
MAUDGAN: Motion Artifact Unsupervised Disentanglement1

Generative Adversarial Network of Multicenter MRI Data with2

Different Brain tumors3

Mojtaba Safari, MSca,b,*, Ali Fatemi, PhDc,d, Louis Archambault, PhDa,b
4
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Abstract. Purpose: This study proposed a novel retrospective motion reduction method named motion artifact11

unsupervised disentanglement generative adversarial network (MAUDGAN) that reduces the motion artifacts from12

brain images with tumors and metastases. The MAUDGAN was trained using a mutlimodal multicenter 3D T1-13

Gd and T2-fluid attenuated inversion recovery MRI images. Approach: The motion artifact with different artifact14

levels were simulated in k-space for the 3D T1-Gd MRI images. The MAUDGAN consisted of two generators,15

two discriminators and two feature extractor networks constructed using the residual blocks. The generators map16

the images from content space to artifact space and vice-versa. On the other hand, the discriminators attempted to17

discriminate the content codes to learn the motion-free and motion-corrupted content spaces. Results: We compared18

the MAUDGAN with the CycleGAN and Pix2pix-GAN. Qualitatively, the MAUDGAN could remove the motion19

with the highest level of soft-tissue contrasts without adding spatial and frequency distortions. Quantitatively, we20

reported six metrics including normalized mean squared error (NMSE), structural similarity index (SSIM), multi-21

scale structural similarity index (MS-SSIM), peak signal-to-noise ratio (PSNR), visual information fidelity (VIF), and22

multi-scale gradient magnitude similarity deviation (MS-GMSD). The MAUDGAN got the lowest NMSE and MS-23

GMSD. On average, the proposed MAUDGAN reconstructed motion-free images with the highest SSIM, PSNR, and24

VIF values and comparable MS-SSIM values. Conclusions: The MAUDGAN can disentangle motion artifacts from25

the 3D T1-Gd dataset under a multimodal framework. The motion reduction will improve automatic and manual26

post-processing algorithms including auto-segmentations, registrations, and contouring for guided therapies such as27

radiotherapy and surgery.28
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1 Introduction31

Magnetic resonance imaging (MRI) with different sequences provides excellent soft tissue contrast32

for diagnosis and treatment planning. However, high MRI acquisition time limits the quality of33

high-resolution images1 because of the increased probability of patient motion. Involuntary and34

voluntary subject motions during data acquisition cause image blurring and ghosting along the35
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phase-encoding direction. The prevalence of motion artifacts is high for infants and patients with36

acute distress.237

To tackle motion artifacts, retrospective motion correction (RMC) and prospective motion cor-38

rection (PMC) methods were developed. PMC approaches modify the gradient magnetic fields39

using the imaged object positions that are tracked during imaging to maintain a constant relation-40

ship between imaged object and imaged volume.3, 4 PMC can maintain a uniform k-space sampling41

density, which avoids Nyquist violation, and compensate for spin-history effects.5 However, PMC42

methods require additional hardware and complicated pulse sequences that increase the imaging43

time. On the other hand, RMC methods are post-processing approaches, and do not require ad-44

ditional hardware and pulse sequence modifications during imaging. Traditional RMC methods,45

such as auto-focusing, attempt to optimize image quality metrics like entropy and gradient,6 iter-46

ative methods to estimate motion trajectory,7 compressed-sensing theory,8 and modified imaging47

sequences.9 They are either limited to 2D imaging methods or require raw k-space data that are48

not widely available. In addition, these methods are computationally expensive.49

Recently, deep learning techniques, in particular, convolutional neural networks (CNNs) have50

been used to quantify10, 11 and reduce12, 13 MRI motion artifact retrospectively. These models learn51

the task through a supervised framework using the simulating motion artifacts. Unpaired deep52

learning models attempted to use data without the motion artifact as a ground truth to reduce the53

artifacts from MRI with the same imaging sequence.14
54

This study aimed to address the problem in a more practical setting where one motion-free MRI55

modality removes artifacts from the motion-corrupted images acquired with different MRI imag-56

ing sequences. This study reformulated MRI motion artifacts as an unsupervised disentanglement57

problem. Thus, we introduced a novel motion artifact unsupervised disentanglement generative58
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Fig 1: Content and artifact components of 3D T1-Gd MRI (xa) in the motion-corrupted space Ta

and T2-FLAIR in artifact-free space T are mapped to the content space C and artifact space A,
respectively. MAUDGAN maps the data in Ta space to T space (xa → x̂) shown by blue arrows.
Conversely, MADuGAN learns to map from T space to Ta space (y → ŷa) shown by green arrows.

adversarial network (MAUDGAN). The novel MAUDGAN was applied to reduce the motion of59

3D T1-Gd MRI sequences using motion-free T2-fluid attenuated inversion recovery (FLAIR) se-60

quences for the patients with different brain cancers metastasis. This study used a multicenter61

dataset to improve the MUADGAN’s generalization.62

This study leverages an inductive bias15 that the MAUDGAN learn to disentangle motion ar-63

tifacts from motion-free contents by comparing 3D T1-Gd MRI sequences (typically with motion64

artifacts) with motion-free T2-FLAIR (Figure 1) in the latent space.65

The MAUDGAN consists of U-net16 generators to perform different forms of image transla-66

tions including motion artifact reduction and synthesis. Discriminators were used to distinguish67

between the motion-free and the motion-corrupted MRI sequences in the latent spaces. To our68

knowledge, MAUDGAN is the first study in multi-modal anatomical MRI motion artifact reduc-69

tion.70

The rest of this paper is as follows: Section 2 explains the dataset and motion simulation71

steps. Section 3 gives a detail about the MAUDGAN architecture and loss functions. Results and72

comparisons with two generative models are illustrated in Section 4. Finally, Sections 6 and 573

3
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discuss the significance of the MAUDGAN and its possible use in the context of diagnosis and74

therapy.75

2 Material76

2.1 Dataset77

We used a publicly available multicenter medical GLIS-RT dataset from the Cancer Imaging78

Archive17 consisting of 230 patients (100 males and 130 females). All patients with different79

brain tumor types underwent 3D T1-Gd, 2D T2-FLAIR MRI sequences, and a CT scan under dif-80

ferent imaging protocols. The brain tumor types were glioblastoma (GBM - 198 cases), anaplastic81

astrocytoma (AAC - 23 cases), astrocytoma (AC - 5 cases), anaplastic oligodendroglioma (AODG82

- 2 cases), and oligodendroglioma (ODG - 2 case). We used 80% (11246 image slices) and 20%83

(2276 image slices) of data for training and testing our method, respectively.84

The median of the T2-FLAIR and 3D T1-Gd images’ resolution was 1.1×1.1×5 mm3 (standard85

deviation 0.53×0.53×0.87 mm3) and 0.94×0.94×1. mm3 (standard deviation 0.24×0.24×1.2186

mm3), respectively. The T2-FLAIR imaging parameters were (median ± std); TE = 119 ± 64.0687

ms , TR = 9000 ± 936.20 ms , TI = 2500 ± 174.02 ms, and flip angle = 150◦ ± 13.56◦. Those88

parameters for T1-Gd were (median ± std); TE = 2.98± 3.86 ms , TR = 2200± 1031.76 ms , TI =89

900±235.50 ms, and flip angle = 9◦±5.45◦ About 30% of data were acquired using MRI scanners90

with B0 of 1.5 T and the others were acquired using 3T scanners. Out of 230 cases, 55 cases were91

obtained using GE MRI scanners and the rest were obtained using Siemens MRI scanners.92

Finally, we evaluated the MAUDGAN performance on anonymized clinical data with real mo-93

tion artifacts. This retrospective single-centre study was approved by the institutional review board,94

and the requirement for written informed consent was waived.95
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2.2 Motion simulation96

The head motion was simulated in the Fourier domain (k-space), and the motion-corrupted data was97

generated after the inverse discrete Fourier transform. We adapted the piecewise constant motion98

simulation approach with a low computation burden because it provides a similar generalization99

than to the complex motion simulation techniques.13 Moreover, the generated motion artifacts100

were similar to the real motion artifacts.13
101

We assumed the phase encoding interval was much faster than the head motion. Thus, the102

same motion parameters could be used at each phase encoding direction (Figure 2). The k-space103

lines within the randomly selected slabs were translated in the phase encoding direction. However,104

the middle of the k-space that corresponds to the low-frequency content of the MRI images was105

excluded in the motion artifact simulation process, shown as a forbidden region in Figure 2. Our106

motion simulation method could successfully model the ghosting of the bright fat tissue, due to the107

motion artifact, to the background around the skull, which is common in structural MRI images.18
108

3 Method109

We denote Ta and T as the motion-corrupted image and the motion-free image spaces, respectively.110

The paired and unpaired motion reduction process is formalized as a M = {(xa, x) | xc ∈ Ta, x ∈111

T , f(xa) = x} where xa and x were the motion-corrupted and motion-free single MRI image112

sequence and f : Ta → T .14, 19 However, we assumed there is no paired or unpaired dataset of a113

single modality available to disentangle motion artifacts. Instead, another MRI image sequence,114

T2-FLAIR, was employed to disentangle the motion artifact of the T1-Gd MRI sequence, which115

is more practical in clinical settings. Thus, the MAUDGAN is formalized as M = {(xa, y) | xa ∈116

Ta, y ∈ T , f(xa) = x, g(xa, y) = ya} where f : Ta → T and g : T → Ta are the encoding into a117
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Random regions

Random phase 
line

Forbidden regions

k-space

Distoreted k-spaceDistoreted image

Ground truth image

Fig 2: The motion simulation process. After choosing the phase encoding direction, several ran-
dom k-space regions were selected. The randomly selected k-space lines were randomly translated
within the random regions.

content space C and artifact space A. Also, xa and y are motion-corrupted T1-Gd and the motion-118

free T2-FLAIR MRI images. After training the MAUDGAN, the image data in the content space119

will be free of motion artifacts. In contrast, the motion-corrupted T2-FLAIR could be generated120

using the learned motion artifact model.121

3.1 MAUDGAN122

The MAUDGAN consists of two generators F : Ta → T and G : T → Ta to map from motion-123

corrupted space to motion-free space and vice-versa (Figure 3). In addition, two networks Hν1 and124

Hν2 were also employed to extract features of the images before feeding them to the generators.125

Given multimodal MRI images T1-Gd xa ∈ Ta and T2-FLAIR y ∈ T , the training steps were126

as follows:127

6
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Fig 3: The proposed MAUDGAN is illustrated. The Generators F learns disentanglement while
the G learns to generate motion-corrupted images from motion-free images.

1. F maps the motion-corrupted T1-Gd xa to motion-free space x̂,128

x̂ = F(xa; θ) (1)

2. G maps the motion-free space T2-FLAIR y to the motion-corrupted space ŷa,129

ŷa = G(Hν1(xa),Hν2(y); ϱ) (2)

3. trained F in step 1 was used to recover motion-free T2-FLAIR ỹ from motion-corrupted ŷa130

simulated in step 2,131

ỹ = F(ŷa, θ) = F (G(Hν1(xa),Hν2(y); ϱ); θ) (3)

7
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4. trained G in step 2 was used to recover motion corrupted T1-Gd x̃a from motion-free x̂ and132

motion-corrupted ŷa simulated in step 1 and 2,133

x̃a = G(Hν1(ŷa),Hν2(x̂); ϱ) (4)

3.2 Learning134

The MAUDGAN attempts to train generators in an adversarial scenario to achieve motion artifact135

disentanglement. Thus, the MAUDGAN employed loss functions to remove motion artifacts from136

T1-Gd using content information of T2-FLAIR as given in (1)-(4). The MAUDGAN employs four137

loss functions including two adversarial losses LT
adv and LTa

adv, reconstruction loss Lrec, and artifact138

consistency loss Larti. The cost function is formalized as the weighted sum of the losses,139

L = λadv × (LT
adv + LTa

adv) + λrec × Lrec + λarti × Larti (5)

where λadv, λrec, and λarti are the hyper-parameters controlling the importance of each term.140

3.2.1 Adversarial loss141

The MAUDGAN was trained to map from motion-corrupted space to motion-free space as given142

in (1) and (3) and vice versa as given in (2) and (4). Learning those two tasks are important143

to disentangle motion artifact from the image content. As the MAUDGAN is trained on multi-144

modal MRI sequences, regression losses like L1 and L2 could not be employed due to the do-145

main difference between T2-FLAIR and T1-Gd MRI images. Therefore, the adversarial learning146

technique,20 introduced DT and DTa discriminators, was employed to regularize the plausibility147

between motion-corrected and motion-free images using LT
adv loss and between motion-corrupted148

8
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and motion-simulated images using LTa
adv loss. Thus, the MAUDGAN is trained to fool the dis-149

criminators, so they could not determine whether the motion was generated or real. The adversarial150

losses are as follows;151

LT
adv = Ez∼qθ(z|ŷa) [∥DT (z)− I∥1] + Ez∼qθ(z|xa) [∥DT (z)∥1]

LTa
adv = Ez∼qϱ(z|ŷa,x̂) [∥DT a (z)− I∥1] + Ez∼qϱ(z|y,xa) [∥DT a(z)∥1]

(6)

where z is the latent variable generators, DT and DT a are the discriminators to distinguish between152

motion-corrupted and motion-free content data sampled from T and Ta domains, respectively. I153

is an unit matrix with a size M ×M , where M is substantially smaller than the image dimension154

size, that matched the discriminators’ output.155

3.2.2 Reconstruction loss156

Despite motion artifact disentanglement, the whole process needed to be lossless. In other words,157

the MAUDGAN was required to recover the original motion-corrupted T1-Gd x̃a from motion-158

corrected x̂ and to recover motion-free T2-FLAIR ỹ from motion-simulated ŷa. Therefore, two159

reconstruction losses given in (7) were used to encourage the MAUDGAN to preserve the infor-160

mation.161

Lrec = Exa∼Ta,y∼T [∥x̃a − xa∥1 + ∥ỹ − y∥1] (7)

where ỹ and x̃a shown in Figure 3 are given in (3) and (4). We adapted the L1 loss rather that than162

the L2 to generate sharper images.21
163

9
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Fig 4: The Generator with the blocks used to construct discriminator and Hνs are illustrated.

3.2.3 Artifact consistency loss164

Adversarial losses encouraged the content of generated motion-corrupted ŷa and motion-free x̂165

images to be indistinguishable from T1-Gd xa and T2-FLAIR y images, respectively. However,166

the discriminators lose the spatial resolution. To preserve the spatial resolution, L1 and L2 could be167

used. But, due to the domain difference between T1-Gd and T2-FLAIR, direct use of losses would168

transfer the images’ domain. We proposed artifact loss Lartif given in (8) to induce motion artifacts169

to the motion-corrected x̂ images. Thus, Lartif conflicts with adversarial losses and comprises the170

overall learning process.171

Lartif = Exa∼Ta,y∼T [∥(x̂− xa)− (ŷa − y)∥1] (8)

Equation (8) encourages the difference between xa and x̂ to be similar to y and ŷa. Unlike a172

direct minimization by L1 that would cause an image domain translation, Lartif requires the x̂ and173

xa to be anatomically close rather be exactly close to preserve structural information.174
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3.3 Network architecture175

The MAUDGAN network generator is illustrated in Figure 4-(a). The generator employed residual176

blocks22 (Figure 4-(b)) for a better generalization than convolution blocks without skip connection.177

To improve the generators’ performance,23 the convolution layers were used to down-sample the178

data in the encoder part of the generator. However, the decoder part of the generator employed179

the up-sampling layers rather than the transpose convolution layers to preserve the image edge180

information and avoid the checkerboard effect.24
181

The discriminator consists of four residual blocks (Figure 4-(b)) and down-sampling blocks.182

Finally, the discriminators were constructed by four convolution blocks shown in Figure 4-(c)183

and the final layer with one convolution layer. The feature extractors (Hνi for i ∈ {1, 2}) were184

constructed using five residual blocks (Figure 4-(b)).185

We implemented the MAUDGAN under the PyTorch 1.12.01 deep learning framework186

using two NVIDIA GPUs RTX 3090. The batch size, optimizer, and the learning rate were 6,187

RAdam,25 and 2× 10−4. We trained the network using hyper-parameters λrec = 10, λadv = 5, and188

λartif = 50.189

4 Results190

To our knowledge the MAUDGAN is the first network that employs the multi-modal MRI images191

to reduce MRI motion artifacts. Thus, we could only compare the MAUDGAN with two well-192

known unsupervised image-to-image translation approaches including CycleGAN26 and Pix2pix.21
193

The original implementations of the CycleGAN and Pix2pix were used2 to compare the results.194

1https://pytorch.org/
2https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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The supervised methods like U-Net27 were excluded since the ground truth targets were unavail-195

able, and the domain shifts between the multi-modal images transfer the domain of the input196

motion-corrupted 3D T1-Gd images to the motion-free T2-FLAIR dataset. We compared the197

MAUDGAN with those networks for different motion artifact levels. Finally, we evaluated the198

performance of the MAUDAN to remove real motion artifacts from the patients with head & neck199

cancer.200

Motion simulated dataset allowed us to perform qualitative and quantitative comparisons. We201

report six quantitative metrics including normalized mean squared error (NMSE), structural sim-202

ilarity index (SSIM),28 multi-scale structural similarity index (MS-SSIM),29 peak signal-to-noise203

ratio, visual information fidelity (VIF),30 and multi-scale gradient magnitude similarity deviation204

(MS-GMSD).31 The higher metric values are better regarding motion artifact reduction and distor-205

tion levels except with the NMSE and MS-GMSD metrics.206

Qualitative comparisons are illustrated in Figure 5 for different motion levels. Qualitatively, the207

Pix2Pix method had the lowest performance in preserving the MRI soft tissue contrast. CycleGAN208

reduced soft-tissue contrasts, smeared out the signal intensity, and unrealistically elevated the skull209

signals. MAUDGAN remove motion artifact with better soft tissue contrast and realistic skull210

signal intensity.211

In addition, CycleGAN generated images with high signal intensity voxels mimicking the false212

tumors (see Figure 6). The false tumors were generated might be attributed to the wrong sampling213

from data manifolds. Those false tumors differ from water droplet-like artifacts32 cause by the214

normalization layers. Especially, the false tumor shown in Figure 6b is similar to the post-surgery215

cases.216

The quantitative metrics evaluating the motion-corrected image contrast, image distortion level,217
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Fig 5: Visual comparisons of the motion-reduction methods on the motion-simulated data. The
simulated motion artifact was added along the row in (a) and column in (b). The heavy, moderate,
and minor motion simulation data and the motion-corrected results are from top to bottom rows.
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Fig 6: The white arrows illustrate the false tumors generated by the CycleGAN dataset.

and structure and texture similarity to the ground truth data are illustrated in Figure 7. The218

MAUDGAN with the lowest NMSE and the highest PSNR values indicates the removing the219

motion artifact with small spatial distortion. However, NMSE and PSNR tend to favor smooth-220

ness. The MS-SSIM and SSIM were reported to evaluate the structural similarity of the motion-221

corrected images and the ground truth. Higher MS-SSIM and SSIM indicate better similarity. Our222

method got better SSIM values and comparable MS-SSIM values for different distortion levels.223

The MAUDGAN with the highest value of VIF could preserve more information than the other224

utilized methods. Finally, to evaluate the image gradient, which is related to image contrast, the225

MS-GMSD was reported for different distortion levels. Lower MS-GMSD indicates a smaller de-226

viation between the gradients of motion-corrected and ground truth data. The MAUDGAN with227

smaller MS-GMSD could preserve more, say soft-tissue, the contrast of the ground truth data.228

We tested the MAUDGAN model on the data with real data with motion artifacts. The data229

were extracted anonymized from the PACS system. The real artifact was reduced using the230

MAUDGAN as shown in Figure 8.231

14
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Fig 7: Quantitative metrics to evaluate the quality of the motion-corrected data. The proposed
MAUDGAN, Pix2Pix, and CycleGAN were evaluated on three motion distortion levels heavy,
moderate, and minor.

5 Discussion232

This study aimed to reduce 3D T1-Gd motion artifacts using T2-FLAIR images. 3D T1-Gd images233

with high acquisition times are more likely to corrupt with the motion artifact.2 In addition, the234

high-resolution images’ quality acquired with the high B0 magnetic fields is limited due to the mo-235

tion artifact, which the PMC methods could partially remove the motion artifacts.1 Motion artifacts236

reduce the image quality reducing the performance of manual and automatic post-processing ap-237

proaches like tumor and organ at risks auto-segmentation.33, 34 This study introduced MAUDGAN238

to tackle motion reduction as a disentanglement problem. The multi-center dataset with different239
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Fig 8: The anonymized data with real motion artifacts were exported from the PACS system to
evaluate the MAUDGAN model to remove the real motion artifacts. The first row is the data with
real artifact, and the second row illustrates the data after motion reduction. The arrows indicate the
motion artifact.

brain tumors and metastases was used to train the MAUDGAN, which is expected to improve its240

generalization. Our qualitative and quantitative comparisons with two well-known GAN methods241

indicate that the MAUDGAN could disentangle the motion artifact using T2-FLAIR with a lower242

spatial distortion and a better spatial contrast.243

The MAUDGAN was qualitatively compared with generative models CycleGAN and Pix2pix.244

The MAUDGAN could preserve better soft-tissue contrast (see Figure 5). The Pix2pix approach245

did not preserve soft-tissue contrast, which might because this method was proposed to work under246

the paired framework which is different from the theory of this study. On the other hand, the247

CycleGAN smeared out the MRI soft-tissue contrast, which was better than the pix2pix. Finally,248

the MAUDGAN reduced the motion artifact with better soft-tissue contrast.249

When a network is trained on datasets with tumors, it is crucial that the network to be ro-250

bust against spatial distortions because those distortions could be misinterpreted as a tumor. The251

MAUDGAN was free of spatial distortion, while the CycleGAN added spatial distortions (see Fig-252

ure 6). The added spatial distortions were similar to the brain tumor of the patient with edema and253
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after tumor resection as illustrated in Figure 6(a) and (b), respectively.254

The quantitative comparisons shown in Figure 7 between the motion-free ground truth dataset255

and motion-corrected reconstructed by the CycleGAN, Pix2pix, and MAUDGAN suggest that the256

MAUDGAN-generated images were more distortion-free with a lower NMSE and a higher PSNR.257

In addition, MAUDGAN with the higher SSIM, MS-SSIM, and VIF and lower gradient deviations258

(MS-GMSD) generated more similar to the ground truth dataset.259

To the best of our knowledge, this is the first study reporting on the feasibility of an approach260

enabling to disentangle motion of 3D T1-Gd using T2-FLAIR. The dataset contains different brain261

tumors and metastases, which are enhanced differently on the different MRI sequences. Thus, we262

did not use motion-free images of other patients, which need to be exported from PACS. This way,263

the dataset of the patients without motion artifacts remain in the clinical system. Moreover, we can264

use all the data to train the network, which is more than training under an unpaired scenario since265

we do not need to export the same number of patients’ data without motion artifacts.266

This study is more challenging compared with the unpaired studies14, 35 because the data space267

domain of 3D T1-Gd differs from T2-FLAIR. Thus, the MAUDGAN must be robust to the domain268

shift between datasets. Due to the MAUDGAN’s robustness, it could employ other image modal-269

ities like the T1-w dataset instead of T2-FLAIR. Thus, the MAUDGAN applies to other available270

MRI sequences than T2-FLAIR. However, this study is limited to the in-plane motion artifact due271

to the fact T2-FLAIR images were acquired in 2D that is inherently contain geometry distortion272

along the slice directions.36
273
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6 Conclusion274

Our method, MAUDGAN, could disentangle motion artifacts from the 3D T1-Gd dataset under a275

multi-modal framework. The motion reduction will improve post-processing methods like manual276

and automatic brain tumors and organ at risk delineations and might increase the CT/MRI co-277

registration accuracy. Especially, the MAUDGAN would benefit elderly and infant patients with278

more involuntary motions during the 3D T1-Gd imaging with a long acquisition time. This retro-279

spective motion correction is free from additional hardware or sequence modifications during the280

imaging, which makes it more practical.281
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List of Figures387

1 Content and artifact components of 3D T1-Gd MRI (xa) in the motion-corrupted388

space Ta and T2-FLAIR in artifact-free space T are mapped to the content space389

C and artifact space A, respectively. MAUDGAN maps the data in Ta space to T390

space (xa → x̂) shown by blue arrows. Conversely, MADuGAN learns to map391

from T space to Ta space (y → ŷa) shown by green arrows.392

2 The motion simulation process. After choosing the phase encoding direction, sev-393

eral random k-space regions were selected. The randomly selected k-space lines394

were randomly translated within the random regions.395

3 The proposed MAUDGAN is illustrated. The Generators F learns disentanglement396

while the G learns to generate motion-corrupted images from motion-free images.397

4 The Generator with the blocks used to construct discriminator and Hνs are illus-398

trated.399
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5 Visual comparisons of the motion-reduction methods on the motion-simulated data.400

The simulated motion artifact was added along the row in (a) and column in (b).401

The heavy, moderate, and minor motion simulation data and the motion-corrected402

results are from top to bottom rows.403

6 The white arrows illustrate the false tumors generated by the CycleGAN dataset.404

7 Quantitative metrics to evaluate the quality of the motion-corrected data. The pro-405

posed MAUDGAN, Pix2Pix, and CycleGAN were evaluated on three motion dis-406

tortion levels heavy, moderate, and minor.407

8 The anonymized data with real motion artifacts were exported from the PACS sys-408

tem to evaluate the MAUDGAN model to remove the real motion artifacts. The409

first row is the data with real artifact, and the second row illustrates the data after410

motion reduction. The arrows indicate the motion artifact.411
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