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The Observational Medical Outcomes Partnership (OMOP) Data Model
OMOP is an open-community and common data model to enable standard analyses of observational databases.  In the OMOP common data model, classification vocabularies, such as International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM), Current Procedural Terminology version 4 (CPT4), or Standard Nomenclature of Medicine (SNOMED); are mapped to standard OMOP concepts based on semantic and clinical relationships.(1)  Vocabulary classification and mapping of various ontologies to the OMOP standard vocabulary is maintained by OHDSI and publicly available on ATHENA (http://athena.ohdsi.org/), which is a web-based vocabulary repository.(2)  

Definitions of ACLF
The NACSELD ACLF diagnostic criterion is based on two or more organ failures: shock, West-Haven grade III/IV hepatic encephalopathy, dialysis, and/or mechanical ventilation.(3)  The EF-CLIF ACLF diagnostic criterion is based on gradations of organ failures based on laboratory measurements and/or events across six organ systems.(4)  As the ratio of arterial partial pressure of oxygen (PaO2) to fraction of inspired oxygen (FiO2) was not always available, we utilized the threshold of partial oxygen saturation (SpO2) to FiO2 ratio of ≤ 214 as an equivalent of PaO2/FiO2 ratio of ≤ 200 as per custom in the CLIF-C-ACLF model.(4)

Missingness and Imputation
Implausible values, as defined as those greater than three standard deviations from the mean values were removed as per previous data processing in the generation of ML models.(5)  Data features and variables with greater than or equal to 25% missingness were excluded from analyses, similar to previous ML analyses of transplant hepatology patients.(5)  Data features with less than 25% missingness were imputed with single imputation with chained random forests as implemented in the missRanger, version 2.1.3, R package.(6,7)  
This imputation method handles both continuous and categorical data features within the distribution of the original data, thereby avoiding outliers and recovers the natural data variability.  In previous performance evaluations of imputation methods in a large electronic health record dataset, missRanger algorithms produced the most reliable results with the lowest average standard errors. (8–10)   

Confidence Interval Calculations for AUROC Differences
To estimate point estimates and confidence intervals for AUROC differences between pair-wise comparisons of models (e.g. EAML versus MELDNa), we utilized bootstrapping over 2,000 iterations for each difference as implemented in the boot, version 1.3-28, R package.(11–13)  
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[bookmark: _Hlk128687775]Supplemental Figure 3 – RuleFit Training and Testing Plot for Outcome of Readmissions at 90-Days
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