicle emissions are the principal source of UFP (5). Urban UFP 

levels are estimated to have diminished by nearly 30% in the past two decades due to regulatory 

measures implemented to reduce fine particulate mass concentrations (6). Nevertheless, UFP 

number concentrations in near-road urban environments can be up to 18-fold elevated relative to 

those in rural areas (7). Finer-scale assessments in recent years have also determined that solid fuel 

combustion (coal-fired power plants, biomass burning) and cooking also emit UFP, albeit with 

more heterogeneous composition than those from automotive emissions (8). 

Despite the amassing toxicological evidence of adverse health outcomes from exposures to UFP, 

this pollutant is not monitored in national ambient air quality monitoring networks in the United 

States. In response, investigators have conducted small-area UFP characterizations through fixed 

and mobile measurements. In one of the earlier characterizations of UFP exposures, Aalto et al. 
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showed that UFP levels in European cities exhibited spatiotemporal differences: winter 

concentrations were twice as high and summer concentrations were half as much as the mean 

annual concentrations in Stockholm, whereas in Rome and Barcelona, winter concentrations were 

4-10-fold higher than those from the summer (9). This study employed a fixed-site study design 

where six condensation particle counters contemporaneously measured UFP across six cities. 

Assessments since then have been far more sophisticated, often combining fixed-site network and 

mobile measurements, and have detected persistent urban- and residential-scale patterns in UFP 

exposures (10). The subsequent modeling using land-use regression (LUR) has demonstrated 

modest to good (0.3 < adjusted R2 < 0.6) capacity to explain total variation in UFP in intra-urban 

to nation-wide scales (11–16). However, systematic reviews have found that the accompanying 

epidemiological evidence for health effects is either insufficient or inconclusive (3–5). 

This work aims to characterize UFP hyperlocal heterogeneity to inform small-area assessments of 

health effects. We conducted mobile measurements across seasons between fall 2018 through early 

spring 2020 to characterize UFP in Louisville, KY, and constructed LUR models to quantify the 

contribution of the land use characteristics to UFP spatial heterogeneity. 

 

Methods 
 
Study area 

 
The mobile measurements were conducted in a 12 km2 study domain located ~5 km east of the 

Ohio River and with a population of 25,000 in metropolitan Louisville (38° 11’ 38”, -85° 46’ 29”). 

The study area (Figure 1), chosen for a prospective cohort study of cardiovascular disease risk and 

neighborhood level greenness (Green Heart Louisville), is bisected from east to west by a major 

interstate highway (I-264, Watterson Expressway), flanked along the northwest and east by freight 

railway lines, and is adjacent to an international airport that serves as the worldwide cargo hub of 
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a major shipping company. While land use within the study domain is mostly residential with some 

commercial spaces along major roads, land use outside the perimeter is mostly commercial or 

industrial. 

Measurement 
 

Most assessments—including the present work—assume that in typical environments, UFP 

dominate fine particle number concentrations (PNC) and thus, can be robustly characterized by 

particle counters rather than more sophisticated and more expensive instrumentation to measure 

UFP mass concentrations (6,7). We used three fast-response (1 Hz) mixing condensation particle 

counters (MCPC, Brechtel Inc., Hayward, CA, range: 8-2000 nm particles, η = 50% at 8 nm) to 

measure UFP number concentrations: two were collocated (for redundancy) in a gasoline-powered 

car with a BT-Q1000XT global positioning system (GPS, Qstarz International Co. Ltd., Taiwan, 

R.O.C.) logging the location every second, while the third was set up at a stationary site. All 

instruments were downstream of 2.5-µm size cut cyclone. In the vehicle, the inlet was positioned 

~10 cm above the roof of the car to avoid the flow reattachment zone and faced perpendicularly 

away from the cabin to minimize over- or under-sampling. The cyclone was connected to the 
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Figure 1 Land use within the study domain (12 km2) where UFP number concentrations were mapped using a gasoline-powered vehicle 
(inset). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 9, 2023. ; https://doi.org/10.1101/2023.03.03.23286768doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.03.23286768


66  

MCPCs inside the vehicle using ~1.2 m of steel tubing, and this set up (length, bends, and material) 

was replicated for the conduit at the stationary site so that wall losses would be comparable. Note 

that the stationary site is not intended to be in a background location, but rather, to provide fixed- 

site data for deconvoluting larger-scale signals (see next section). 

A note on the mobile platform: Electric vehicles were deemed unnecessary for this work as recent 

studies have shown limited to no interference in measured data due to exhaust from gasoline- 

powered mobile laboratories. Tailwind speeds need to be greater than the vehicle speed for self- 

sampling to be a concern, and Tan et al. determined that pure tail winds occur for at most 7% of 

the monitoring duration while driving in typical urban landscapes and Robinson et al. observed no 

increase in aerosol mass concentrations when the mobile laboratory was stationary (17,18). While 

self-sampling was not extensively evaluated in this work, we confirmed that 1-s UFP in a residential 

street measured while the vehicle was stationary for 20 mins with the engine off and then on 

(Figure 8, Supplementary material) were not statistically different (p>0.05). 

We conducted multi-day campaigns between August 2018 and February 2020, collecting day- and 

night-time measurements on weekdays and weekends. Each driving session had a 10-min warm 

up followed by 4-8 hours of mobile measurements and included a repeated route (Figure 1). For 

every 3 hours of mobile measurements, we collected 15 minutes of collocated data at the stationary 

site (vehicle parked ~10 m away with engine off). We classified data collected between 11 PM and 

6 AM as nighttime measurements, while daytime measurements could be taken anytime between 

8 AM and 8 PM; note that this delineation does not account for the rush hour traffic and changing 

mixing layer depth. We covered all drivable streets in the study domain at least four times (at least 

one of which was driven in the opposite direction) at 8-16 kph for each time of day and day of the 

week combination. Note that this driving speed does not permit complete coverage of the study 
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domain in each day of driving, so to accommodate comparisons of daytime and nighttime UFP, 

we covered the same neighborhoods of the study domain during the daytime and nighttime 

measurements within 24 hours. We classified measurements conducted between 11 PM on Fridays 

to 6 AM on Saturdays as weekday, nighttime data; consistent with this, measurements between 11 

PM on Sundays to 6 AM on Mondays were designated as weekend data. 

Data aggregation 
 

First, we combined UFP and GPS data with a one-second delay to account for the lag time due to 

the inlet tubing residence time (~0.8 s) and the instrument response time (0.2 s, calculated by the 

manufacturer). We determined the collocated precision (CP) between the stationary and mobile 

MCPCs for each driving session and if this value was lower than 95%, a scalar correction was 

applied to the mobile-platform data. Then, we snapped each GPS location to the nearest 30-m road 

segment, discretizing the drivable streets in the study domain into ~8500 features. Each segment 

was assigned the median of all UFP measurements that were attached to it. More so than other 

measures of central tendency, the median can provide stable exposure estimates in near-road 

environments where instantaneous pollutant levels vary rapidly (19). We selected this snapping 

distance as it was within the GPS error in covered areas (tunnels, heavily canopied streets) and the 

spatial scale at which previous mobile assessments have detected persistent patterns in urban UFP 

(20). While data were distinguished by day- and night-time as well as weekday and weekends for 

group-wise comparisons, measurements were combined for subsequent analyses to achieve the 10- 

20 drive days per street recommended by previous mobile studies to robustly capture key spatial 

patterns (19,21). This portion of the work was completed in ArcMap 10.6.1 (Esri Inc., Redlands, 

CA). 
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Predictor variables 
 

Street centerline (2020), railway (2019), land use (2019), food service locations (2021), signalized 

intersections (2021), and airports (2019) datasets were obtained from the City of Louisville’s open 

data portal (22). For each of the ~8500 segments of drivable streets, we calculated proximity 

(distance from the centroid) to expressways, interstate ramps, primary collectors, major arterials, 

minor arterial roads, restaurants, airports, and traffic signals. To quantify land use, we created 

buffers up to 500 m in 50 m increments centered at the centroid of each segment and within each, 

calculated the area of residential, commercial, industrial, park and open spaces, public spaces, and 

road by type (classifications mentioned above and local road). Greenness was quantified in each 

buffer through 1) 7-inch NDVI raster after excluding cells with NDVI < 0.17 (impervious surfaces, 

NDVI < 0, or grasses 0 < NDVI < 0.17) and 2) as well as tree-specific leaf biomass and leaf area 

predicted by collaborators. All calculations were completed in ArcMap and generated 148 

explanatory variables. 

Deconvolution 
 

As the present analysis focuses on spatial heterogeneity in UFP, we deconvoluted the stationary 

monitoring data to isolate neighborhood- and urban-scale pollutant levels, then subtracted these 

from mobile UFP to isolate local signals. This approach was proposed by Brantley et al. to 

distinguish variations in UFP at various time scales: in brief, UFP data is smoothed using a 30 s 

rolling median, binned in 1 min windows, and fitted with a smooth thin plate regression spline 

through the local minimum of each spline (23). We repeated this for varying bin widths (2, 3, 5, 6, 

10, 15, 20, 30, 45, and 60 min). In each case, the splined minima is subtracted from UFP measured 

along the repeated route (to leverage the large number of drives (N>40) on these segments; 

including other streets would have been computationally intensive and prone to bias due to the 
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lower repetitions). The subtraction generated 11 possibilities of local signals. Then, we calculated 

the Pearson’s correlation coefficient between these median UFP signals and the proximity to 

roadway parameters (distance to expressways, interstate ramps, primary collectors, major arterials, 

minor arterial roads). The buffer distances at which the coefficients drastically decreased indicated 

the zones of representations of these roads. These distances were 150 m and 450 m; assuming an 

average driving speed of 10 kph, this meant the neighborhood and urban signals shifted every 54 

s and 182 s, respectively. Therefore, neighborhood level signals were isolated using splined 

minima of 1 min windows and urban level signals were isolated using those from 3 min windows. 

This method assumes that neighborhood and urban signals are uniform (temporally coupled) 

within the study domain, and the remaining differences in the measurements are attributable to 

local variations in emissions and the built environment. Operationally, this assumption allows the 

use of any location within a study domain as the stationary site to determine neighborhood and 

urban signals (11). This portion of the analysis was completed in R (version 4.1.1) using the zoo 

and mgcv packages. 

Model development and validation 
 

The dependent variable was log-transformed due to strongly asymmetric distribution. We   

calculated Spearman’s correlation coefficients between UFP and all predictors and built the LUR 

model through supervised forward stepwise regression, adding independent variables with the 

highest correlation to UFP one at a time. Predictors were retained if they increased the adjusted R2 

of the model by ≥1% and discarded if they did not change the R2, worsened the R2, had variance 

inflation factors (VIF) greater than 2, or p>0.05. The final model was used to generate a raster of 

UFP concentration for the study domain, and it was evaluated using leave-one-area-out cross 

validation (LOAOCV): we split the study domain into four quadrants using the Watterson 
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Expressway and 
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Taylor Boulevard, and applied the model to each combination of three quadrants to evaluate model 

performance. 

Results and Discussion 
 

Ultrafine particle measurements 
 

Note: data in this section have not been deconvoluted. 
 

CP for the mobile MCPCs were 98% (average of all driving sessions), so data from one instrument 

was used for all further analyses. During all collocations, CP between the stationary and mobile 

 

 

 
 

 
 
 
 

Figure 2 Daytime, weekday median UFP for 30-m road segments in the study domain; data collected in 
mobile campaigns between 2018-2020. 
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MCPCs was <3% and Pearson’s ρ>0.99 (see Figure 9, Supplementary material), making scalar 

adjustments unnecessary. 

The total length of drivable streets, excluding alleys but including streets by driving direction, in 

the study area was 340 km. Daytime, weekday UFP (Figure 2) ranged from 1,800-100,450 #/cm3. 

Levels in residential areas within 500 m of highways and major roads (arterials, primary collectors) 

ranged from 1,800-4,600 #/cm3, while levels proximate (<250 m) to or measured on these roads 

were in the uppermost quintile. The median UFP in the study domain was 6,850 #/cm3, which is 

slightly lower than levels reported from mobile measurements in the urban areas of Toronto, 

Canada (11,500 #/cm3), Norwich, UK (8,000 #/cm3), and Turin, Italy (14,000 #/cm3) but similar 

to urban background PNC in Pittsburg, PA (6,000-7,000 #/cm3) (6,11,13). The lower levels in this 

portion of Louisville could be attributable to the predominantly residential land use unlike the other 

investigations, which were city-wide and sampled from all land use types. It should also be noted 

that due to the absence of an established reference method for measuring PNC, studies use number 

concentrations for PM0.1, PM1, or PM2.5 (as in this work) as proxies for UFP concentrations (6). 

Moreover, the particle detection efficiencies of CPCs at the lower cut points, which typically range 

from 1-10 nm, can greatly influence aggregated UFP levels because of the significant fraction of 

nucleation mode particles in vehicular exhaust (8). 

Expanding to nighttime and weekend data, we observed that median UFP was lowest during the 

daytime on weekdays (Figure 3). Mobile studies are typically not conducted at night, but 

assessments of stationary monitoring data corroborate the nighttime enhancement of UFP observed 

here, and this is consistent with diurnal patterns in the mixing layer depth (24). On the other hand, 

comparisons of PNC have found significantly higher levels during workdays (Mon-Fri) than non- 

workdays (Sat-Sun) (25,26). Morawska et al. measured lower median particle diameter on 
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weekdays (44.2±0.3 nm) than on weekends (50.2±0.2 nm), thus concluding that the difference is 

dominantly driven by fresh motor vehicle emissions that contain particles of smaller diameters 

relative to those in the urban background (25). Consistent with lower vehicular emissions, 

variances were lower at both night and on weekends (on-road emissions cause instantaneous spikes 

in UFP; this was also observed by Giemsa et al. (27)), but I found the opposite pattern in median 

UFP, with weekend levels elevated compared to both daytime and nighttime levels on the 

 
 

Figure 3 log10 median UFP collected on weekday 
(1:40 AM-3:20 AM, 2:45 PM – 5:30 PM, February 27, 
2020) and weekend (2:00 – 5:45 AM, 3:20 PM – 7:30 
PM, February 16, 2020) (all times in ET). 

Levels measured during day and nighttime were 
significantly different on both weekdays and weekends 
(Student’s t-test, *** p<0.001). 

 
 
 

 

weekdays. This is potentially due to the differing spatial scales in these assessments. While urban 

or regional scale UFP may decrease on weekends in response to lower traffic, changes in emissions 

due to local activity patterns may be enhanced at the neighborhood or residential scales (28). 

Lastly, UFP enhancement near (<250 m) restaurants was higher than that from vehicular emissions 

near the interstate highway. This is illustrated in Figure 4: measurements from a weekday rush 

hour (3:50-6:00 PM ET, Friday; wind data in Figure 10, Supplementary material) segregated by 

distance from the interstate highway showed that relative to a residential (local) street 1 km 

upwind, median UFP was elevated by 25% on streets <250 m downwind of the highway; however, 

median UFP on streets 1 km and 1.5 km upwind of the highway but within 250 m of restaurants 

(9-10 establishments) was elevated by 165% and 200%, respectively. Numerous studies in the past 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 9, 2023. ; https://doi.org/10.1101/2023.03.03.23286768doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.03.23286768


74  

decade have made similar observations of elevated particulate pollution in the vicinity of food 
 

 

Figure 4 Distribution of median UFP per 30-m road segments relative to distance from an interstate 
highway, from daytime (3:50 – 6:00 PM ET), weekday mobile measurements (February 28, 2020). 

service locations (18,21,29–33). Overall, this suggests that urban landscapes create persistent and 

hyperlocal hotspots, and that assessments of fine-scale environmental health effects may rely on 

short-term, mobile measurements to robustly characterize the resulting exposures. 

Deconvolution 
 

The urban signal obtained from the splined minima of 3 min windows ranged from 3,860 #/cm3 to 

11,750 #/cm3. These concentrations are comparable to the study domain-wide median (6,850 

#/cm3) and are within the range of urban background levels (6,000 – 11,000 #/cm3) measured or 

estimated in other studies (6,11,13). A snippet of deconvoluted UFP from mobile monitoring, 

shown in Figure 5, demonstrates that this approach captured the diel pattern for these hours: 

weekday PNC, which reaches its daily maximum in mid- to late-morning, tapers off through the 

afternoon and early evening as the expanding mixing layer dilutes ground-level pollution 
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(24,34,35). In this case, median UFP decreased from 10,400 #/cm3 to 6800 #/cm3 between 2:15 

PM and 5:00 PM. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 Local signal isolated from neighborhood (1-min minima) and regional (3-min minima) signals 
through median rolling deconvolution; data from mobile measurements on February 21, 2020. 

Relative to the urban scale UFP, the contribution from the neighborhood scale ranged from 2,100- 

13,650 #/cm3. For the duration in Figure 5, the neighborhood-scale UFP was between 4,400 #/cm3 

and 9,000 #/cm3. However, there was no discernible time-dependency in this signal. Rather, it likely 

reflected emissions from area-specific sources such as industrial activity and dispersed traffic. As 

shown in Figure 6, subtracting non-local signals revealed greater spatial heterogeneity in the 

measured 30-m median UFP (Fig 4.6 B) relative to no background standardization (Fig 6 A). 

Interestingly, the temporal scales suited to detect non-local signals in the Louisville study domain 

were much shorter (1 min and 3 min) than those identified in Toronto (8 min and 40 min) (11). 

While both studies relied on outlier-resistant median rolling methods, the broader scales for 

background interferences in Toronto are likely due to the larger spatial extent: compared to the 12 

km2 region in the present work, the study in Toronto covered nearly 1,400 km2. In fact, removing 

8 min and 40 min splined signals from measurements in Louisville drastically obscured small-area 

differences in median UFP (Fig 4.6 C). This suggests that background standardizations such as 
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deconvolution, much like LUR modeling, must be conducted empirically, but are highly effective 

in evincing hyperlocal heterogeneity in UFP. 

A. No deconvolution B. 1 min & 3 min deconvolution C. 8 min & 40 min deconvolution 

    

Figure 6 Spatial heterogeneity in 30-m median UFP with no deconvolution (A), 1 min and 3 min rolling 
minima subtracted (determined in this study) (B), and 8 min and 40 min rolling minima subtracted (from 
Shairsingh et al. (11)) (C). 

 

Modeling results 
 

The final regression model explained 61% of the variance in deconvoluted UFP. Variables 

quantifying proximity to roadways and restaurants were the most correlated with UFP and thus, 

considered first. Then, parameters denoting cumulative occurrence of greenness (NDVI) and 

industrial land use were added, but interestingly, most area metrics did not improve the adjusted 

R2. The final model (Table 1) consisted of 13 predictors, all with VIF < 2; Figure 7 shows the 

resulting surface of UFP concentration. 

Four explanatory variables quantified cumulative occurrence or proximity to previously known 

sources of elevated UFP—vehicular traffic and restaurant cooking. In the case of restaurants, the 

distance to the nearest location and the count within a 350 m buffer were significant predictors. 

This buffer distance is consistent with the zone of elevated UFP noted earlier (Figure 4) and with 

the exponential decay distance in organic aerosol—albeit by mass concentration—reported in a 

(#/cm3) 
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previous study, where the steepest decline was observed within 300 m downwind of restaurants 

(18). 

Table 1 Summary of multivariable regression model for the deconvoluted, 30-m log(UFP) with 
standardized coefficients 

Type Predictor Coefficient Standard 
error t Prob>t VIF 

ln(UFP) (adj. R2 = 0.61, p<0.001) 
 Constant 7.88x10-3 7.57x10-3 1.03 0.302  

 
Total 
length 

Highway (<100 m) 2.84x10-1 7.00x10-3 4.06 0.000 1.051 
Primary collector (<250 m) 3.96x10-2 6.96x10-3 5.69 0.000 1.032 
Major arterial (<250 m) 3.09x10-2 7.02x10-3 4.40 0.000 1.053 

 
Area 

NDVI (500 m) -4.20x10-3 7.09x10-4 -5.78 0.000 1.131 
Leaf biomass (<200 m) -1.01x10-3 9.38 x10-4 -6.32 0.000 1.125 
Leaf biomass (<300 m) -1.98x10-3 9.94 x10-4 -6.86 0.000 1.169 

Count 
Traffic signals (<150 m) 2.24x10-2 6.96x10-3 3.53 0.000 1.027 
Restaurants (<350 m) 1.41x10-2 5.31x10-3 2.69 0.007 1.013 

 
 
Proximity 

Commercial 2.45x10-2 6.98x10-3 3.49 0.000 1.043 
Residential -1.24x10-2 6.98x10-3 -1.99 0.047 1.034 
Industrial 1.76x10-2 6.94x10-3 2.54 0.010 1.022 
Restaurants 1.28x10-2 5.29x10-3 2.45 0.015 1.120 

The only predictors negatively associated with UFP were proximity to residential land use and 

greenness by cumulative occurrence (NDVI within 500 m, leaf biomass within 200 m and 300 m), 

a unit increase in which corresponded to modest UFP decreases between 0.1-1.2%. It is unclear 

whether this decrease is due to mitigation by vegetation or due to the absence of emission sources: 

though the final predictors exhibited low collinearity (VIF<2) overall, it is possible that the 

presence of open spaces may be inversely correlated with the presence of roadways in small 

portions of the study domain. Limited number of LUR models have fitted UFP from mobile 

measurements with NDVI metrics; rather, most studies include parameters of open space or parks. 

Such variables were not retained in this study, but Hankey et al. reported negative associations 
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between particle number concentrations and open spaces within 25 m and 1,500 m, and Xing et al. 

showed that urban vegetation removed at most 1% of pollutants through deposition (10,36). The 

associations between UFP and greenness parameters detected in this study support Xing et al.’s 

assertion that removal through deposition, which varies with leaf area, has limited impact on 

variability in pollutant concentrations; rather, leaf biomass—a proxy for foliage—alters pollutant 

concentrations in microenvironments through mechanical interference. 

 

Figure 7 Modeled 30-m UFP concentration for the study domain 
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LOAOCV revealed that the model overpredicted UFP in the upper left and lower right quadrants 

of the study domain, which extend farther from the interstate highway and have food service 

locations mostly along the perimeter, by 9-13%. In contrast, the model underpredicted UFP in the 

upper right quadrant, which is transected by several arterial roads and embedded with numerous 

restaurants. This suggests that the model can be refined if fitted to measured data with more 

repetitions in each section. Moreover, since deconvolution can be applied directly to mobile 

measurements (i.e. determining spline windows using mobile-platform data rather than the 

stationary-site data), all three instruments could be simultaneously deployed for mobile 

monitoring, thus expanding the spatial coverage of each session. 

The predictive capability of this model is consistent with previous assessments using 20 or fewer 

repeated measurements along the same route (10,37). Studies have found that LUR models require 

longer-term, seasonally robust UFP estimates from mobile measurements to obtain performance 

better than 0.5< adjusted R2 <0.6. This is certainly recommended for future analyses in the 

Louisville domain. Though the deconvolution method used here does not necessitate season- and 

year-specific monitoring to identify the true background, monitoring that exceeds 10-20 drives per 

season will better characterize long term patterns in local UFP. 

On a final note, another approach to improve the variance explained by the model is to include 

additional predictors. While land use, land cover, and traffic-related parameters were considered 

extensively in this work, variables for local meteorology were not included. Numerous studies 

have reported significant associations between deconvoluted UFP and meteorological variables 

(wind speed, wind direction (in 30-45° sectors), relative humidity) in LUR models (11,12,38,39). 

Wind velocity, in particular, deserves further discussion as two common strategies to mitigate 

pollution exposure—sound walls and green interventions—interfere with wind patterns at spatial 
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scales in which the present work and previous investigations have shown persistent UFP patterns 

(19,21). Unlike in these two assessments of coastal cities, however, wind direction in Louisville is 

heterogeneous over the temporal extent of the mobile measurements (see Figure 11, 

Supplementary material). 

The strong downwind signals from highways observed in this work and extensively explored in 

others compel the consideration of time-matched wind direction as a predictor. Indeed, if the 

driving speed of the mobile platform—typically 8-30 kph—is used to calculate bin widths for 

rolling minima splines to effectively detect background signals, it is reasonable to speculate that 

wind speed—which ranges from 6-30 kph for light to moderate breezes—can also be a determinant 

of hyperlocal UFP (40). In fact, wind speeds have been used to determine temporal scales to 

deconvolute PNC (41). It is important to note, however, that wind speeds in urban 

microenvironments exhibit micrometeorological behavior; features of the built and natural 

environment, including sound walls and tree canopies, may stagnate wind flow or generate 

turbulence (42). In other words, hyperlocal wind velocity may be just as dependent on land use 

parameters as pollutant levels. LUR models that found statistically significant associations 

between wind speed or direction with UFP have been developed for coastal or lakeside cities such 

as Toronto, Vancouver, and Boston (11,12,43,44) or in assessments based on fixed-site monitoring 

(40). In land areas adjacent to major water bodies, sea or lake breezes maintain persistent wind 

patterns that may be retained hyperlocally; this is likely not the case in inland cities such as 

Louisville (45). 

Conclusion 
 

This study mapped and modeled 30-m UFP in a section of Louisville, KY, demonstrating that 

mobile monitoring strategies developed by assessments of larger-scale urban air quality 
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characterizations can evince hyperlocal pollution patterns at even finer spatiotemporal scales. The 

model was fitted to temporally deconvoluted UFP such that regional and neighborhood scale 

baselines were removed to better capture spatial heterogeneity associated with local land use 

parameters. An implication of this work is that, given the dependence of UFP on characteristics of 

the built and natural environment, rational implementation of mitigation strategies may alleviate 

hyperlocal UFP exposures. 
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Supplementary material 
 

Figure 8 1-second log10(UFP) measured on the gasoline-powered mobile platform with the engine off and on 
(20 min each). 

 
 

 
Figure 9 Collocated (mobile platform ~10 m from stationary site) 1-second UFP measured by the stationary 
MCPC and the mobile MCPCs (MCPC 1 and MCPC 2); Pearson’s correlation coefficients were ρMCPC 1 = 
0.9978 (95% CI 0.9965, 0.9973) and ρMCPC 2 = 0.9968 (95% CI 0.9963, 0.9972). 
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Figure 10 5-min wind for the measurement duration over which data for Figure 4.4 was collected (3:50 
– 6:00 PM ET, February 28, 2020); data obtained from Kentucky ASOS for Louisville International 
Airport (https://mesonet.agron.iastate.edu/request/download.phtml) 

 
 
 

 
Figure 11 5-min wind for 2019-20 as measured at Louisville International airport; data obtained from 
Kentucky ASOS (https://mesonet.agron.iastate.edu/request/download.phtml) 
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