
SUPPLEMENTARY INFORMATION
Real-time Dissection and Forecast of Infection Dynamics during a Pandemic

Steven Schulza,∗, Richard Pastora, Cenk Koyuncuoglua, Forrest W. Crawfordb,c,d,e, Detlef Zernicka,
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S1. Definition of contact networks and reconstruction from GPS crowdsourcing data18

To achieve a computationally feasible definition and identification of contacts, we divide space-time into19

tiles of 8m×8m and 2min in size. In other words, the geographical area of interest (here: map of Germany)20
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is binned into 8m-by-8m tiles and the time axis is binned into contiguous intervals of 2min. We define a21

contact event as the co-location of two or more devices within the same tile, i.e. when ≥ 2 individuals are22

close in space at about the same time such that airborne transmission between them is possible. We infer23

co-location events in Germany using crowdsourced GPS location information from a panel of approximately24

106 app users, each of which contributing on average 100 daily samples, thus giving rise to a daily raw dataset25

of the order of 108 samples and 300GB in size. The choice of 2min is motivated from the expectation that26

exhaled, infectious droplets can linger in the air for substantial time after passage of an infectious individual.27

The use of co-location within two-dimensional grid cells of 8m × 8m excludes actual contacts between28

nearby individuals that are separated by cell boundaries. However, we think this represents an additional29

benefit to our approach while simplifying the definition of contacts: This exclusion effect induces a kernel30

with higher likelihood for a relevant contact on short-distanced pairs of individuals, as they are more likely to31

fall within the same grid cell. This meets the expectation that transmission probability is also a continuously32

decreasing function of distance.33

We define the contact network as follows: Individuals/devices are implanted as nodes of a network and34

edges are drawn between any pair of individuals/devices whenever these devices are found to be in contact35

with each other, see Figure S3(a). To obtain a day-specific contact network, we aggregate all contact events36

observed on that given day to build such a contact network. The mechanism of drawing edges in the contact37

network can take on two flavours: 1) A new edge is drawn for each, even repeated pair of individuals.38

Here, the number of edges between any pair i and j or, equivalently, the edge weight wij ∈ {0, 1, 2, . . . }39

between them represents the number of recurrences or the total duration of contact. We refer to such contact40

networks as non-unique contact networks (Figure S3(c)). 2) A single, unweighted edge is drawn between41

any pair of devices found to be in contact, regardless of the number of recurrences within a day, to obtain42

unique contact networks. At most one link is possible between any pair of devices and weights aij can only43

take on aij ∈ {0, 1}. Overall, we here exclude “self-contacts”, i.e. wii = aii = 0 for all nodes i.44

In the context of epidemics, we think that the number of unique contacts is most relevant: For instance,45

given w contacts for a particular person, it matters whether a contact with a fixed partner is repeated w46

times or whether these stem from single contacts with w distinct contact partners. The latter situation47

arises to higher transmission potential. In other words, rather than the number of (non-unique) contacts48

in the network, it matters how these are distributed across the population and define its network topology.49

For the computation of the Contact Index CX = ⟨k2⟩
⟨k⟩ , we therefore focus on unique contact numbers50

ki =
∑

j aij where aij ∈ {0, 1}. However, unique contact networks and their scaling upon network sampling51

is mathematically more intricate, as portrayed in Section S2.52

Finally, we assume contact networks to be undirected, i.e. that infection is equally likely to occur in53

both directions between any pair of devices in contact. We thus neglect potential asymmetries of network54

links arising from the temporal order of passage of individuals at a location, as a first individual passing can55

result in the infection of a second, subsequent individual passing, but not vice versa by a causality argument.56

Since we only allow for temporal delays of up to 2min, we expect these asymmetries to be neglectable.57
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S2. Estimation of CX from contact network samples58

S2.1. Problem statement59

The Contact Index CX = ⟨k2⟩
⟨k⟩ , introduced and motivated in the main text, requires estimating the first60

two moments of the distribution of unique contact numbers in the contact network G with N nodes61

⟨k⟩ = 1

N

∑
i∈G

ki =
1

N

∑
ij∈G

aij ,

⟨k2⟩ = 1

N

∑
i∈G

k2i =
1

N

∑
ijℓ∈G

aijaiℓ, (S1)

where ki =
∑

j∈G aij is the unique contact number (degree) of node i and aij ∈ {0, 1} are the adjacency62

matrix elements capturing the presence or absence of a link between nodes i and j. The challenge resides63

in the fact that only a small fraction of all actual contacts are captured and recorded by our crowdsourcing64

approach; reconstructed contact networks thus represent samples of the complete population network of65

interest where most nodes and links have been removed [1, 2]. We use an approach based on Horvitz-66

Thompson network sampling theory [1] and topological information from complete contact networks in the67

literature [3, 4, 5] to correct for sampling effects.68

S2.2. The sampling process induced by the crowdsourcing app69

The nature of our reconstructed contact networks as samples of the actual object of interest stems from70

several aspects inherent to our GPS crowdsourcing method. Specifically, mobile device users install an app71

and opt in to the creation of samples including time and GPS location information, in response to certain72

triggers such as motion or activity on the phone. (i) Only a fraction of the population elects to install73

the app and are thus able to contribute (node sampling), thus giving rise to a panel of approximately 174

million users in Germany out of a population of 83 million. (ii) Participating individuals do not send samples75

continuously in time, but only occasionally upon trigger events (edge sampling). As a result, most real-world76

contact events go undetected.77

The emerging mathematical picture of the network sampling process induced by the crowdsourcing app78

is shown in Figure S3(a): An initial node sampling step retains only nodes which have the app installed79

on their device, which occurs with probability p ≈ 0.01. Edges between retained nodes are also retained.80

Second, an additional edge sampling step retains only those edges where both involved devices create a81

sample during the contact; the simultaneity of samples (modulo 2min) from different devices (Figure S3(b))82

is a necessary condition for the recording of contacts and occurs with probability q.83

The sampling parameters p and q are not constant, as app usage as well as trigger events for sample84

creation are subject to change over time. To achieve a persistent measurement of daily contact network85

statistics such as CX, the statistics obtained from network samples must be scaled by daily values of p and86

q. Most importantly, q is strongly affected by app updates, but previous modeling [6] is restricted to the87

node sampling part of the overall sampling process. In consequence, time series covering extended periods of88

time (3 years in this paper) represent a convolution of actual changes in contact networks in response to e.g.89

lockdowns and spurious changes inflicted by events unrelated to contact behaviour. Correcting these time90

series for app usage and software-related effects is key towards properly measuring actual epidemic factors.91
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Higher-order sampling effects, such as changes in phone usage in synchrony with contact behaviour92

changes as daily routines change, are not captured by our approach.93

S2.3. Horvitz-Thompson estimation of CX from network samples94

Using Horvitz-Thompson network sampling theory, we here derive the relationship between the Contact95

Index CX of the complete network G and its counterpart CX∗ in a sample G∗ of this network obtained96

through the sampling process described above. Observables O (O∗) in G (G∗) are denoted without (with)97

an asterisk. The theory states that, for any edge observable Oij , we have that in expectation [1]98

∑
ij∈G

Oij =
∑

ij∈G∗

O∗
ij

πij
, (S2)

where πij is the probability of retaining the edge between nodes i and j upon sampling the original network.99

For the moments ⟨k⟩ and ⟨k2⟩ in the complete network, we thus find100

⟨k⟩ = 1

N

∑
i∈G

ki =
1

N

∑
ij∈G

aij =
1

N

∑
ij∈G∗

a∗ij
pipjqij

(S3)

and101

⟨k2⟩ = 1

N

∑
i∈G

k2i =
1

N

∑
ijℓ∈G

aijaiℓ =
1

N

∑
ij ̸=ℓ∈G∗

a∗ija
∗
iℓ

pipjqijpℓqiℓ
+

1

N

∑
ij∈G∗

a∗ij
pipjqij

, (S4)

where the last equality in each case applies Eq. (S2) to the adjacency matrix entries Oij = aij . The overall102

probability of retaining a single edge reads πij = pipjqij as used in Eq. (S3); it requires both retaining the103

nodes (with probabilities pi and pj) and subsequently the edge itself (with probability qij). In Eq. (S4), we104

split the sum into terms where j ̸= ℓ and j = ℓ: In the former case, a second edge between i and ℓ needs to105

be retained (with conditional probability πiℓ = pℓqiℓ) after a first edge between i and j has been retained106

(again with probability πij = pipjqij).107

Thus, assuming uniform sampling parameters pi ≡ p and qij ≡ q across the network, which implies that108

the number of nodes scales as N∗ = pN , we have109

⟨k⟩ = 1

Np2q

∑
i∈G∗

k∗i =
1

pq

1

N∗

∑
i∈G∗

k∗i =
⟨k∗⟩∗

pq
(S5)

and110

⟨k2⟩ = 1

Np3q2

∑
i∈G∗

k∗i (k
∗
i − 1) +

1

Np2q

∑
i∈G∗

ki

=
1

p2q2
1

N∗

∑
i∈G∗

k∗i (k
∗
i − 1) +

1

pq

1

N∗

∑
i∈G∗

ki

=
⟨k∗2⟩∗ − ⟨k∗⟩∗

p2q2
+

⟨k∗⟩∗

pq
, (S6)

where ⟨·⟩∗ denotes the average taken within the sample network. As a result, the Contact Index CX is111
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estimated as112

CX =
⟨k2⟩
⟨k⟩

= 1 +
1

pq

(
⟨k∗2⟩∗

⟨k∗⟩∗
− 1

)
= 1 +

CX∗ − 1

pq
. (S7)

Upon setting q = 1, we recover previous results [6] without the additional edge sampling step once the nodes113

have been sampled.114

The node sampling probability p = N∗

N is simply given by the population share participating in the115

crowdsourcing and the probability of retaining non-unique contact links q by the rate of simultaneous samples116

between pairs of nodes; both devices must create samples at the same time (modulo 2min). Assuming that117

in the 2min-interval t (t = 1, 2, . . . , T = 720 for a day of 720 · 2min = 1440min) N∗(t) ≤ N∗ devices among118

the N∗ observed over the full day are active, we take119

q =

〈
N∗(t)(N∗(t)− 1)

N∗(N∗ − 1)

〉
t

=
1

T

T∑
t=1

N∗(t)(N∗(t)− 1)

N∗(N∗ − 1)
, (S8)

i.e., the average fraction of device pairs with simultaneous pings among all possible pairs. Eq. (S8) uses120

the fact that at any given time t, devices have uncorrelated activity patterns, i.e. they create samples121

independently from one another (Figure S3(e)). Note, however, that there is a systematic variation in the122

number of active numbers N∗(t) over the day, namely that devices are more active during daytime than at123

night (Figure S3(e)). By taking averages over the day, we expect to slightly underestimate the true q, as124

this collective daily activity pattern induces correlation between devices (Figure S3(e)).125

In the case of unique contact networks relevant to our purposes, however, inferring original network126

properties from samples comes with its own intricacies because of structural information loss, as discussed127

hereafter.128

S2.4. Computing the edge sampling probability q for unique contacts129

Contact numbers in unique versus non-unique contact networks have different interpretations [7]: The130

non-unique case comprises all contacts, including repeated ones, regardless of how they are distributed across131

the network. In contrast, the unique case counts pairs connected by any number of contacts and, as such,132

focuses on the topological features of the network. Horvitz-Thompson theory appears to be limited to the133

non-unique counts: Its success in connecting contact counts between original and sample networks relies on134

the independent nature of edge sampling – each of wij non-unique edges between nodes i and j is sampled135

independently with probability q. It fails for unique contacts because of a coupling effect: In order for a136

unique link to be retained upon sampling, at least one among wij > 0 non-unique links must be retained.137

However, we can rescue Horvitz-Thompson theory by considering independent survival of unique links with138

an effective edge sampling probability qeff (multilink density). Denoting by w∗ the remaining number of139

non-unique links after sampling (0 ≤ w∗
ij ≤ wij), this probability is given by140

qeff = P (w∗ > 0|w > 0) =
P (w∗ > 0)

P (w > 0)
, (S9)

where P (w) defines a weight distribution in the network, i.e. the probability that a pair of nodes is connected141

by w non-unique links.142
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The failure to infer original network properties from samples can be intuited by the destruction of143

structural network information upon edge sampling: Figure S3(c) illustrates how two networks with similar144

non-unique edge number but distinct topologies lead to similar sample networks upon edge sampling (green145

arrows). In consequence, the distinct original network topologies are indistinguishable from the sample as146

only source of information (red arrows) [8]. This topological information loss is also reflected by the non-147

injective relation between unique and non-unique weights, aij = sgn(wij); while the non-unique edge count148

wij > 0 indicates the presence of a unique link aij > 0, the reverse is not true.149

Eq. (S9) reveals that qeff explicitly depends on unknown properties of the original network P (w), which150

is where the missing structural information steps in. In consequence, the sampling parameter qeff is not151

fully determined by the crowdsourcing data, but requires additional knowledge about structural features of152

population-wide contact networks. To fill the gap, we devise a Bayesian approach in combination with prior153

information from complete contact networks reported in the literature [3, 4, 5]. We observe a common shape154

of P (w|w > 0) (Figure S3(d)) across a variety of contexts (cruiseship, university campus, small city), thus155

suggesting universal topological features in human contact networks also applicable as prior information to156

our case.157

The cruiseship dataset provides the durations of all contact events between all pairs of individuals for158

4 cruises of total duration of 37 h each, applying a 2m proximity threshold to define a contact. We define159

the weight for a given pair as the (rounded) cumulative number of 2min intervals spent in contact. The160

city dataset records all encounters within 50m between any two individuals from a sample of 4% of the city161

population on 3 consecutive days between 7am and 11pm, but not the duration of encounter. Similarly, the162

university dataset records all encounters between members of the freshmen class within 5 − 10m over the163

course of 28 days. While there is population sampling in the latter two datasets, the data is complete in a164

sense that within the population sample all contacts are systematically recorded (i,e., no edge sampling).165

For each day, we define the weights as the number of encounters between pairs of individuals.166

More precisely, all weight distributions appear to be well fitted by zeta distributions (i.e. discrete power-167

law distributions), P (w|w > 0) = w−(1+α)/ζ(1 + α), α > 0 with exponents α inferred through maximum168

log-likelihood maximization using the log-likelihood function169

L(α) = −
∑
w>0

N(w) [ln(ζ(1 + α)) + (1 + α) ln(w)] , (S10)

where N(w) is the number of links in the network with weight w and ζ(·) is the Riemann zeta function.170

The equation ∂L
∂α (α̂) = 0 then has approximate solution [9]171

α̂ ≈
(∑

w>0 N(w) ln(w)∑
w>0 N(w)

+ ln(2)

)−1

. (S11)

The distribution of values for α across all daily networks is shown in the inset of Figure S3(d). Note that we do172

not assert by our analysis that power laws are the true mechanism behind the observed networks [9, 8, 10].173

Rather, we will use this model and its topological information as an approximate representation of the174

observed networks to perform the normalization of the sampling parameter q. More precisely, we will use175

a discrete power-law prior distribution P0(w|w > 0) in the following. Also note that P0(w = 0) is excluded176

because the density of the network (1−P0(w)) is expected to be vastly different between spatially confined177
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and spatially extended contact networks.178

To express qeff in terms of q and the prior distribution P0(w), we use the binomial distribution connecting179

w and w∗,180

P (w∗|w) =
(
w

w∗

)
qw

∗
(1− q)w−w∗

, (S12)

as well as a Bayesian update equation for P (w),181

P (w) =
∑
w∗≥0

P (w|w∗)P (w∗) =
∑
w∗≥0

P (w∗|w)P0(w)

P0(w∗)
P (w∗), (S13)

where the second equality makes use of the Bayesian theorem P (w∗|w)P (w) = P (w|w∗)P (w∗). Evaluating182

the update equation at w = 0 and using P (w = 0|w∗) = δw∗0 as per the binomial distribution shows that183

P (w = 0)P0(w
∗ = 0) = P0(w = 0)P (w∗ = 0). (S14)

Because of the following series of equalities,184

P (w > 0)P0(w
∗ > 0) = (1− P (w = 0))(1− P0(w

∗ = 0))

= 1− P (w = 0)− P0(w
∗ = 0) + P (w = 0)P0(w

∗ = 0)

= 1− P (w = 0)− P0(w
∗ = 0) + P0(w = 0)P (w∗ = 0)

= 1− P0(w = 0)− P (w∗ = 0) + P0(w = 0)P (w∗ = 0)

+ [P0(w = 0)− P (w = 0)] + [P (w∗ = 0)− P0(w
∗ = 0)]

= (1− P0(w = 0))(1− P (w∗ = 0))

+ [P0(w = 0)− P (w = 0)] + [P (w∗ = 0)− P0(w
∗ = 0)]

= P0(w > 0)P (w∗ > 0)

+ [P0(w = 0)− P (w = 0)] + [P (w∗ = 0)− P0(w
∗ = 0)], (S15)

where the second equality makes use of Eq. (S14), we imply that185

P (w > 0)P0(w
∗ > 0) = P0(w > 0)P (w∗ > 0) + [P0(w = 0)− P (w = 0)]

+ [P (w∗ = 0)− P0(w
∗ = 0)]. (S16)

Thus, under the assumption that the prior and actual networks are similarly dense, i.e. |P (w(∗) = 0) −186

P0(w
(∗) = 0)| ≪ 1, we can neglect the terms in brackets [. . . ] in Eq. (S16) to obtain187

qeff =
P (w∗ > 0)

P (w > 0)
≈ P0(w

∗ > 0)

P0(w > 0)
=

1− P0(w
∗ = 0)

P0(w > 0)
=

∑
w>0

P0(w)

P0(w > 0)
[1− (1− q)w]

=
∑
w>0

P0(w|w > 0) [1− (1− q)w] =
∑
w>0

w−(1+α)

ζ(1 + α)
[1− (1− q)w] = 1−G(1− q), (S17)

where the approximation uses Eq. (S16), the second equality uses the binomial distribution, the third equality188
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uses the definition of conditional probabilities, and the last equality uses the zeta distribution as a model189

for P0(w|w > 0). Moreover, G(ξ) =
∑

w>0
ξ−(1+α)

ζ(1+α) ξ
w = ζ(1+α)−1Li1+α(ξ) is the generating function of the190

zeta distribution and Li·(·) is the polylogarithm. Expectedly, qeff is a non-linear and strictly monotonously191

increasing function of q.192

S3. Spatial heterogeneity193

S3.1. Correcting for spatially heterogeneous sampling: the role of soccer stadiums194

We found that GPS location data at mass events in certain, at least partially roofed locations can be195

flawed. This applies in particular to soccer matches in large stadiums: Some crowdsourcing samples are196

clustered in specific areas within stadiums (Figure S4(a)) which appears implausible. This spurious co-197

location of devices leads to false contacts which need to be identified and removed from the Contact Index198

analyses.199

The Android operating system uses 3 different technologies to determine device locations: pure GPS200

(samples of type GPS) as well as GPS in combination with two Android-specific methods (samples of type201

NET or FUSED). Using GPS location data labelled with ground truth locations from an on-site experiment at202

the Olympiastadion Berlin, we revealed that samples of type GPS are reliable, while certain stadium areas203

appear to be attractors for many samples of type NET and FUSED (Figure S4(b)). Therefore, we decide to204

remove contacts occurring in these apparent clusters, which is achieved through retaining all contact pairs205

where at least one (of two) co-located samples is of type GPS. All stadiums connected to soccer teams in the206

first 3 national soccer leagues receive this special treatment.207

Only about 10% of in-stadium samples are of type GPS. Having thus a 10-fold less dense sampling inside208

of stadiums as compared to outside of stadiums has an impact on the effective sampling parameters p and in209

particular qeff inside of stadiums. This leads us to a situation of heterogeneous sampling within the contact210

network, with some network portions being sampled differently as compared to others. Indexing the two211

geographically distinct regions “outside stadium” and “inside stadium” by 1 and 2, respectively, we identify212

the region-specific sampling parameters as213

p1 =
N∗

1

N1
, p2 =

N∗
2

N2
(S18)

and214

q1 =

〈
N∗

1 (t)(N
∗
1 (t)− 1)

N1(N1 − 1)

〉
t

, q2 =

〈
N∗

2 (t)(N
∗
2 (t)− 1)

N2(N2 − 1)

〉
t

, (S19)

where N∗
1/2 and N1/2 are respectively the number of distinct observed devices and the total population of215

regions 1 and 2. For the sake of convenience, we use N∗
1 ≈ N∗ and N1 ≈ N , which reflects that devices216

detected inside stadiums are likely to be also detected outside of stadiums on the same day (equivalently:217

we ignore the number of devices exclusively found inside stadiums). As such, p1 and q1 are again equivalent218

to p and q under uniform sampling.219

Computing p2 requires knowledge of N2, i.e. the stadium population present during a match. For220

regularly scheduled matches in the 3 national soccer leagues, among others, this information can be readily221

gathered from [11]. We find that the node sampling inside of relevant stadiums during soccer matches after222
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removal of samples of type NET or FUSED fluctuates around 73.0% of the level observed outside of stadiums,223

i.e. p2 = 0.730p1. To simplify the analysis and take into account irregular soccer events such as international224

matches, we fix p2 to 73% of p1 in all stadiums at all times, thus neglecting day- or event-specific variations225

in the value of p2.226

To define the overall Contact Index in this non-uniform sampling case, we need to take a different227

perspective on its definition CX = ⟨k2⟩
⟨k⟩ . Specifically, ⟨k⟩ and ⟨k2⟩ count 1-step and 2-step paths along228

links in the contact network. In the heterogeneously sampled case, we need to count 1-step and 2-step229

paths within as well as across regions. To this aim, we partition the overall unique contact network into230

region-specific unique contact networks G1 and G2 with adjacency matrices A1 and A2 such that a1,ij = 1231

if i and j are in contact in region 1 and similarly for region 2. Note that a1,ij = a2,ij = 1 for any pair232

that is in contact both inside and outside of stadiums. Within regions, where sampling is again uniform,233

the estimates of 1-step path counts K1/2 and 2-step path counts K11/22 are estimated following Eqs. (S5)234

and (S6) as235

K1/2 =
1

p21/2q1/2

∑
ij∈G∗

a∗1/2,ij ,

K11/22 =
1

p31/2q
2
1/2

 ∑
ij ̸=ℓ∈G∗

a∗1/2,ija
∗
1/2,iℓ − (1− p1/2q1/2)

∑
ij∈G∗

a∗1/2,ij

 . (S20)

Moreover, 2-step paths can span across regions with, for instance, the center node i having contact with j236

outside the stadium and with ℓ inside the stadium. Such paths would be retained under network sampling237

with proba p1&2,ip1,jp2,ℓq1,ijq2,iℓ, where p1&2 is the fraction of nodes found both in region 1 and 2. We238

approximate p1&2 ≈ p2 to reflect that devices detected inside stadiums are likely to also be detected outside239

stadiums (p1|2 = 1) on a given day. The Horvitz-Thompson estimation for the number of such paths240

(K12 +K21) = 2K12 thus reads241

K12 +K21 =
2

p1p2p1&2q1q2

∑
ijℓ∈G∗

a∗1,ija
∗
2,iℓ. (S21)

Overall, the contact number moments then read242

⟨k⟩ = K1 +K2

N
=

1
N∗

1

p1
+

N∗
2

p2

 1

p21q1

∑
ij∈G∗

a∗1,ij +
1

p22q2

∑
ij∈G∗

a∗2,ij

 (S22)

and243

⟨k2⟩ = K11 +K22 +K12 +K21

N

=
1

N∗
1

p1
+

N∗
2

p2

 1

p31q
2
1

 ∑
ij ̸=ℓ∈G∗

a∗1,ija
∗
1,iℓ − (1− p1q1)

∑
ij∈G∗

a∗1,ij

 (S23)

+
1

p32q
2
2

 ∑
ij ̸=ℓ∈G∗

a∗2,ija
∗
2,iℓ − (1− p2q2)

∑
ij∈G∗

a∗2,ij
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+
2

p1p2p1&2q1q2

∑
ijℓ∈G∗

a∗1,ija
∗
2,iℓ

 . (S24)

Note that contacts occurring in both regions (such as friends watching a match together and then going244

to a restaurant together) are counted twice, once in each region. In the case of non-unique contacts where245

repeated contacts should not be counted, we should therefore introduce a cross-region correction term246 (
−
∑

ij a1,ija2,ij

)
for ⟨k⟩ and

(
−
∑

ijℓ a1,ij(a1,iℓa2,iℓ)−
∑

ijℓ(a1,ija2,ij)a2,iℓ

)
for ⟨k2⟩ to remove multiple247

counts of contacts present in both regions. For simplicity, we here neglect these corrections, as such contacts248

are rare. Figure S4(c) compares the overall Contact Index CX and contributions from stadiums K22

K1+K2
:249

Expectedly, stadium contributions are indistinguishable from zero during Christmas holidays and lockdown250

periods. Stadium contributions are small (by a factor of at least ∼ 10) at all times compared to overall251

contact levels [12].252

S3.2. Spatially heterogeneous contact patterns253

To demonstrate the dimensionality and comparability of the Contact Index CX, we compute CX sepa-254

rately for all 16 German federal states: We partition the daily Germany-wide contact network by coloring255

the nodes according to their home states. The home state of a device is inferred on a monthly basis as the256

largest spatial cluster of samples among all of its samples over the course of the month. For any federal257

state, CX = ⟨k2⟩
⟨k⟩ is then computed from the distribution of unique contact numbers ki among all observed258

devices i based in that state, including cross-state contacts. State-level sampling parameters p and qeff are259

computed in complete analogy to the national level.260

The classification of nodes by home location is relevant for epidemic statistics, as infection test results261

are typically recorded and associated with an individual’s home location. In 2020, high daily CX values at262

the state level are indicative of high state-specific 7-day average SARS-CoV-2 reproduction numbers Reff ,263

computed from state-level infection numbers, about ∆t = 16days later (Figure S4(e)). Yet, increasing the264

spatial resolution for CX or, equivalently, computing CX for smaller portions of the network is limited by265

the sampling depth of our crowdsourcing approach: The signal-to-noise ratio is decreased as fewer absolute266

numbers of individuals are available to estimate the moments ⟨k⟩ and in particular ⟨k2⟩. Upon estimating267

confidence intervals for CX, we found that nation- and state-level CX are significant, but most county-level268

CX values are not.269

Comparing long-term averaged CX values between federal states reflects the expectation that levels of270

contacts tend to be globally higher in city states with high population density (Berlin, Hamburg, Bremen)271

than in geographically wide-stretching states and also higher in East German states compared to West272

German states (Figure S4(d)).273

S4. Determining and analyzing relative transmissibility ⟨T ⟩ using CX274

S4.1. Calibration of R and CX using 2020-specific data275

Throughout the manuscript, we use centered 7-day averages ⟨CX⟩(t) = 1
7

∑3
τ=−3 CX(t+ τ) to eliminate276

weekly periodicity in CX and maintain only its long-term trend, but skip the brackets ⟨·⟩ for clarity. We277

use daily Contact Index values CX and SARS-CoV-2 reproduction numbers Reff (now-cast data recorded278
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by RKI [13]) in the time window between 04/01/2020 and 12/31/2020 to establish the relationship between279

contact and transmission levels in absence of other factors: SARS-CoV-2 testing has become widely accessible280

by April 2020, while the turn of the year 2020/2021 marks the beginning of vaccine campaigns and the281

takeover of immune escape variants other than wild-type SARS-CoV-2. This time range covers parts of282

the first and second lockdowns in Germany as well as the comparatively unregulated summer 2020, thus283

providing ample amount of dynamics in terms of contact behaviour (Figure S1(a)) to study the correlation284

between the CX and Reff time series.285

For ∆t = 16days, time lead for which the linear Pearson correlation Corr[CX,Reff ](∆t) between CX286

and Reff is maximal (Figure S1(a, right inset)), we perform a linear regression of the data [6],287

RWT(t+∆t) = RWT(CX(t)) = a+ b · CX(t), (S25)

with parameters a and b found by minimizing the unweighted sum of squared residuals to be a = 0.56 and288

b = 0.01 (Figure S1(a, left inset)). The time lead of ∆t = 16days between the contact and the day appointed289

by the RKI for now-cast Reff values is explained, among other things, by the incubation period, delay in290

reporting, and averaging intervals.291

S4.2. Relative transmissibility: overall dynamics less the contacts292

Given the value of CX on day t, Eq. (S25) provides a prediction of RWT on day t+∆t. Then, we can293

interpret the discrepancy (ratio) between the prediction RWT and official Reff value294

T (t) =
Reff(t+∆t)

RWT(CX(t))
. (S26)

as the discrepancy between wild-type transmission efficiency under unperturbed conditions and actual trans-295

mission efficiency, i.e. the relative transmissibility of the contagion. This leads to a noisy time series T (t)296

for the slowly varying relative transmissibility whose trend is, by the easiest of all methods, captured by297

a smoothened signal ⟨T ⟩(t) = 1
2τ+1

∑τ
∆t=−τ T (t) where we here used τ = 30days, i.e. sliding centered298

averages over 2 months.299

S4.3. Confounding: correlation of ⟨T ⟩ with other time series300

To interpret the quantity ⟨T ⟩(t), we study the correlation between its daily trends (⟨T ⟩(t)− ⟨T ⟩(t− 1))301

with those of various other time series since the end of the time window used for calibration of CX and302

R (2021/01/01). Results are shown in Figure S1(b,c). We here include epidemic factors (virus mutant fre-303

quencies [14], population share per vaccination status [15]), test positivity [16], averages of locally measured304

prevalence [17]), and network sampling (p and q), as well as other topological features of the measured305

contact networks (cluster coefficient, smallworldness, etc.). Similarly to ⟨T ⟩(t), we first compute a tempo-306

ral average ⟨O⟩(t) = 1
2τ+1

∑τ
∆t=−τ O(t) with τ = 30days for any quantity O before computing Pearson307

correlations between ⟨T ⟩(t) and ⟨O⟩(t).308

To correlate ⟨T ⟩(t) with SARS-CoV-2 evolutionary dynamics, we define a time series given by309

O(t) =
∑
µ

|fµ(t)− fµ(t− 1)| (S27)
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where fµ(t) denotes the centered 7-day average frequency of SARS-CoV-2 mutant µ on day t. This time310

series peaks whenever absolute frequency slopes are high, i.e. whenever a takeover by a new variant occurs.311

SARS-CoV-2 prevalence studies are restricted in space and time: Typically, blood samples are taken and312

analyzed at the city or county level over the range of a few weeks. For every day t, we here use the average313

prevalence value across prevalence studies at different locations covering that day t, if any, as an indicator314

for the Germany-wide SARS-CoV-2 prevalence O(t).315

Unlike for the Contact Index CX which is tractable through Horvitz-Thompson theory, the scaling of316

topological features upon network sampling is more intricate or even impossible. Network sampling was317

shown to affect different topology metrics in various ways [18, 19]. Here, we simply use topological features318

of the measured sample networks. However, since the sampling scheme remains itself overall unchanged, we319

expect potential biases to be constant in time and trends in sample networks to reflect actual trends within320

the underlying complete networks. For every day t, we aggregate the measured networks between t and t+6321

to increase the statistical basis for the computation of topology measures, i.e. we include a link between a322

given pair of devices if there is a link on at least one day of the 7 days between t and t+ 6.323

S5. Epidemic forecast324

S5.1. SARS-CoV-2325

The challenge of epidemic forecast consists in the accurate prediction of current and future infection326

numbers or reproduction numbers. Now-cast Reff values, as published by the RKI for SARS-CoV-2 [13],327

do not provide a real-time picture of the infection dynamics, as they reflect past infections arising from328

past contacts with a delay of around ∆t = 16 days. As a result, denoting the current day by t0, infection329

surveillance can provide insights only up to day t0 −∆t, i.e. up to 2− 3 weeks ago.330

On the contrary, our crowdsourcing and CX data is being collected and processed in near real-time.331

Currently, the data import process from mobile devices induces a delay of only 2 days, but which is being332

further reduced via optimization of the data pipeline. The real-time nature of CX thus leads to a straight-333

forward forecast of recent and current reproduction numbers up to t0, under the assumption of unchanged334

relative transmissibility trend. The relative transmissibility ⟨T ⟩ itself inherits its delay of ∆t = 16 days from335

Reff and is projected beyond t0 −∆t (see below). Beyond t0, both CX and relative transmissibility T need336

to be projected from previous data.337

For given t0, we fit auto-regressive integrated moving-average (ARIMA) models to the time series: For338

CX, we use the last 60 data points up to t0 to fit a model with auto-regressive order p = 2, differencing339

degree d = 1 and moving-average order q = 2. For ⟨T ⟩, we use the last 180 data points up to t0 −∆t and340

p = 2, d = 1 and q = 3. We use the fitted models to project the time series up to 30 days into the future,341

i.e. up to t0 + 30. The reproduction number forecast is then obtained from the CX and T time series via342

Eq. (2) and the 1σ (68%) confidence intervals from the ARIMA models ∆CX and ∆T are propagated to343

Rpred through344

∆Rpred = (a+ b · CX)∆T + b ·∆CX · T. (S28)

As a null forecast that makes no use of our contact measurement, we project the infection surveillance345

data beyond t0 −∆t by fitting a model with p = 0, d = 2 and q = 0 to the last 60 days of Reff data.346
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To showcase and evaluate our epidemic forecast, we iterate t0 between 10/01/2020 and 12/20/2022 and347

(i) compare Rpred and its confidence interval with the actual Rtrue for selected t0 (Figure 2(a, upper panel))348

and (ii) compare the distribution of residuals (Rpred−Rtrue) over all choices of t0 at all time points between349

t0 −∆t and t0 + 30 between the null and actual forecasts (Figure 2(a, lower panel)).350

S5.2. Influenza351

To demonstrate the broad applicability of our method to airborne transmissible diseases, we perform352

a forecast of Influenza infection levels equivalently to our SARS-CoV-2 forecast (Figure S2). The case of353

Influenza comes with two major limitations unrelated to our method: 1) Infection surveillance is not as354

systematic as for SARS-CoV-2. For Germany, the RKI publishes weekly infection numbers [20], from which355

we define a rough estimation of R(t) as the ratio of the current (t) and one-week prior (t− 7) smoothened356

infection numbers. Of note, the goal of this approach is solely to define a time series that represents the357

trends in infection levels, not to rigorously define reproduction numbers. 2) Unlike epidemic SARS-CoV-2,358

endemic Influenza has no phase with constant mutant background required for the calibration of R and CX.359

For simplicity, we therefore assume a similar relationship as for SARS-CoV-2 and use identical regression360

parameters a and b. This assumption, however, should only affect the scale of the quantities, not their361

trends and forecast performances.362
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(a)

(b)

(c)

Figure S1: (Continued on the following page.)



Figure S1: (a) Comparison of the Contact Index CX (same as in Figure 1(a)) with the Government
Response Index [21], indicating concurrent trends albeit no causal link between non-pharmaceutical health
policies (NPIs) and contact levels. (a, left inset) Calibration of the Contact Index CX(t) and SARS-CoV-
2 effective reproduction numbers Reff(t + ∆t) (∆t = 16 days), independently recorded by the RKI [13],
between April and December 2020 by linear regression. A linear relationship between CX and Reff , with a
certain temporal shift ∆t due to incubation time and testing/reporting delays, is expected in predominantly
contact-driven epidemic trends (absence of immune escape variants and vaccination). (a, right inset)
Pearson correlation between CX(t) and Reff(t + ∆t) between April and December 2020 as a function of
the time lead ∆t. The correlation is highest for a time lead of ∆t = 16 days, thus implying that CX
precedes reproduction numbers by about 2− 3 weeks. (b) Interpretation of relative transmissibility ⟨T ⟩(t):
Correlation between SARS-CoV-2 relative transmissibility changes ⟨T ⟩(t)−⟨T ⟩(t−1) and various time series
(frequency trends of variants, average of local prevalence levels, test positivity, network sampling parameters,
and topological features of the contact network as estimated from network samples disregarding potential
effects from network sampling). (c) Comparison of normalized time series between transmission trends and
the most strongly correlated features identified in (b).
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Figure S2: Same as Figure 2, but for Influenza.
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Figure S3: Sampling and topological information in contact networks. (a) Definition of contact
networks and network sampling: Individuals/mobile devices are represented by nodes and contacts from
physical proximity between pairs of individuals by edges or links between corresponding nodes. The network
sampling process induced by the crowdsourcing app retains nodes (including links between pairs of retained
nodes) with proba p, reflective of the share of app users within the population. Subsequently, links are
retained with proba q, reflective of the likelihood of simultaneous samples between a pair of active devices.
(b) Ticks along the time axes indicate the samples from 2 different devices. A necessary condition to observe
a contact between two devices are simultaneous samples from those devices (red encircled samples). The
probability q of such an event depends on the rate of such samples. (c) In non-unique contact networks,
links are weighted by the duration or multiplicity of contact wij ∈ {0, 1, 2, . . . } between nodes i and j over
the course of a day, while unique contact networks only distinguish between presence or absence of contact,
aij ∈ {0, 1}. Example of information loss upon link sampling: Networks with distinct topologies (left vs.
right set of networks) can yield similar sample networks (bottom network) upon the same sampling process
(green arrows). Discriminating distinct original networks from the sample network (red arrows) thus requires
additional information. (d) Weight distributions P (w) found in complete daily contact networks from the
literature [3, 4, 5]. Here, “complete” refers to the aspect that these networks represent a fraction of the
population (p < 1), but all contacts within that subpopulation are being detected (q = 1) – node sampling,
but no edge sampling. (e) Sample rates and their implications for link sampling probability q. Comparison
between actual two-device simultaneous sample rates fij and those predicted from uncorrelated single-device
sample rates fifj (left panel). The observed effective correlation of samples across devices (fij > fifj),
especially for the old app, stems from the non-uniformity of the sample/device activity distribution ρ1(t)
across the day (right panel); devices are more active during daytime than at night, an effect particularly
prominent in the old app. However, aside from a common daytime pattern, devices show a predominantly
independent activity pattern from one another: At any given timepoint (2min interval), squared single-

device distributions, i.e. ρ1(t)
2∫

ρ1(t)2 dt
, do capture the distribution of simultaneous samples ρ2(t) across the day

well. A major app update in early 2020 has significantly altered the daytime distribution and overall number
of samples (top versus bottom set of panels).
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Figure S4: Spatial heterogeneity of sampling and contact levels. (a) Distribution of samples in
the Olympiastadion Berlin area during the Berlin-Wolfsburg soccer match on 08/14/2021, showing an im-
plausible concentration of samples in the southern part. (b) Comparison between positions determined by
the app and actual, ground truth positions from an experiment conducted in the Olympiastadion Berlin.
GPS-sourced locations (left) reflect true positions, while NET-sourced locations oftentimes are systematically
off (right), with particular locations acting as attractors. (GPS and NET refer to distinct localization methods
defined by the Android operating system.) (c) Comparison between overall CX (same as Figure 1(a)) and
its contributions from major soccer stadiums. Stadium attendance appears to have negligible impact on
overall contact levels; note the log scale on vertical axis. Periods with stadium contribution below 10−3 are
those where mass events were banned by health policy measures. (d) Relationship between average CX
values specific to federal states of Germany and their population densities. City states (Berlin, Hamburg)
with the exception of Bremen expectedly tend towards higher CX values. Eastern states tend towards
higher CX than Western states with similar population density. (e) Relationship between state-specific
CX and state-specific Reff values in 2020.


